Spelling suggestions: "subject:"bodycoder"" "subject:"carbodymodel""
21 |
Occupant Responses of Relaxed and Braced 5th Percentile Female and 50th Percentile Male Volunteers during Low-Speed Frontal and Frontal-Oblique Sled TestsChan, Hana 05 July 2023 (has links)
The increased prevalence of crash avoidance technologies like autonomous emergency braking necessitates understanding of occupant responses during low-speed frontal pre-crash braking and low-severity crash events. Active human body models (HBMs) have emerged as valuable tools to evaluate occupant safety during these events, but must be validated with relevant volunteer data to accurately represent the responses of live occupants.
The objective of this dissertation was to quantify the occupant responses of relaxed and braced 5th percentile female and 50th percentile male volunteers during low-speed frontal and frontal-oblique sled tests designed to simulate pre-crash braking and low-severity crash events. A study comprised of 160 low-speed sled tests was performed with 20 volunteers. The volunteers' kinematics, kinetics, and muscle responses were compared to determine how altering impact direction (frontal and frontal-oblique), impact severity (1 g and 2.5 g), demographic group (mid-size male and small female), and muscle state (relaxed and braced) affected occupant responses.
The volunteers' occupant responses were significantly affected by impact direction, impact severity, demographic group, and muscle state. The frontal-oblique tests resulted in greater leftward excursions compared to the frontal tests. Increasing the pulse severity resulted in greater forward excursions, reaction forces, and muscle activation. The male volunteers exhibited greater forward excursions and reaction forces compared to the female volunteers. However, the two demographic groups exhibited similar muscle activation during the sled tests. Bracing increased the volunteers' initial joint angles, muscle activation, and reaction forces prior to the sled tests. Bracing decreased forward excursions and increased reaction forces during the sled tests. The relaxed volunteers exhibited greater relative changes in occupant responses compared to the braced volunteers.
Overall, this study demonstrated that muscle activation significantly affected the volunteers' kinematics, kinetics, and muscle responses for both mid-size males and small females during low-speed events. Observed differences between demographic groups were more prominent when relaxed and more diminished when braced. These results underscore the importance of validating active HBMs with relevant volunteer data in order to be more representative of live occupants for a wider range of demographic groups in varying muscle states.
Finally, this dissertation provides a large, comprehensive, and novel biomechanical dataset that can be used to develop and validate active HBMs for use in assessing occupant response during frontal pre-crash braking and low-severity crash events. These models will help improve the understanding of potential injury risk and development of effective vehicle safety systems for use during low-speed events. / Doctor of Philosophy / Computer models, known as active human body models (HBMs), have emerged as tools that can be used to assess occupant safety during low-speed vehicle crashes. In these types of events, occupants have enough time to react and potentially brace before the crash, which could in turn affect their responses during the crash. It is important to understand how occupants respond during crashes so that effective vehicle safety systems can be developed. Active HBMs are particularly valuable because they can simulate muscle activation to reflect the response of live occupants. However, data are needed from live occupants to ensure that these models are accurate.
To gather this data, a study was performed where volunteers experienced low-speed frontal sled tests when they were relaxed and braced. The sled tests were designed to simulate pre-crash braking and low-severity vehicle crashes. Mid-size male and small female volunteers were recruited to participate to represent the standard adult occupant populations used in current frontal impact vehicle safety standards. A motion capture system was used to measure the volunteers' forward motion, load cells were used to measure the volunteers' exerted reaction forces on the test buck, and electrodes were used to measure the volunteers' muscle activity.
The volunteers' responses were significantly different between the relaxed and braced muscle states, and between the males and females. Comparing between males and females, the males moved farther forward and exerted larger reaction forces, but both demographic groups exhibited similar muscle responses. Comparing between muscle states, bracing increased the volunteers' muscle activation and reaction forces before the sled tests. Bracing also increased the volunteers' reaction forces during the sled tests, but decreased forward movement. Overall, the volunteers exhibited greater relative changes in response when they were relaxed compared to when they were braced.
