121 |
Comportamento de um solo residual levemente cimentado : estimativa de capacidade de carga para estacas submetidas a esforços transversaisCarretta, Mariana da Silva January 2018 (has links)
Fundações profundas, quando solicitadas ao carregamento lateral, são regidas por três critérios de projeto: resistência última do solo, carga última do elemento estrutural e deflexão máxima. Esses critérios atuam em conjunto e é necessário que sejam analisados dessa forma, visto que a falha de um deles é capaz de acarretar o colapso de todo sistema. No que tange à resistência do solo, metodologias de capacidade de carga existentes traduzem o comportamento de solos granulares e coesivos. Dada a particularidade da atuação de solos residuais na mecânica dos solos, não há uma metodologia abrangente para estacas sujeitas a solicitação de carregamento lateral nesse tipo de solo, o qual apresenta comportamento intermediário e estrutura levemente cimentada. Em vista disso, o presente trabalho propõe um método de estimativa de capacidade de carga para estacas carregadas horizontalmente, quando inseridas em solo residual e em casos em que as mesmas apresentam topo locado em superfície de solo tratado. Dessa forma, dados de provas de carga lateral pré-existentes e ensaios de laboratório executados ao longo da pesquisa serviram como base para a proposição do método, fundamentado no comportamento do material quando solicitado ao carregamento lateral Ensaios de resistência à compressão simples, compressão oedométrica, compressão isotrópica e ensaios triaxiais com medidas de módulo cisalhante demonstram que há um ponto em que se dá a quebra da estrutura cimentada do solo, passando o mesmo a se apresentar num arranjo desestruturado, refletido em maiores deformações. Uma relação linear é capaz de equacionar a capacidade de carga, tanto para estacas inseridas em solo residual quanto para estacas executadas em solo com camada superficial melhorada. Essa relação é estabelecida entre a carga de ruptura das estacas ensaiadas e a área de solo adjacente à mesma, mobilizada pelo carregamento. Os resultados demonstram que a capacidade de carga das estacas estudadas é regida pela tensão de plastificação do material. O equacionamento proposto possibilita a obtenção da carga de ruptura com base em ensaios simples e de fácil execução, tal como o ensaio de resistência à compressão simples que estabelece relação direta com a tensão de plastificação do solo estudado. / Deep foundations, when requested to lateral loading, are governed by three design criteria: ultimate soil strength, piles’ ultimate load, and maximum deflection. These criteria act together and must be analyzed in this way, since the failure of one of them is capable of causing the collapse of the entire system. Regarding soil resistance, the current bearing capacity methodologies describe the behavior of granular and cohesive soils. Given the particular behavior of the residual soils in the soil mechanics, there is no comprehensive methodology for piles subject to lateral loads and inserted in this soil type, which presents an intermediate behavior and a lightly cemented structure. Thus, the present work proposes an estimated bearing capacity for crosswise loaded piles, when inserted in residual soil and in soil with the top layer cemented. So, data from preexisting lateral loading tests and laboratory tests, performed during the research, served as a basis for the proposition of the method, based on the behavior of the material when requested to lateral loading Unconfined compression tests, oedometer consolidation tests, isotropic compression, and triaxial tests with measures of shear modulus demonstrate that there is a point where the soil's cemented structure breaks down, presenting itself in a destructured arrangement, reflected by larger strains. A linear relationship is capable of equating the bearing capacity for both, piles inserted in residual soil and piles carried out in soil with improved surface layer. This relationship is established between the rupture load of the piles tested and the area of soil adjacent to it mobilized by the loading. The results shows that the piles' bearing capacity is governed by the yield stress of the material. The proposed equation makes it possible to obtain the rupture load based on simple and easy tests, such as the unconfined compression test that establishes a direct relationship with the yield stress of the studied soil.
