1 |
Caractérisation et optimisation de la performance des cartouches d'ancrage AMBEX sous chargement soutenuPolo, Luz January 2014 (has links)
Les systèmes d’ancrages adhésifs sont utilisés dans plusieurs applications en génie civil,
notamment en réhabilitation et réparation des ouvrages d’infrastructure tels que des dalles de
ponts, chaussées, tunnels, barrages, murs, poteaux, ainsi que dans certains travaux
d’exploration géologique et minière. Un système d’ancrage adhésif comprend trois
composants : l’élément d’ancrage : une barre d’armature ou une tige filetée ; le matériau
adhésif : polymérique, cimentaire ou hybride ; et le substrat : en béton ou en maçonnerie. Les
charges imposées sur les barres d’ancrage sont transmises au substrat par adhérence chimique
(réactions) et liaison mécanique (interlock) entre les composants mentionnés. Le modèle de
design d’adhérence uniforme établit que la performance structurale d’un système d’ancrage
adhésif est déterminée par la contrainte de l’adhérence (τ), développée sur toute la surface de
contact, entre les composants à l’intérieur du trou d’ancrage.
Ce projet, en partenariat avec l’entreprise AMBEX, étudie et évalue la performance des
systèmes d’ancrage avec adhésifs en matériau cimentaire, par rapport au comportement sous
chargement continu. Pour ce faire, on a ancré des barres d’armature dans un substrat en béton
conventionnel. Les deux adhésifs étudiés sont les cartouches d’ancrage AAC et ARC. On a
tenu compte des paramètres géométriques et d’installation en assurant la rupture de
l’adhérence lors des essais d’arrachement. On a évalué deux conditions en service:
température ambiante (21ºC) et élevée (43ºC). On a effectué des essais statiques de traction et
des essais sous chargement soutenu. Les résultats sont présentés dans des graphiques « chargedéplacement-temps
», afin d’établir des prédictions futures de comportement. Le projet montre
les avantages des ancrages adhésifs en matériau cimentaire, tels que le taux de fluage très
faible sous chargement soutenu, et quelques limitations aussi, comme la variabilité des
résultats à l’arrachement pour les ancrages avec la cartouche AAC. / Abstract : Adhesive anchoring systems are used in many civil engineering applications, including
rehabilitation and repair of infrastructure such as bridge decks, roadways, tunnels, dams,
walls, columns, and in some geological explorations and mining. An adhesive anchoring
system consists of three components: the anchor: a reinforcing bar or a threaded rod; the
adhesive material: polymeric, cementitious or hybrid; and a substrate of concrete or masonry.
The loads applied on the anchor rods are transmitted by a chemical adhesion to the substrate
(reactions) and mechanical interlock between the components mentioned. The design pattern
of uniform adhesion establishes that the structural performance of an adhesive anchoring
system is determined by the bond strength (τ) developed across the contact surface, between
the components within the anchor hole.
This project, in partnership with AMBEX, investigates and assesses the performance of an
anchoring system, with an adhesive of cementitious material, related to the creep behaviour.
To achieve this, steel rebars were anchored in a conventional concrete substrate. Two
adhesives were evaluated: AAC and ARC cartridges. Geometrical and installation parameters
were taken into account, to ensure bond failure during pullout tests. Two service conditions
were studied: room temperature (21ºC) and high temperature (43ºC). Static tensile tests and
creep tests were performed. The results are presented in graphs “load-displacement-time”, in
order to make predictions of future behavior. The project shows the advantages of adhesive
anchors made of cementitious material, as a feeble creep rate at sustained load, and also some
limitations, as the variability of tension test results for anchors tested with AAC cartridge.
|
2 |
Endverankerung und Übergreifung textiler Bewehrungen in Betonmatrices / End Anchorage and Overlapping of Textile Reinforcements in ConcreteLorenz, Enrico 11 June 2015 (has links) (PDF)
Die sichere Einleitung und Übertragung der wirkenden Kräfte ist Bedingung für die Funktionsfähigkeit und die vollständige Ausnutzung der Tragfähigkeit von Textilbetonbauteilen und -verstärkungsschichten. So kann es bei ungünstiger Konfiguration und Anordnung der Einzelkomponenten des Verbundbaustoffes zur Ausbildung einer Vielzahl verschiedener Verbundversagensformen kommen. Diese umfassen neben der Bildung von verbundschädigenden Delaminations- und Spaltrissen lokale Abplatzungen der Betondeckung oder einen vorzeitigen Auszug der Garne aus dem Beton. Besonders beansprucht sind in diesem Zusammenhang die bei einer Anwendung von Textilbeton erforderlichen Endverankerungs- und Stoßbereiche der textilen Bewehrungen.