Overall, this study demonstrated that muscle activation significantly affected the volunteers' responses for both mid-size males and small females during low-speed events. These results highlight the importance of developing active HBMs with relevant volunteer data in order to be more representative of live occupants.
Finally, the data from this study can be used to develop active HBMs to improve their accuracy, so that the models can be used to assess occupant safety during low-speed frontal vehicle crashes. This will help improve the understanding of potential injury risk and development of effective vehicle safety systems, to reduce the number of injuries caused by vehicle crashes.
|
22 |
Methodology to predict core body temperature, cardiac output, and stroke volume for firefighters using a 3D whole body modelZachariah, Swarup Alex 08 September 2015 (has links)
No description available.
|
23 |
Assessment of Uncertainty in Core Body Temperature due to Variability in Tissue ParametersKalathil, Robins T. January 2016 (has links)
No description available.
|
24 |
ESD Protected SiGe HBT RFIC Power AmplifiersMuthukrishnan, Swaminathan 27 April 2005 (has links)
Over the last few decades, the susceptibility of integrated circuits to electrostatic discharge (ESD) induced damages has justified the use of dedicated on-chip protection circuits. Design of robust protection circuits remains a challenging task because ESD failure mechanisms have become more acute as device dimensions continue to shrink. A lack of understanding of the ESD phenomena coupled with the increased sensitivity of smaller devices and time-to-market demands has led to a trial-and-error approach to ESD-protected circuit design. Improved analysis capabilities and a systematic design approach are essential to accomplish the challenging task of providing adequate protection to core circuit(s).
The design of ESD protection circuitry for RFIC's has been relatively slow to evolve, compared to their digital counterparts, and is now emerging as a new design challenge in RF and high-speed mixed-signal IC development. Sub-circuits which are not embedded in a single System-on-Chip (SOC), such as RF Power amplifiers (PAs), are of particular concern as they are more susceptible to the various ESD events.
This thesis presents the development of integrated ESD protection circuitry for two RFIC Power Amplifier designs. A prototype PA for 2.4 GHz Wireless Local Area Network (WLAN) applications was redesigned to provide protection to the RF input and the PA Control pins. A relatively new technique known as the L-C tank approach was used to protect the RFinput while a standard diode ring approach was used to protect the control line. The protection techniques studied were subsequently extended to a completely protected three-stage PA targeting 1.9 GHz Digitally Enhanced Cordless Telephone (DECT) applications. An on-chip shunt-L-series-C input matching network was used to provide ESD protection to the input pin of the DECT PA. A much more area efficient (as compared to the diode ring technique) Zener diode approach was used to protect the control and signal lines. The PA's RF performance was virtually unaffected by the addition of the protection circuits.
Both PAs were designed in a commercially available 0.5 ìm SiGe-HBT process. The partially protected WLAN PA was fabricated and packaged in a 3mm x 3mm Fine Pitch Quad Flat Package FQFP-N 12 Lead package and had a measured ESD protection rating of ± 1kV standard Human Body Model (HBM) ESD test. The simulated DECT PA demonstrated +1.5kV/-4kV HBM performance. / Master of Science
|
25 |
Design Of A Compliant Bistable Lock Mechanism For A Dishwasher Using Functionally Binary Initially Curved Pinned-pinned SegmentsUnverdi, Uygar 01 June 2012 (has links) (PDF)
The aim of this study is to design a compliant lock mechanism for a dishwasher, using a systematic approach. Functionally binary pinned-pinned segment that exhibits bistable behavior is utilized. Pseudo-rigid-body model of the whole mechanism and the half segment is developed separately and the corresponding calculations are carried out. Among current solutions a different method namely &ldquo / arc fitting method&rdquo / is developed and it is utilized to construct the model. A software code is written to get the exact solutions, which require the evaluation of elliptic integrals. Results are compared with the analytical model and confirmed with physical prototype. Predefined tip forces are seen to provide the transition from one stable position to other. Durability, reliability and compactness characteristics are particularly considered.
