• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 9
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Write errors in exchange coupled Bit Patterned Media

Talbot, Jennifer January 2016 (has links)
The fabrication of Bit Patterned Media has become highly developed, with samples fabricated of over 1.5 Tb/in2. However, writing BPM presents significant challenges and for a system to be developed studies must be made into writing. This work has investigated a number of effects on the writing of Bit Pattterned Media (BPM). Magnetostatic interactions between islands have been used to investigate the effect of patterns of magnetisation on the write-window of a BPM system. A method of acquiring a distribution of patterns was determined and used to vary the probability of a target island switching. This showed that magnetostatic interactions between islands could be modelled as a variation in the anisotropy field. The relationship between island parameter distributions, the write-window and error rates was also explored. The effect of non-Gaussian distributions on the error in a BPM system was studied. It was concluded that tails of island parameter distributions have a significant effect on errors occurring in the write process of a BPM system. Therefore an accurate distribution of island parameters must be known and the necessary accuracy of such a distribution was established. Furthermore a model of BPM writing where the shape of the head field is approximated from the value at the maximum head field gradient will not account for switching in the tail of a real head field. This led onto a study of the ideal write point in BPM. In conventional recording theory the medium is designed to switch when the applied head field is at the position of its maximum gradient, which produces sharp transitions between magnetisation regions. A natural assumption in BPM is that the system could be optimised by setting the island switching field in a similar manner. This strategy of optimisation was investigated to see what gives the minimum error, or maximum write-window. It was concluded that optimisation could not be solely based on the maximum head field gradient, furthermore assuming the shape of the head field from this point will not produce an accurate estimation of the error in a BPM system.
2

Fabrication of L12-CrPt3 Alloy Films Using Rapid Thermal Annealing for Planar Bit Patterned Media

Tsunashima, Shigeru, Iwata, Satoshi, Yamauchi, Yukihiro, Oshima, Daiki, Kato, Takeshi 06 1900 (has links)
No description available.
3

Magnetization Reversal Processes of Nanostructure Arrays

Krone, Philipp 05 September 2011 (has links) (PDF)
In the thesis at hand, different concepts of magnetic recording were investigated both from an experimental and theoretical point of view. On the one hand, micromagnetic simulations of bit patterned media were performed examining the influence of magnetic and geometrical parameters on the magnetization reversal mechanism of the bit array. In this regard, the recording concept called exchange coupled composite (ECC) media was applied in combination with bit patterned media (BPM). It was demonstrated that ECC/BPM is superior in terms of narrowing the SFD which is vital for the implementation of BPM as a recording scheme in magnetic data storage deviced. Moreover, the stability of the magnetic state was calculated for single nanomagnets using the nudged elastic band algorithm. It was found out that the magnetic and geometrical properties have a severe influence on both, the energy barrier for magnetization reversal and the magnetization reversal process of the single nanomagnets. On the other hand, experimental studies of granular CoCrPt:SiO2 films deposited on self-assembled arrays of SiO2 nanoparticles with a size from 10 nm to 330 nm have been carried out, showing a distinct size-dependence of the coercive field and remanent magnetization with changing nanoparticle size. Moreover, these films have been irradiated with Co+ ions with different fluences, resulting in a change of the magnetic properties of the films due to both a change of the intergranular exchange coupling of the film and a degredation of the magnetic layers at higher irradiation fluences.
4

Fabrication and characterisation of L10 ordered FePt thin films and bit patterned media

Zygridou, Smaragda January 2016 (has links)
Highly ordered magnetic materials with high perpendicular magnetic anisotropy (PMA), such as the L10 ordered FePt, and new recording technologies, such as bit patterned media (BPM), have been proposed as solutions to the media trilemma problem and provide promising strategies towards future high-density magnetic data storage media. L10 ordered FePt thin films can provide the necessary high PMA. However, the ordering of this material perpendicular to the plane of the films remains challenging since high-temperature and time-consuming processes are required. In this work, a remote plasma sputtering system has been used for the investigation of FePt thin films in order to understand if the greater control of process parameters offered by this system can lead to enhanced ordering in L10 FePt thin films at low temperatures compared with conventional dc magnetron approaches. More specifically, the effect of the different substrate temperatures and the target bias voltages on the ordering, the microstructure and the magnetic properties of FePt thin films was investigated. Highly ordered FePt thin films were successfully fabricated after post-annealing processes and were patterned into arrays of FePt islands. This patterning process was carried out with e-beam lithography and ion milling. Initial MFM measurements of these islands showed their single-domain structure for all the island sizes, which indicated the high PMA of the FePt. Magnetometry measurements were also carried out with a novel polar magneto-optical Kerr effect (MOKE) system which was designed and built during this project. This system has unique capabilities which are: a) the application of uniform magnetic field up to 2 Tesla, b) the rotation of the field to an arbitrary angle and c) the use of lasers of four different wavelengths. The combination of these abilities enabled measurements on ordered FePt thin films and patterned media which can pave the way for further highly sensitive measurements on magnetic thin films and nanostructures.
5