Zur sicheren Ausbildung und Bemessung dieser wichtigen Detailpunkte liegen jedoch momentan noch keine umfassenden und zusammenhängenden Untersuchungen vor. Hauptziel der vorliegenden Dissertation war daher eine systematische Erforschung und Beschreibung des Tragverhaltens von Textilbeton in Endverankerungs- und Übergreifungsbereichen.
Eine funktionierende und schädigungsfreie Verbundkraftübertragung bildet die Grundlage für die sichere Lasteinleitung und -übertragung. Daher wurden im ersten Teil der Arbeit ausführliche Untersuchungen zur Charakterisierung der zwischen Bewehrungstextil und Feinbetonmatrix wirkenden Kräfte und -mechanismen durchgeführt. Nach der Entwicklung eines geeigneten Versuchsaufbaus erfolgten umfangreiche Parametervariationen zur experimentellen Überprüfung des textilspezifischen Verbundverhaltens. Den Schwerpunkt der Untersuchungen bildete die Identifikation und Bewertung der aus verschiedenen Verarbeitungsparametern der textilen Bewehrungen resultierenden Verbundeinflüsse. Die Versuchsergebnisse ermöglichen die Bestimmung der zugehörigen Verbundspannungs-Schlupf-Beziehungen (VSB) mithilfe eines erarbeiteten Modellierungsverfahrens. Die so ermittelten Verbundkennwerte bilden die Grundlage für die weiteren rechnerischen Untersuchungen.
Im zweiten Teil der Arbeit erfolgten Forschungen zum Tragverhalten von Endverankerungsbereichen. Hierbei stand der im Regelfall bemessungsrelevante Grenzzustand eines vorzeitigen Auszuges der Textilien aus der Betonmatrix im Mittelpunkt. Die Arbeiten umfassten experimentelle und theoretische Untersuchungen zur Beschreibung der Kraftübertragung. Aufbauend auf die ermittelten Verbundkennwerte wird ein unabhängiger analytischer Auswertealgorithmus zur Beschreibung des Verbundtragverhaltens in Endverankerungsbereichen dargestellt. Dieser ermöglicht eine detaillierte rechnerische Bestimmung der erforderlichen Endverankerungslängen von Textilbeton in Abhängigkeit konkreter bzw. untersuchter Bewehrungstextilien.
Den dritten Forschungsschwerpunkt bildeten Untersuchungen zum Tragverhalten von Übergreifungsstößen in Textilbetonbauteilen. Mithilfe von umfassenden experimentellen und theoretischen Analysen an unterschiedlich konfigurierten und bewehrten Textilbetonen konnten die maßgebenden Versagensmechanismen untersucht und grundlegende Vorgaben für die Bemessung und Ausführung der Übergreifungsbereiche abgeleitet werden. Die gewonnenen Erkenntnisse wurden anhand von großformatigen Bauteilversuchen mit entsprechend konstruierten Übergreifungsstößen bestätigt.
Zum Abschluss wird ein vereinfachtes Ingenieurmodell vorgestellt. Dieses erlaubt eine allgemeingültige und hinreichend genaue Bemessung der untersuchten Detailpunkte unter Beachtung der maßgebenden Grenzzustände. / The safe introduction and transmission of forces is a requirement for the workability as well as the possibility to make full use of the load bearing capacities of components and strengthening layers made of textile reinforced concrete. Accordingly, an unfavourable configuration and arrangement of the composite material’s individual components can lead to various modes of bond failure. These can result from the formation of bond damaging delamination cracks and longitudinal matrix splitting, local spalling of the concrete layer in the outer reinforcement layers or early yarn pull-out from the concrete. In this context, the areas of end anchorage and lap joints of the textile reinforcement, which cannot be avoided when using textile reinforced concrete, are particularly prone to failure.