|
122 |
Comportamento de um solo residual levemente cimentado : estimativa de capacidade de carga para estacas submetidas a esforços transversaisCarretta, Mariana da Silva January 2018 (has links)
Fundações profundas, quando solicitadas ao carregamento lateral, são regidas por três critérios de projeto: resistência última do solo, carga última do elemento estrutural e deflexão máxima. Esses critérios atuam em conjunto e é necessário que sejam analisados dessa forma, visto que a falha de um deles é capaz de acarretar o colapso de todo sistema. No que tange à resistência do solo, metodologias de capacidade de carga existentes traduzem o comportamento de solos granulares e coesivos. Dada a particularidade da atuação de solos residuais na mecânica dos solos, não há uma metodologia abrangente para estacas sujeitas a solicitação de carregamento lateral nesse tipo de solo, o qual apresenta comportamento intermediário e estrutura levemente cimentada. Em vista disso, o presente trabalho propõe um método de estimativa de capacidade de carga para estacas carregadas horizontalmente, quando inseridas em solo residual e em casos em que as mesmas apresentam topo locado em superfície de solo tratado. Dessa forma, dados de provas de carga lateral pré-existentes e ensaios de laboratório executados ao longo da pesquisa serviram como base para a proposição do método, fundamentado no comportamento do material quando solicitado ao carregamento lateral Ensaios de resistência à compressão simples, compressão oedométrica, compressão isotrópica e ensaios triaxiais com medidas de módulo cisalhante demonstram que há um ponto em que se dá a quebra da estrutura cimentada do solo, passando o mesmo a se apresentar num arranjo desestruturado, refletido em maiores deformações. Uma relação linear é capaz de equacionar a capacidade de carga, tanto para estacas inseridas em solo residual quanto para estacas executadas em solo com camada superficial melhorada. Essa relação é estabelecida entre a carga de ruptura das estacas ensaiadas e a área de solo adjacente à mesma, mobilizada pelo carregamento. Os resultados demonstram que a capacidade de carga das estacas estudadas é regida pela tensão de plastificação do material. O equacionamento proposto possibilita a obtenção da carga de ruptura com base em ensaios simples e de fácil execução, tal como o ensaio de resistência à compressão simples que estabelece relação direta com a tensão de plastificação do solo estudado. / Deep foundations, when requested to lateral loading, are governed by three design criteria: ultimate soil strength, piles’ ultimate load, and maximum deflection. These criteria act together and must be analyzed in this way, since the failure of one of them is capable of causing the collapse of the entire system. Regarding soil resistance, the current bearing capacity methodologies describe the behavior of granular and cohesive soils. Given the particular behavior of the residual soils in the soil mechanics, there is no comprehensive methodology for piles subject to lateral loads and inserted in this soil type, which presents an intermediate behavior and a lightly cemented structure. Thus, the present work proposes an estimated bearing capacity for crosswise loaded piles, when inserted in residual soil and in soil with the top layer cemented. So, data from preexisting lateral loading tests and laboratory tests, performed during the research, served as a basis for the proposition of the method, based on the behavior of the material when requested to lateral loading Unconfined compression tests, oedometer consolidation tests, isotropic compression, and triaxial tests with measures of shear modulus demonstrate that there is a point where the soil's cemented structure breaks down, presenting itself in a destructured arrangement, reflected by larger strains. A linear relationship is capable of equating the bearing capacity for both, piles inserted in residual soil and piles carried out in soil with improved surface layer. This relationship is established between the rupture load of the piles tested and the area of soil adjacent to it mobilized by the loading. The results shows that the piles' bearing capacity is governed by the yield stress of the material. The proposed equation makes it possible to obtain the rupture load based on simple and easy tests, such as the unconfined compression test that establishes a direct relationship with the yield stress of the studied soil.
|
123 |
Shear Strength Between Adhesive Cement and Yttria-Stabilized-Zirconia and Cobalt-Chrome Alloy With and Without Retentive Holes - an in vitro studyIssa, Rihan, Acar, Nuray January 2017 (has links)
ABSTRACT De-bonding is the most common failure of resin-bonded fixed partial dentures. The aim was to determine if the shear bond strength (SBS) differed between a dental adhesive and a Co-Cr alloy and an yttria-stabilized zirconia (Y-TZP). Furthermore, to determine whether retention holes in the two materials and storage for 21 days in water affected the results. The hypothesis was that there are no significant differences between the compared groups. 10 embedded discs of Co-Cr alloy without and 10 with retentive holes, and 10 discs of Y-TZP without and 17 with retentive holes were sand- and steam blasted. A pillar of adhesive cement was bonded to the surface of the discs and stored in water at 37 °C for 24 hr and / or 21 days. An UltraTest machine with a crosshead speed of 1 mm/ min was used for SBS. The mean SBS after 24 hr / 21 days in water were recorded. The SBS of Co-Cr alloy without retentive hole was 16.3 MPa after 24 hr and 11.4 MPa after 21 days, the SBS of Y-TZP without retentive hole was 18.5 MPa after 24 hr and 12.6 MPa after 21 days. The SBS of Co-Cr alloy with retentive hole 13.9 MPa after 21 days and Y-TZP with retentive hole 16.9 MPa after 21 days. No statistically significant differences were found between the groups with or without retentive holes and after 24 hr or 21 days in water, p> 0.05.