|
26 |
Multistable Shape-Shifting Surfaces (MSSSs)Montalbano, Paul Joseph 01 January 2012 (has links)
This paper presents designs for Multistable Shape-Shifting Surfaces (MSSS) by introducing bistability into the Shape-Shifting Surface (SSS). SSSs are defined as surfaces that retain their effectiveness as a physical barrier while undergoing changes in shape. The addition of bistability to the SSS gives the surface multiple distinct positions in which it remains when shifted to, i.e. by designing bistability into a single SSS link, the SSS unit cell can change into multiple shapes, and stabilize within the resulting shape, while maintaining integrity against various forms of external assaults normal to its surface. Planar stable configurations of the unit cell include, expanded, compressed, sheared, half-compressed, and partially-compressed, resulting in the planar shapes of a large square, small square, rhombus, rectangle, and trapezoid respectively. Tiling methods were introduced which gave the ability to produce out-of-plane assemblies using planar MSSS unit cells. A five-walled rigid storage container prototype was produced that allowed for numerous stable positions and volumes. Applications for MSSSs can include size-changing vehicle beds, expandable laptop screens, deformable walls, and volume-changing rigid-storage containers. Analysis of the MSSS was done using pseudo-rigid-Body Models (PRBMs) and Finite Element Analysis (FEA) which ensured bistable characteristics before prototypes were fabricated.
|
27 |
Développement d'un modèle biomécanique du rachis basé sur les relations 3D internes – externes : radiographie bi-planaire et franges de Moiré / Development of a biomechanical model of the spine based on 3D internal-external relationships : bi-planar radiography and Moiré fringesKoell, Perrine 24 November 2010 (has links)
De nos jours, la radiographie est l'examen de référence pour le suivi des pathologies de la colonne vertébrale. La radiographie bi-planaire permet de plus, par reconstruction 3D, d’évaluer la configuration spatiale de la colonne vertébrale. Cependant, les expositions radiographiques répétées entrainent une augmentation du risque de cancer. Une solution pour réduire les doses de radiation peut être de remplacer certains examens radiographiques par une mesure de la surface du dos. Cette mesure non-invasive permet, entre autre, d’obtenir un grand nombre de paramètres cliniques utiles pour le diagnostic et le suivi des pathologies. Cette mesure permet également d’estimer la configuration du rachis si l’on met en place une modélisation biomécanique adaptée. Le travail réalisé dans cette thèse consiste à développer et mettre en oeuvre une telle modélisation basée sur les informations personnalisées à la fois internes et externes. Le dispositif Biomod 3S (développé par la société AXS Ingénierie, Bordeaux) offre la possibilité d’une acquisition simultanée de radiographies et de surfaces du dos par franges de Moiré. Cette acquisition sur une quinzaine de sujets scoliotiques (des Hôpitaux Universitaires de Bordeaux) a notamment permis d’évaluer les relations entre plusieurs paramètres 3D internes (e.g., la rotation axiale des vertèbres) et de nombreux paramètres 3D externes (e.g., les gibbosités et flèches). Cette acquisition simultanée permet également de prédire la nouvelle configuration de la colonne vertébrale dans une seconde posture où seule la mesure de surface du dos est effectuée. Pour cela, la modélisation en multi-corps rigides articulés qui a été développée (sous Scilab) utilise (a) la géométrie personnalisée de la colonne vertébrale reconstruite dans la première posture et (b) des contraintes issues de la mesure de la surface du dos dans les deux postures (e.g., position de C7). Le modèle a pu être validé sur une dizaine de sujets sains dont la colonne vertébrale et la surface du dos ont été reconstruits en 3D dans différentes positions (debout, penché en avant) à l’aide d’un IRM positionnel. Le modèle a pu également être exploité sur quelques sujets pathologiques. Ce travail, qui a exploré et exploité de nombreuses informations 3D internes et externes, ouvre des perspectives pour le diagnostic et le suivi non-invasif des pathologies de la colonne vertébrale / Nowadays, radiography is the gold standard for the follow up of spinal pathologies. Furthermore, bi-planar radiography allows the assessment of