However, no comprehensive and coherent investigations regarding the safe configuration and dimensioning of these essential details are available yet. Consequently, systematic research into textile reinforced concrete’s load-bearing behaviour in the areas of end anchorage and lap joints and the subsequent description was the main goal of this dissertation.
A working and damage-free transmission of bond force is the basis for a faultless load transmission and introduction. As a result, extensive tests concerning the characterization of the mechanisms and forces acting between reinforcing textile and fine grained concrete matrix were carried out as the first part of the investigations.
After an appropriate test setup had been developed, a great variety of parameters was applied to experimentally examine the bond behaviour specific to the textile. The determination of the influencing factors resulting from various parameters in the textile reinforcement’s processing was a focus in the research. Based on a specifically developed modelling technique, the test results could be used to calculate the corresponding bond stress-slip-relation. The bond parameters, which were determined like this, served as the basis for the following calculations.
The second part of the investigations was concerned with the load-bearing behaviour in end anchorage areas. In this case, the limit state of a yarn pull-out from the concrete matrix, which is usually essential for the dimensioning, was at the centre of attention. The investigations encompassed experimental and theoretical tests regarding the description of the force transmission. Based on the determined compound parameters, an independent analytic evaluation algorithm, which served to describe the load carrying behaviour of the bond in the end anchorage area, was presented. Through this algorithm, the detailed calculation of the required end anchorage lengths of textile reinforced concrete depending on the specific reinforcement textile was possible.
The third research focus was on tests regarding the load-bearing behaviour of lap joints in textile reinforced concrete components. With the help of comprehensive experimental and theoretical analyses of variously configured and reinforced textile reinforced concretes, the decisive failure mechanisms were examined. Furthermore, fundamental demands for the dimensioning and execution of the lap joint areas could be derived. The findings were confirmed through tests on large-sized building components with corresponding lap joints.
At the end of the investigations, a simplified engineering model is presented. This model makes a universally valid and exact dimensioning of the examined details possible while also paying attention to the decisive limit states.
|
3 |
Der Einfluss von Querzug auf den Verbund zwischen Beton und Betonstahl / Influence of transverse tension on bond behaviour between concrete and reinforcing steelRitter, Laura 14 April 2014 (has links) (PDF)
Der Verbundwerkstoff Stahlbeton zeichnet sich durch das effektive Zusammenwirken seiner beiden Einzelkomponenten Stahl und Beton aus. Dieses wiederum kann nur durch ausreichend gute Verbundbedingungen zwischen beiden Baustoffen gewährleistet werden. Die Verbundeigenschaften werden von zahlreichen Faktoren beeinflusst, zu denen u.a. die Oberflächenprofilierung des Stahls, die Betonfestigkeit und die Umschnürungswirkung durch den umgebenden Beton oder eine Querbewehrung zählen. Auch eine quer zum Stab angreifende Belastung kann einen erheblichen Einfluss auf den Verbundmechanismus und die Verbundversagensart haben. Bei Stahlbetonbauteilen unter einer zweiaxialen Zugbelastung, wie sie z.B. in Behälterwänden oder zweiachsig gespannten Platten auftritt, unterliegt die Bewehrung sowohl einer Längszug- als auch einer Querzugbeanspruchung.
Im Rahmen der vorliegenden Arbeit wurde der Einfluss einer Querzugbelastung auf das Verbundverhalten zwischen Rippenstählen und Normalbeton mit Hilfe von würfelförmigen Ausziehkörpern mit einer kurzen Verbundlänge untersucht. Dabei lag das Querzugniveau stets unterhalb der Risslast des Betons, so dass keine Risse entlang des einbetonierten Stabes auftraten. Neben der Höhe der Querzugbelastung wurden im Versuchsprogramm die Betonfestigkeit, der Stabdurchmesser und die Betondeckung variiert.