Investigation of island geometry variations in bit patterned media storage systems

Shi, Yuanjing January 2011 (has links)
Bit-Patterned Media (BPM) has been recognised as one of the candidate technologies to achieve an areal density beyond 1Tb/in2 by fabricating single-domain islands out of continuous magnetic media. Though much attention has been focused on the fabrication of BPM, existing lithography techniques demonstrate difficulties in producing uniform islands over large areas cost effectively; the resulting fabricated islands often vary in position and size. The primary purpose of the research documented in this thesis is to investigate the issue of island geometry variations on the data recovery process from a perpendicular patterned media with head and media configurations optimised to achieve an areal density of 1Tb/in2. In order to achieve the research aim, a read channel model has been implemented as a platform to evaluate the read channel performance numerically. It can be also altered to investigate new read channel designs. The simulated results demonstrate that island geometry variations have a detrimental effect on read channel performance. It has shown that a BPM system can be tolerant to island position variations, but more effort needs to be paid to the effect that island size variations have on the read channel performance. A new read channel design revolving around the design of a modified trellis has been proposed for use in the Viterbi detector in order to combat the effect of island geometry variations. The modified trellis for island position variations results in extra states and branches compared to the standard trellis, while the modified trellis for island size variations results in only extra branches. The novel read channel designs demonstrate an improved read channel performance in the presence of island geometry variations even with increasing amounts of island position and size variations. There are two ways to obtain the read channel performance in terms of the bit-error-rate (BER): a) by running a numerical Monte-Carlo simulation to count the number of bits in error at the output of the read channel model and b) using an analytical approach to calculate the BER by approximating the noise into a known distribution. It is shown that both ways demonstrate very similar results, which indicates as long as the distribution of the noise present in read channel model is predictable, the analytical approach can evaluate the BER performance more efficiently, especially when the BER is low. However, the Monte-Carlo simulation is still useful for understanding of the correlation of the errors. Novel trellis proposed in this work will contribute to the commercial development of BPM in two ways: a) to improve the data recovery process in BPM systems, b) to allow a tolerance of 10% size variations for the existing fabrication techniques.
6

Magneto-optic Kerr and Hall effect measurements for the characterisation of bit patterned media

Alexandrou, Marios January 2011 (has links)
For the past 50 years, the magnetic storage industry has been the ultimate provider, covering the ever-expanding needs of digital mass storage. Up to now, scaling to smaller dimensions has been the core approach for achieving higher areal densities in conventional media. However, recent studies have shown that further miniaturisation is physically bound by superparamagnetic effects. Bit patterned media (BPM) is one of the most promising solutions for extending the areal densities beyond 1Tbit/in². The ability to magnetically characterise novel BPM is a key requirement for its future commercialisation. The work presented in this thesis describes the investigation of the Magneto-Optic Kerr Effect (MOKE) and the Anomalous Hall Effect (AHE) techniques, used in the characterisation of BPM samples. These samples were produced as part of this work using a customised subtractive fabrication process. Continuous thin magnetic films with Ptseed(10nm)/[Co(0.4nm)/Pt(1nm)]x15 composition and perpendicular anisotropy, were deposited using electron-beam (e-beam) evaporation, and subsequently patterned into magnetic nano-islands through means of e-beam lithography and Ar⁺ ion milling. In terms of the MOKE technique, a fully customised polar MOKE system has been developed and successfully used to observe the hysteretic behaviour of magnetic nano-island arrays with varying dimensions. An expected reduction in the MOKE signal due to pattering has been observed, as well as an additional signal reduction due to the scattering effect arising from the non-vertical sidewalls of the dome-shaped islands. In the case of islands with improved shape profile, the magnetic reversal of BPM arrays with islands sizes down to 35nm has been successfully detected, demonstrating a sensitivity of approximately 6x10⁻¹³emu for the MOKE system. In terms of the AHE technique, Au Hall crosses were deposited on top of the BPM arrays that had been previously characterised by MOKE, allowing the direct comparison and cross-verification of the results obtained by the two techniques. A revised Hall cross design, where the Hall crosses were generated by direct patterning of the Pt seed layer, has provided a significant improvement in AHE signal. This has allowed the detection of the magnetic reversal of individual sub-50nm magnetic islands, demonstrating a sensitivity of approximately 6.6x10⁻¹⁵emu for the AHE technique. The spatial sensitivity of these Hall cross structures has been experimentally determined, indicating a decrease in sensitivity with increasing distance from the cross centre and with decreasing island diameter. In conclusion, the sensitivity profile of Hall cross structures must be taken into account for the accurate interpretation of BPM characterisation results obtained by the AHE technique. Finally, some suggestions are outlined with regard to the future improvement of the developed characterisation techniques and the further continuation of the work presented in this thesis.
7