|
124 |
Some Experimental and Numerical Studies on Evaluation of Adhesive Bond Integrity of Composites Lap Shear JointsVijaya Kumar, R L January 2014 (has links) (PDF)
Adhesive bonding which has been in use for long as a traditional joining method has gained ground in the last couple of decades due to the introduction of advanced composite materials into the aerospace industry. Bonded structures have advantages such as high corrosion and fatigue resistance, ability to join dissimilar materials, reduced stress concentration, uniform stress distribution, good damping characteristics etc. They also have certain limitations like environmental degradation, existence of defects like pores, voids and disbonds, difficulty in maintenance and repair etc. A serious drawback in the use of adhesively bonded structures has been that there are no established comprehensive non-destructive testing (NDT) techniques for their evaluation. Further, a reliable evaluation of the effect of the existing defects on strength and durability of adhesive joints is yet to be achieved. This has been a challenge for the research and development community over several decades and hence, been the motivation behind this piece of research work. Under the scope of the work carried out in the thesis, some of the primary factors such as the existence of defects, degradation of the adhesive, stress and strain distribution in the bonded region etc., have been considered to study the bond integrity in composite to composite lap shear joints. The problem becomes complex if all the parameters affecting the adhesive joint are varied simultaneously. Taking this into consideration, one of the key parameters affecting the bond quality, viz., the adhesive layer degradation was chosen to study its effect on the bonded joint. The epoxy layer was added with different, definite amount of Poly vinyl alcohol (PVA) to arrive at sets of bonded joint specimens with varied adhesive layer properties. A thorough review of different non destructive testing methods applied to this particular problem showed that ultrasonic wave based techniques could be the right choice. To start with, preliminary experimental investigations were carried on unidirectional glass fiber reinforced plastic (GFRP-epoxy) lap joints. The adhesive joints were subjected to non destructive evaluation (NDE) using ultrasonic through transmission and pulse echo techniques as also low energy digital X-ray techniques. The results obtained showed a variation in reflected and transmitted ultrasonic pulse amplitude with bond quality. Digital X-Ray radiography technique showed a variation in the intensity of transmitted x-rays due to variation in the density of adhesive. Standard mechanical tests revealed that the addition of PVA decreased the bond strength. A plot of coefficient of reflection from the first interface and the bond strength showed a linear correlation between them.
After obtaining a cursory feel and understanding of the parameters involved with the preliminary experiments on GFRP adhesive joints which yielded interesting and encouraging results, further work was carried on specimens made out of autoclave cured carbon fiber reinforced plastic (CFRP)-epoxy bonded joints. Normal incidence ultrasound showed a similar trend. Analyses of the Acoustic Emission (AE) signals generated indicate early AE activity for degraded joints compared to healthy joints. Literary evidences suggest that the ultrasonic shear waves are more sensitive to interfacial degradation. An attempt was made to use oblique incidence ultrasonic interrogation using shear waves. The amplitude of reflected shear waves from the interface increased with an increase in degradation. Further, a signal analysis approach in the frequency domain revealed a shift in the frequency minimum towards lower range in degraded samples. This phenomenon was verified using analytical models. An inversion algorithm was used to determine the interfacial transverse stiffness which decreased significantly due to increase in degradation.
Conventional ultrasonic evaluation methods are rendered ineffective when a direct access to the test region is not possible; a different approach with guided wave techniques can be explored in this scenario. Investigations on CFRP-epoxy adhesive joints using Lamb waves showed a decrease in the amplitude of ‘So’ mode in degraded samples. Theoretical dispersion curves exhibited a similar trend. Frequency domain studies on the received modes using Gabor wavelet transform showed a negative shift in frequency with increased degradation. It was also observed that the maximum transmission loss for the most degraded sample with 40 percent PVA occurred in the range of 650 – 800 kHz. Non linear ultrasonic (NLU) evaluation revealed that the nonlinearity parameter (β) increased with increased degradation.
Kissing bonds are most commonly occurring type of defects in adhesive joints and are very difficult to characterize. A recent non-contact imaging technique called digital image correlation (DIC) was tried to evaluate composite adhesive joints with varied percentage of inserted kissing bond defects. The results obtained indicate that DIC can detect the kissing bonds even at 50 percent of the failure load.