Anhand der Versuchsergebnisse konnte gezeigt werden, dass sich auch unter einer Querzugbelastung der Verlauf der Verbundspannungs-Schlupf-Beziehung nicht ändert. Die Art des Verbundversagens wird jedoch maßgeblich durch den Querzug beeinflusst, welcher ein Spaltbruchversagen in jedem Fall begünstigt. Mit steigendem Querzug tritt auch bei großen Betondeckungen statt eines Ausziehversagens ein Spaltbruchversagen ein. Mittels des vorgeschlagenen Berechnungsmodells können in Abhängigkeit des Querzugniveaus und der Größe der Betondeckung Grenzlinien für den Wechsel im Verbundversagensmodus bestimmt werden. Hierbei wurde ebenfalls der Einfluss der Probekörpergeometrie auf die Versuchsergebnisse in die Berechnung einbezogen, so dass die angegebenen Grenzlinien auch für reale Einbettungslängen der Bewehrung gelten.
Weiterhin wurde anhand der Versuchsdaten sowie eines Datensatzes aus der Literatur ein Verbundmodell für kurze Verbundlängen entwickelt, das den Einfluss der bezogenen Rippenfläche der Bewehrung und der Betonfestigkeit sowohl auf die Verbundspannungen als auch auf die zugehörigen Schlupfwerte berücksichtigt. Über einen zusätzlichen Datensatz zum Einfluss der Verbundlänge im Ausziehversuch konnte ebenfalls die Abhängigkeit zwischen den mittleren Verbundspannungen, den zugehörigen Schlupfwerten und der Verbundlänge spezifiziert werden. Somit ist eine Übertragbarkeit der Ergebnisse von Ausziehversuchen mit kurzen Verbundlängen auf eine reale Einbettungslänge im Bauteil möglich.
Für die Bemessung von Stahlbetonkonstruktionen in den Grenzzuständen der Tragfähigkeit und der Gebrauchstauglichkeit erfolgt die Ableitung geeigneter Verformungskriterien für die Relativverschiebung zwischen Betonstahl und Beton und deren Verifizierung an Versuchsdaten aus der Literatur. Die aufgestellten Verformungskriterien in Abhängigkeit der Stahlspannung erlauben eine direkte Ermittlung bemessungsrelevanter Verbundspannungen anhand experimenteller Ausziehversuche. Die Berücksichtigung einer Querzugbelastung ist dabei in allen vorgestellten Berechnungsansätzen ebenfalls möglich. / Reinforced concrete as composite material is characterised by an effective interaction of its individual components reinforcing steel and concrete. This only can be assured by adequate bond conditions between these two materials. The bond quality is influenced by a wide range of parameters, amongst others including the rib geometry of the bar, the concrete strength and the confining action by the surrounding concrete or transverse reinforcement. Moreover loads, which act transverse to the reinforcing bar, can influence the bond mechanism and the bond failure mode significantly. Reinforced concrete structures, such as containment walls or two-way slabs, are often exposed to multiaxial loading conditions. In case of biaxial tensile stresses, reinforcement and surrounding concrete are loaded in tension in longitudinal as well as in transverse direction.
An extensive experimental program was carried out in order to investigate the bond behaviour between reinforcing steel and normal strength concrete due to transverse tension. Cubic-shaped pullout specimens with a short bond length were used. The transverse tension level remained always below the cracking stress of concrete, meaning that no crack occurred along the pullout bar. The test program contained the variation of the transverse tension level, the concrete strength, the bar diameter and the concrete cover.
From the test results no systematic influence of the transverse tension level on the shape of the bond stress-slip-relationship can be detected. The bond failure mode is significantly influenced by transverse tension, which promotes splitting failure. The higher the transverse tension level, even for high concrete covers, splitting failure occurs instead of pulling out the bar. From the test results, a failure criterion depending on the concrete cover and the transverse tension level could be determined, which indicates the failure mode and corresponding bond stress. For this purpose, the influence of the specimen geometry on the test results was considered, which results in a failure criterion that is also valid for real embedment lengths of the reinforcement.
Furthermore, a bond model for short bond lengths has been developed, based on the test results and a dataset from literature. The model considers the influence of the related rib area of the reinforcing bar and the concrete strength on the bond stresses as well as on the corresponding slip values. By an additional dataset concerning the influence of bond length in pullout tests, the bond stresses and corresponding slip values could be specified as a function of the bond length. Therefore, the test results of pullout test with short bond lengths are transferable to real embedment lengths in structural elements.