Arrays of magnetic nanostructures : a dynamical and structural study by means of X-ray experiments

Heldt, Georg January 2014 (has links)
The work in this PhD thesis covers two strands of x-ray experiments: firstly, the characterisation of large arrays of dense structures by means of x-ray scattering, and, secondly, the investigation of hybrid anisotropy square structures with x-ray microscopy. The ability to accurately characterise large arrays of nanoscale magnetic structures is a key requirement for both scientific understanding and technological advance such as bit patterned recording media (BPM). In this work small angle x-ray scattering (SAXS) was investigated as a characterisation technique for large arrays of patterned structures. Dense arrays of magnetic nanostructures were prepared on x-ray transparent membranes and measured. The SAXS data was then modelled to obtain structure parameters such as the mean structure diameter, the diameter distribution and the mean position variance with statistical significance. Arrays (500 x 500 μm2) of nominally uniform nanostructures with centre-to-centre distances between 250 nm-50 nm were structurally characterised and compared to structure diameters obtained by optical scanning electron microscopy measurements. The mean structure diameter was found to be between 39 nm-15nm and agree within the errors with the diameter obtained from SEM measurements. This work provides accurate data on the distribution (variance) of nanostructure sizes which is key for modelling these arrays for applicationin BPM. In the second part of the work, the static and dynamic properties of patterned hybrid anisotropy square structures ([Co/Pd]-Py) were investigated by using time-resolved scanning transmission X-ray microscopy (STXM). In these patterned structures the magnetisation in the layers change both in magnitude and direction and gives rise to interesting new domain configurations. The reciprocal interaction between magnetic vortices in the Py layer and locally circular stripe domains in the Co/Pd was investigated and a mutual domain imprint between the layer was observed. In dynamic excitation experiments the precession of the vortex core is studied and showed good agreement with micromagnetic simulations made by Hrkac and Bryan. As demonstrated patterned hybrid anisotropy square structures have promising magnetic properties with potential applications in data storage (vortex switching) or spintronics (vortex oscillators).
8

Magnetization Reversal Processes of Nanostructure Arrays

Krone, Philipp 29 July 2011 (has links)
In the thesis at hand, different concepts of magnetic recording were investigated both from an experimental and theoretical point of view. On the one hand, micromagnetic simulations of bit patterned media were performed examining the influence of magnetic and geometrical parameters on the magnetization reversal mechanism of the bit array. In this regard, the recording concept called exchange coupled composite (ECC) media was applied in combination with bit patterned media (BPM). It was demonstrated that ECC/BPM is superior in terms of narrowing the SFD which is vital for the implementation of BPM as a recording scheme in magnetic data storage deviced. Moreover, the stability of the magnetic state was calculated for single nanomagnets using the nudged elastic band algorithm. It was found out that the magnetic and geometrical properties have a severe influence on both, the energy barrier for magnetization reversal and the magnetization reversal process of the single nanomagnets. On the other hand, experimental studies of granular CoCrPt:SiO2 films deposited on self-assembled arrays of SiO2 nanoparticles with a size from 10 nm to 330 nm have been carried out, showing a distinct size-dependence of the coercive field and remanent magnetization with changing nanoparticle size. Moreover, these films have been irradiated with Co+ ions with different fluences, resulting in a change of the magnetic properties of the films due to both a change of the intergranular exchange coupling of the film and a degredation of the magnetic layers at higher irradiation fluences.
9

Etudes de nanostructures magnétiques auto-organisées et épitaxiées par synthèse organométallique en solution sur des surfaces cristallines / Studies on auto-organized and epitaxiated magnetic nanostructures obtained by organometallic synthesis in solution on crystalline surfaces