In addition, to different experimental approaches to evaluate the bonded joint discussed above, the effect of degradation on the stresses in the bond line region was studied using analytical and numerical approach. A linear adhesive beam model based on Euler beam theory and a nonlinear adhesive beam model based on Timoshenko beam theory were used to determine the adhesive peel and shear stress in the joint. Digital image correlation technique was used to experimentally obtain the bond line strains and corresponding stresses were computed assuming a plane strain condition. It was found that the experimental stresses followed a similar trend to that predicted by the two analytical models. A maximum peel stress failure criterion was used to predict failure loads. A failure mechanism was proposed based on the observations made during the experimental work. It was further shown that the critical strain energy release rate for crack initiation in a healthy joint is much higher compared to a degraded joint.
The analytical models become cumbersome if a larger number of factors have to be taken into account. Numerical methods like finite element analysis are found to be promising in overcoming these hurdles. Numerical investigation using 3D finite element
analysis was carried out on CFRP-epoxy adhesive joints. The adherend – adhesive interface was modeled using connector elements whose stiffness properties as well as the bulk adhesive properties for joints with different amounts of PVA were determined using ultrasonic inspection method. The peel and shear stress variation along the adhesive bond line showed a similar trend as observed with the experimental stress distribution (DIC) but with a lesser magnitude. A parametric study using finite element based Monte-Carlo simulation was carried out to assess the effect of variation in various joint parameters like adhesive modulus, bondline thickness, adherend geometrical and material properties on peel and shear stress in the joint. It was found that the adhesive modulus and bond line thickness had a significant influence on the magnitude of stresses developed in the bond line.
Thus, to summarize, an attempt has been made to study the bond line integrity of a composite epoxy adhesive lap joint using experimental, analytical and numerical approaches. Advanced NDE tools like oblique incidence ultrasound, non linear ultrasound, Lamb wave inspection and digital image correlation have been used to extract parameters which can be used to evaluate composite bonded joints. The results obtained and reported in the thesis have been encouraging and indicate that in specific cases where the bond line thickness and other relevant parameters if can be maintained or presumed reasonably non variant, it is possible to effectively evaluate the integrity of a composite bonded joint.
|
125 |
Hydrogen-bonded supramolecular polymers as dynamic scaffolds for catalysis / Polymères supramoleculaires liés par liaisons hydrogène comme support dynamique pour la catalyseCaumes, Xavier 06 December 2016 (has links)
Des polymères supramoléculaires liés par liaisons hydrogènes basés sur des motifs associatifs de type benzène-1,3,5-tricarboxamide (BTA) et bis-urée ont été étudiés comme support dynamique pour la catalyse. Les propriétés catalytiques d'un lot de ligands, comprenant une série de onze nouveaux ligands bis-urées, et des co-monomères complémentaires ont été étudiés pour diverses réactions catalysées par des métaux. Des copolymères formés par mélange de monomères achiraux fonctionnalisés par des phosphines (les ligands) et des additifs sans fonctions phosphines (les co-monomères) ont été étudiés comme supports pour la catalyse asymétrique. L'objectif était de transférer, amplifier et changer la chiralité supramoléculaire du support polymère vers le centre métallique intrinsèquement achiral localisé à sa périphérie. Des mélanges de BTA ont été utilisés aves succès dans deux différentes catalyses asymétriques avec jusqu'à 85% ou 80% d'e.e. pour respectivement l'hydrogénation de l'itaconate de diméthyle catalysée par le rhodium et l'hydrosilylation de la 4'-nitro-acétophénone catalysée par le cuivre. Les centres catalytiques de rhodium et de cuivre supportés par les BTA montrent de fortes propriétés d'amplification de chiralité : i) pour la catalyse au rhodium, la quantité nécessaire de co-monomère chiral peut être réduite jusqu'à un quart de celle du ligand sans détérioration de l'énantioséléctivité de la réaction et ii) la chiralité du catalyseur au cuivre peut être changée pendant le déroulement de la réaction. Une autre plateforme, basée sur des mélanges de monomères bis-urée, a aussi été étudiée dans plusieurs réactions asymétriques catalysées par des métaux mais de l’énantioséléctivité n’a été obtenue que pour l’hydrosilylation de la 4’-nitro-acétophénone catalysé par le cuivre (22% e.e.). Dans le contexte de l’organocatalyse, la possibilité de modifier l’activité d’un centre catalytique