For the structural design of reinforced concrete elements in the ultimate and serviceability limit states, appli\\-cable deformation criterions concerning the relative displacement between reinforcing steel and concrete has been derived and verified by test data from literature. By means of the developed deformations criterions dependent on the steel stress, design bond stresses can be determined directly from experimental pullout tests. The consideration of transverse tensile loads is also possible for all presented design formulas.
|
4 |
Der Einfluss von Querzug auf den Verbund zwischen Beton und BetonstahlRitter, Laura 28 November 2013 (has links)
Der Verbundwerkstoff Stahlbeton zeichnet sich durch das effektive Zusammenwirken seiner beiden Einzelkomponenten Stahl und Beton aus. Dieses wiederum kann nur durch ausreichend gute Verbundbedingungen zwischen beiden Baustoffen gewährleistet werden. Die Verbundeigenschaften werden von zahlreichen Faktoren beeinflusst, zu denen u.a. die Oberflächenprofilierung des Stahls, die Betonfestigkeit und die Umschnürungswirkung durch den umgebenden Beton oder eine Querbewehrung zählen. Auch eine quer zum Stab angreifende Belastung kann einen erheblichen Einfluss auf den Verbundmechanismus und die Verbundversagensart haben. Bei Stahlbetonbauteilen unter einer zweiaxialen Zugbelastung, wie sie z.B. in Behälterwänden oder zweiachsig gespannten Platten auftritt, unterliegt die Bewehrung sowohl einer Längszug- als auch einer Querzugbeanspruchung.
Im Rahmen der vorliegenden Arbeit wurde der Einfluss einer Querzugbelastung auf das Verbundverhalten zwischen Rippenstählen und Normalbeton mit Hilfe von würfelförmigen Ausziehkörpern mit einer kurzen Verbundlänge untersucht. Dabei lag das Querzugniveau stets unterhalb der Risslast des Betons, so dass keine Risse entlang des einbetonierten Stabes auftraten. Neben der Höhe der Querzugbelastung wurden im Versuchsprogramm die Betonfestigkeit, der Stabdurchmesser und die Betondeckung variiert.
Anhand der Versuchsergebnisse konnte gezeigt werden, dass sich auch unter einer Querzugbelastung der Verlauf der Verbundspannungs-Schlupf-Beziehung nicht ändert. Die Art des Verbundversagens wird jedoch maßgeblich durch den Querzug beeinflusst, welcher ein Spaltbruchversagen in jedem Fall begünstigt. Mit steigendem Querzug tritt auch bei großen Betondeckungen statt eines Ausziehversagens ein Spaltbruchversagen ein. Mittels des vorgeschlagenen Berechnungsmodells können in Abhängigkeit des Querzugniveaus und der Größe der Betondeckung Grenzlinien für den Wechsel im Verbundversagensmodus bestimmt werden. Hierbei wurde ebenfalls der Einfluss der Probekörpergeometrie auf die Versuchsergebnisse in die Berechnung einbezogen, so dass die angegebenen Grenzlinien auch für reale Einbettungslängen der Bewehrung gelten.
Weiterhin wurde anhand der Versuchsdaten sowie eines Datensatzes aus der Literatur ein Verbundmodell für kurze Verbundlängen entwickelt, das den Einfluss der bezogenen Rippenfläche der Bewehrung und der Betonfestigkeit sowohl auf die Verbundspannungen als auch auf die zugehörigen Schlupfwerte berücksichtigt. Über einen zusätzlichen Datensatz zum Einfluss der Verbundlänge im Ausziehversuch konnte ebenfalls die Abhängigkeit zwischen den mittleren Verbundspannungen, den zugehörigen Schlupfwerten und der Verbundlänge spezifiziert werden. Somit ist eine Übertragbarkeit der Ergebnisse von Ausziehversuchen mit kurzen Verbundlängen auf eine reale Einbettungslänge im Bauteil möglich.