Achkar, Charbel 04 July 2014 (has links)
Les travaux élaborés dans cette thèse ont pour objectif de caractériser les propriétés magnétiques et structurales de nanostructures magnétiques obtenues par une nouvelle méthode de synthèse mixte physique/chimique, dite croissance hybride. La première partie du travail réalisé consiste en l’élaboration de films minces métalliques sur substrats par pulvérisation cathodique. Sur ces films minces, la synthèse chimique par voie organométallique aboutit à des réseaux de nanofils de Co monocristallins hcp, ultra-denses, ou des films nanostructurés de Fe. Les observations MEB/MET et les mesures de diffraction de rayons X réalisées sur les substrats montrent le fort impact induit par la cristallinité de la couche mince sur la morphologie et la direction de croissance des nanostructures magnétiques.Les mesures magnétiques réalisées sur des réseaux de nanofils de Co montrent une forte anisotropie magnétique perpendiculaire au substrat. Cela est obtenu grâce à l’anisotropie magnétocristalline du Co hcp (avec l’axe c parallèle à l’axe du fil) qui s’ajoute à l’anisotropie de forme. L’aimantation thermiquement stable, semble suivre un régime de retournement cohérent, régime non observé dans les structures polycristallines. L’organisation de ces nanostructures, leur grande densité et la stabilité de leur aimantation font de ce réseau un bon candidat aux applications de médias d’enregistrement magnétique à forte densité. / The elaboration of this thesis aims to characterize the magnetic and structural properties of magnetic nanostructures obtained by a new mixed physical / chemical synthesis method, called hybrid growth. The first part of the work consists in the development of thin metal films on substrates by cathode sputtering. Furthermore, the chemical synthesis conducted by organometallic chemistry on those thin films, results in an array of ultra-dense Co monocristallins hcp nanowires, or nanostructured Fe films. Additionally, The SEM/TEM observations and the X-ray diffraction measurements conducted on the substrates and induced by the crystlalline structure of the thin film, show the high impact on the magnetic nanostructures morphology and growth direction.Moreover, the magnetic measurements executed on the Co nanowires array show a strong magnetic anisotropy perpendicular to the substrate. This observation is obtained due to the magnetocrystalline anisotropy acting along the nanowire axis (Co hcp structure with the c axis parallel to the nanowire axis) in the same direction of the nanowires shape anisotropy. The magnetization within these structures is thermally stable. It follows a coherent magnetization reversal mode that has not been observed in the polycrystalline structures up to now. Finally, the self-organization of the nanowires as well as their high density and stable magnetization nominate this system for their application in high density magnetic storage devices.
10

Modelling data storage in nano-island magnetic materials

Kalezhi, Josephat January 2011 (has links)
Data storage in current hard disk drives is limited by three factors. These are thermal stability of recorded data, the ability to store data, and the ability to read back the stored data. An attempt to alleviate one factor can affect others. This ultimately limits magnetic recording densities that can be achieved using traditional forms of data storage. In order to advance magnetic recording and postpone these inhibiting factors, new approaches are required. One approach is recording on Bit Patterned Media (BPM) where the medium is patterned into nanometer-sized magnetic islands where each stores a binary digit.This thesis presents a statistical model of write errors in BPM composed of single domain islands. The model includes thermal activation in a calculation of write errors without resorting to time consuming micromagnetic simulations of huge populations of islands. The model incorporates distributions of position, magnetic and geometric properties of islands. In order to study the impact of island geometry variations on the recording performance of BPM systems, the magnetometric demagnetising factors for a truncated elliptic cone, a generalised geometry that reasonably describe most proposed island shapes, were derived analytically.The inclusion of thermal activation was enabled by an analytic derivation of the energy barrier for a single domain island. The energy barrier is used in a calculation of transition rates that enable the calculation of error rates. The model has been used to study write-error performance of BPM systems having distributions of position, geometric and magnetic property variations. Results showed that island intrinsic anisotropy and position variations have a larger impact on write-error performance than geometric variations.The model was also used to study thermally activated Adjacent Track Erasure (ATE) for a specific write head. The write head had a rectangular main pole of 13 by 40 nm (cross-track x down-track) with pole trailing shield gap of 5 nm and pole side shield gap of 10 nm. The distance from the pole to the top surface of the medium was 5 nm, the medium was 10 nm thick and there was a 2 nm interlayer between the soft underlayer (SUL) and the medium, making a total SUL to pole spacing of 17 nm. The results showed that ATE would be a major problem and that cross-track head field gradients need to be more tightly controlled than down-track. With the write head used, recording at 1 Tb/in² would be possible on single domain islands.

Page generated in 0.1075 seconds