vertebrae configuration, by 3D reconstruction. However, multiple radiographic examinations during childhood and adolescence increase the risk of breast cancer among women. To reduce radiation doses, some radiographic assessments could be replaced by the back surface evaluation. This kind of non-invasive procedure allows for acquisition of many clinical parameters useful for spinal pathologies diagnosis and follow-up. Moreover, with an appropriate biomechanical model, the back surface measurements could be used to estimate the spine configuration. The aim of this thesis is to develop and implement such a model based on personalized internal and external data. The Biomod 3S device has been developed by the company AXS MEDICAL SAS, Bordeaux, France. It offers the possibility of simultaneous acquisitions of X-rays and Moiré fringes to obtain 3D reconstructions of the spine and the back surface. Such acquisitions on fifteen scoliotic subjects have enabled us to assess several relationships between internal 3D parameters (for example axial rotation of vertebrae) and external 3D parameters (for example rib hump). The spine configuration and the back surface obtained during this acquisition will also be used as initial position to develop (with Scilab) the multi-body model. The other data used by the model are the back surface in a second position and constraints obtained from the surface in both positions (for example displacement of C7 vertebra). The model has been validated on nine healthy subjects, whose 3D spine and back surface were reconstructed in several positions (standing, leaning forward, sitting) from MRI acquisitions. Moreover, the model has been operated on a pathological subject. This work has explored and utilized many spine and back surface information and leads the way to non-invasive diagnosis and follow-up of spinal disease
|
28 |
Development and Design of Constant-Force MechanismsWeight, Brent Lewis 08 November 2002 (has links) (PDF)
This thesis adds to the knowledge base of constant-force mechanisms (CFMs). It begins by reviewing past work done in the area of CFMs and then develops new nondimensionalized parameters that are used to simplify the calculations required to design a CFM. Comparison techniques are then developed that utilize these non-dimensionalized parameters to compare mechanisms based on stiffnesses, percent constant-force, actual lengths, normal displacements, and feasible design orientations. These comparison techniques are then combined with optimization to define new mechanisms with improved performance and range of capabilities. This thesis also outlines a design process, methods to identify mechanisms that are suitable for a given design problem, and relationships and trends between variables. The thesis concludes by discussing the adaptation of CFMs for use in electrical contacts and presenting the results of a design case study which successfully developed a constant-force electrical contact (CFEC).
|
29 |
A Closed-Form Dynamic Model of the Compliant Constant-Force Mechanism Using the Pseudo-Rigid-Body ModelBoyle, Cameron 03 November 2003 (has links) (PDF)
A mathematical dynamic model is derived for the compliant constant-force mechanism, based on the pseudo-rigid-body model simplification of the device. The compliant constant-force mechanism is a slider mechanism incorporating large-deflection beams, which outputs near-constant-force across the range of its designed deflection. The equation of motion is successfully validated with empirical data from five separate mechanisms, comprising two configurations of compliant constant-force mechanism. The dynamic model is cast in generalized form to represent all possible configurations of compliant constant-force mechanism. Deriving the dynamic equation from the pseudo-rigid-body model is useful because every configuration is represented by the same model, so a separate treatment is not required for each configuration. An unexpected dynamic trait of the constant-force mechanism is discovered: there exists a range of frequencies for which the output force of the mechanism accords nearer to constant-force than does the output force at static levels.
|
30 |
Design, Modeling, and Experimental Testing of a Variable Stiffness Structure for Shape MorphingMikol, Collin Everett 14 August 2018 (has links)
No description available.
|
Page generated in 0.1548 seconds