Für die Bemessung von Stahlbetonkonstruktionen in den Grenzzuständen der Tragfähigkeit und der Gebrauchstauglichkeit erfolgt die Ableitung geeigneter Verformungskriterien für die Relativverschiebung zwischen Betonstahl und Beton und deren Verifizierung an Versuchsdaten aus der Literatur. Die aufgestellten Verformungskriterien in Abhängigkeit der Stahlspannung erlauben eine direkte Ermittlung bemessungsrelevanter Verbundspannungen anhand experimenteller Ausziehversuche. Die Berücksichtigung einer Querzugbelastung ist dabei in allen vorgestellten Berechnungsansätzen ebenfalls möglich. / Reinforced concrete as composite material is characterised by an effective interaction of its individual components reinforcing steel and concrete. This only can be assured by adequate bond conditions between these two materials. The bond quality is influenced by a wide range of parameters, amongst others including the rib geometry of the bar, the concrete strength and the confining action by the surrounding concrete or transverse reinforcement. Moreover loads, which act transverse to the reinforcing bar, can influence the bond mechanism and the bond failure mode significantly. Reinforced concrete structures, such as containment walls or two-way slabs, are often exposed to multiaxial loading conditions. In case of biaxial tensile stresses, reinforcement and surrounding concrete are loaded in tension in longitudinal as well as in transverse direction.
An extensive experimental program was carried out in order to investigate the bond behaviour between reinforcing steel and normal strength concrete due to transverse tension. Cubic-shaped pullout specimens with a short bond length were used. The transverse tension level remained always below the cracking stress of concrete, meaning that no crack occurred along the pullout bar. The test program contained the variation of the transverse tension level, the concrete strength, the bar diameter and the concrete cover.
From the test results no systematic influence of the transverse tension level on the shape of the bond stress-slip-relationship can be detected. The bond failure mode is significantly influenced by transverse tension, which promotes splitting failure. The higher the transverse tension level, even for high concrete covers, splitting failure occurs instead of pulling out the bar. From the test results, a failure criterion depending on the concrete cover and the transverse tension level could be determined, which indicates the failure mode and corresponding bond stress. For this purpose, the influence of the specimen geometry on the test results was considered, which results in a failure criterion that is also valid for real embedment lengths of the reinforcement.
Furthermore, a bond model for short bond lengths has been developed, based on the test results and a dataset from literature. The model considers the influence of the related rib area of the reinforcing bar and the concrete strength on the bond stresses as well as on the corresponding slip values. By an additional dataset concerning the influence of bond length in pullout tests, the bond stresses and corresponding slip values could be specified as a function of the bond length. Therefore, the test results of pullout test with short bond lengths are transferable to real embedment lengths in structural elements.
For the structural design of reinforced concrete elements in the ultimate and serviceability limit states, appli\\-cable deformation criterions concerning the relative displacement between reinforcing steel and concrete has been derived and verified by test data from literature. By means of the developed deformations criterions dependent on the steel stress, design bond stresses can be determined directly from experimental pullout tests. The consideration of transverse tensile loads is also possible for all presented design formulas.
|
5 |
Endverankerung und Übergreifung textiler Bewehrungen in BetonmatricesLorenz, Enrico 16 December 2014 (has links)
Die sichere Einleitung und Übertragung der wirkenden Kräfte ist Bedingung für die Funktionsfähigkeit und die vollständige Ausnutzung der Tragfähigkeit von Textilbetonbauteilen und -verstärkungsschichten. So kann es bei ungünstiger Konfiguration und Anordnung der Einzelkomponenten des Verbundbaustoffes zur Ausbildung einer Vielzahl verschiedener Verbundversagensformen kommen. Diese umfassen neben der Bildung von verbundschädigenden Delaminations- und Spaltrissen lokale Abplatzungen der Betondeckung oder einen vorzeitigen Auszug der Garne aus dem Beton. Besonders beansprucht sind in diesem Zusammenhang die bei einer Anwendung von Textilbeton erforderlichen Endverankerungs- und Stoßbereiche der textilen Bewehrungen.
Zur sicheren Ausbildung und Bemessung dieser wichtigen Detailpunkte liegen jedoch momentan noch keine umfassenden und zusammenhängenden Untersuchungen vor. Hauptziel der vorliegenden Dissertation war daher eine systematische Erforschung und Beschreibung des Tragverhaltens von Textilbeton in Endverankerungs- und Übergreifungsbereichen.
Eine funktionierende und schädigungsfreie Verbundkraftübertragung bildet die Grundlage für die sichere Lasteinleitung und -übertragung. Daher wurden im ersten Teil der Arbeit ausführliche Untersuchungen zur Charakterisierung der zwischen Bewehrungstextil und Feinbetonmatrix wirkenden Kräfte und -mechanismen durchgeführt. Nach der Entwicklung eines geeigneten Versuchsaufbaus erfolgten umfangreiche Parametervariationen zur experimentellen Überprüfung des textilspezifischen Verbundverhaltens. Den Schwerpunkt der Untersuchungen bildete die Identifikation und Bewertung der aus verschiedenen Verarbeitungsparametern der textilen Bewehrungen resultierenden Verbundeinflüsse. Die Versuchsergebnisse ermöglichen die Bestimmung der zugehörigen Verbundspannungs-Schlupf-Beziehungen (VSB) mithilfe eines erarbeiteten Modellierungsverfahrens. Die so ermittelten Verbundkennwerte bilden die Grundlage für die weiteren rechnerischen Untersuchungen.
Im zweiten Teil der Arbeit erfolgten Forschungen zum Tragverhalten von Endverankerungsbereichen. Hierbei stand der im Regelfall bemessungsrelevante Grenzzustand eines vorzeitigen Auszuges der Textilien aus der Betonmatrix im Mittelpunkt. Die Arbeiten umfassten experimentelle und theoretische Untersuchungen zur Beschreibung der Kraftübertragung. Aufbauend auf die ermittelten Verbundkennwerte wird ein unabhängiger analytischer Auswertealgorithmus zur Beschreibung des Verbundtragverhaltens in Endverankerungsbereichen dargestellt. Dieser ermöglicht eine detaillierte rechnerische Bestimmung der erforderlichen Endverankerungslängen von Textilbeton in Abhängigkeit konkreter bzw. untersuchter Bewehrungstextilien.
Den dritten Forschungsschwerpunkt bildeten Untersuchungen zum Tragverhalten von Übergreifungsstößen in Textilbetonbauteilen. Mithilfe von umfassenden experimentellen und theoretischen Analysen an unterschiedlich konfigurierten und bewehrten Textilbetonen konnten die maßgebenden Versagensmechanismen untersucht und grundlegende Vorgaben für die Bemessung und Ausführung der Übergreifungsbereiche abgeleitet werden. Die gewonnenen Erkenntnisse wurden anhand von großformatigen Bauteilversuchen mit entsprechend konstruierten Übergreifungsstößen bestätigt.
Zum Abschluss wird ein vereinfachtes Ingenieurmodell vorgestellt. Dieses erlaubt eine allgemeingültige und hinreichend genaue Bemessung der untersuchten Detailpunkte unter Beachtung der maßgebenden Grenzzustände. / The safe introduction and transmission of forces is a requirement for the workability as well as the possibility to make full use of the load bearing capacities of components and strengthening layers made of textile reinforced concrete. Accordingly, an unfavourable configuration and arrangement of the composite material’s individual components can lead to various modes of bond failure. These can result from the formation of bond damaging delamination cracks and longitudinal matrix splitting, local spalling of the concrete layer in the outer reinforcement layers or early yarn pull-out from the concrete. In this context, the areas of end anchorage and lap joints of the textile reinforcement, which cannot be avoided when using textile reinforced concrete, are particularly prone to failure.
However, no comprehensive and coherent investigations regarding the safe configuration and dimensioning of these essential details are available yet. Consequently, systematic research into textile reinforced concrete’s load-bearing behaviour in the areas of end anchorage and lap joints and the subsequent description was the main goal of this dissertation.
A working and damage-free transmission of bond force is the basis for a faultless load transmission and introduction. As a result, extensive tests concerning the characterization of the mechanisms and forces acting between reinforcing textile and fine grained concrete matrix were carried out as the first part of the investigations.
After an appropriate test setup had been developed, a great variety of parameters was applied to experimentally examine the bond behaviour specific to the textile. The determination of the influencing factors resulting from various parameters in the textile reinforcement’s processing was a focus in the research. Based on a specifically developed modelling technique, the test results could be used to calculate the corresponding bond stress-slip-relation. The bond parameters, which were determined like this, served as the basis for the following calculations.
The second part of the investigations was concerned with the load-bearing behaviour in end anchorage areas. In this case, the limit state of a yarn pull-out from the concrete matrix, which is usually essential for the dimensioning, was at the centre of attention. The investigations encompassed experimental and theoretical tests regarding the description of the force transmission. Based on the determined compound parameters, an independent analytic evaluation algorithm, which served to describe the load carrying behaviour of the bond in the end anchorage area, was presented. Through this algorithm, the detailed calculation of the required end anchorage lengths of textile reinforced concrete depending on the specific reinforcement textile was possible.
The third research focus was on tests regarding the load-bearing behaviour of lap joints in textile reinforced concrete components. With the help of comprehensive experimental and theoretical analyses of variously configured and reinforced textile reinforced concretes, the decisive failure mechanisms were examined. Furthermore, fundamental demands for the dimensioning and execution of the lap joint areas could be derived. The findings were confirmed through tests on large-sized building components with corresponding lap joints.
At the end of the investigations, a simplified engineering model is presented. This model makes a universally valid and exact dimensioning of the examined details possible while also paying attention to the decisive limit states.
|
6 |
EXPLORING THE POTENTIAL OF LOW-COST PEROVSKITE CELLS AND IMPROVED MODULE RELIABILITY TO REDUCE LEVELIZED COST OF ELECTRICITYReza Asadpour (9525959) 16 December 2020 (has links)
<div>The manufacturing cost of solar cells along with their efficiency and reliability define the levelized cost of electricity (LCOE). One needs to reduce LCOE to make solar cells cost competitive compared to other sources of electricity. After a sustained decrease since 2001 the manufacturing cost of the dominant photovoltaic technology based on c-Si solar cells has recently reached a plateau. Further reduction in LCOE is only possible by increasing the efficiency and/or reliability of c-Si cells. Among alternate technologies, organic photovoltaics (OPV) has reduced manufacturing cost, but they do not offer any LCOE gain because their lifetime and efficiency are significantly lower than c-Si. Recently, perovskite solar cells have showed promising results in terms of both cost and efficiency, but their reliability/stability is still a concern and the physical origin of the efficiency gain is not fully understood.</div><div><br></div>In this work, we have collaborated with scientists industry and academia to explain the origin of the increased cell efficiency of bulk solution-processed perovskite cells. We also explored the possibility of enhancing the efficiency of the c-Si and perovskite cells by using them in a tandem configuration. To improve the intrinsic reliability, we have investigated 2D-perovskite cells with slightly lower efficiency but longer lifetime. We interpreted the behavior of the 2D-perovskite cells using randomly stacked quantum wells in the absorber region. We studied the reliability issues of c-Si modules and correlated series resistance of the modules directly to the solder bond failure. We also found out that finger thinning of the contacts at cell level manifests as a fake shunt resistance but is distinguishable from real shunt resistance by exploring the reverse bias or efficiency vs. irradiance. Then we proposed a physics-based model to predict the energy yield and lifetime of a module that suffers from solder bond failure using real field data by considering the statistical nature of the failure at module level. This model is part of a more comprehensive model that can predict the lifetime of a module that suffers from more degradation mechanisms such as yellowing, potential induced degradation, corrosion, soiling, delamination, etc. simultaneously. This method is called forward modeling since we start from environmental data and initial information of the module, and then predict the lifetime and time-dependent energy yield of a solar cell technology. As the future work, we will use our experience in forward modeling to deconvolve the reliability issues of a module that is fielded since each mechanism has a different electrical signature. Then by calibrating the forward model, we can predict the remaining lifetime of the fielded module. This work opens new pathways to achieve 2030 Sunshot goals of LCOE below 3c/kWh by predicting the lifetime that the product can be guaranteed, helping financial institutions regarding the risk of their investment, or national laboratories to redefine the qualification and reliability protocols.<br>
|
7 |
Probabilistic Characterization of Bond Behavior at Rebar-concrete Interface in Corroded RC Structures: Experiment, Modeling, and ImplementationSoraghi, Ahmad January 2021 (has links)
No description available.
|
Page generated in 0.0462 seconds