de type thiourée en contrôlant son auto-assemblage a aussi été étudié. Au bilan, nos études montrent clairement les propriétés innovantes de catalyseurs supportés par des polymères supramoléculaires liés par liaisons hydrogène. / Hydrogen-bonded supramolecular polymers based on benzene-1,3,5-tricarboxamide (BTA) and bis-urea recognition units were investigated as dynamic scaffolds for catalysis. The catalytic properties of a full set of ligands, including a series of eleven new bis-urea ligands, and complementary co-monomers have been investigated in various metal-catalyzed reactions. Co-polymers formed by mixing an achiral phosphine-functionalized monomer (the ligand) and a chiral phosphine-free additive (the co-monomer) were investigated as scaffolds for asymmetric catalysis. The aim was to transfer, amplify and switch the supramolecular chirality of the polymer scaffold to intrinsically achiral metal centres located at its periphery. BTA mixtures have been successfully applied in two different asymmetric reactions providing up to 85% and 80% e.e. in the rhodium-catalysed hydrogenation of dimethylitaconate and in the copper-catalysed hydrosilylation of 4’-nitro-acetophenone respectively. The BTA scaffold supporting the catalytic rhodium and copper centres display strong chirality amplification properties: i) for the rhodium catalysis, the amount of chiral co-monomer can be decreased down to one-fourth of that of the ligand without deteriorating the enantioselectivity of the reaction and ii) the chirality of the copper catalyst can be switched during the course of the catalytic reaction. In the case of the bis-urea platform, mixtures of monomers have been investigated in several asymmetric metal-catalysed reactions but selectivity was obtained only for the copper-catalyzed hydrosilylation of 4’-nitro-acetophenone (22% e.e). We also tested the use of supramolecular polymers in the context of organocatalysis: the possibility of tuning the activity of a thiourea catalytic centre by controlling its self-assembly behaviour was investigated. Overall, our studies clearly reveal the innovative properties of catalysts supported by hydrogen-bonded supramolecular polymers
|
126 |
Hydrolytic and Nonhydrolytic Sol-gel Zirconia-, Titania-, and Niobia-based Capillary Microextraction Coatings for the Preconcentration and HPLC Analysis of Catecholamine Neurotransmitters and Phosphorylated PeptidesAlhendal, Abdullah Awadh 16 November 2016 (has links)
Sample preparation is the most error-prone step in chemical analysis. A great deal of efforts has been made to develop efficient techniques and protocols for sample preparation to accomplish important goals such as miniaturization and implementation of green analytical methodologies. Solid-phase microextraction (SPME) has successfully eliminated the use of hazardous organic solvents in extraction sampling, sample preparation, preconcentration and sample introduction to the analytical instrument in an effective manner. Ensuring thermal- and solvent-instability of traditional SPME extraction phases represented one of their main drawbacks. This was solved by the introduction of sol-gel SPME phases characterized by enhanced thermal-, solvent-, and stability over a wide pH range. Sol-gel SPME phases (sorbents) facilitated excellent preconcentration effects for a wide range of analytes. In this dissertation, hydrolytic and nonhydrolytic sol-gel routes were explored for the creation of zirconia-, titania-, and niobia-based novel hybrid organic-inorganic sorbents using sol-gel active polymeric ligands. These sorbents were prepared in the form of surface coatings for capillary microextraction and preconcentration of biologically important molecules such as catecholamine neurotransmitters and phosphopeptides. In comparison with other sorbents made only of inorganic transition metal oxides, the presented sol-gel sorbents facilitated efficient desorption of the extracted analytes by LC-MS compatible mobile phases. The sol-gel zirconia- and titania-based hybrid sorbents provided pH-stable (pH range: 0 - 14) and derivatization-free extraction media that effectively overcame the major drawbacks of traditional sorbents for the analysis of catecholamines (silica-based sorbents suffer from narrow operational pH window while polymer-based sorbents require additional sample derivatization steps). The modification of the terminal hydroxy groups in PPO with ZrCl4 or TiCl4 provided an enhanced sol-gel reactivity of the polymer modified-terminals. Such a modification procedure allowed for an efficient incorporation of the polymeric ligand into the evolving sol-gel network. The effectiveness of the PPO modification was also evaluated by a systematic thermogravimetric investigation exploring the loading of the ligand in sol-gel hybrid sorbents, which revealed an enhanced ligand-loading achieved via the nonhydrolytic sol-gel route used with modified-PPO. Sol-gel hybrid sorbents prepared by the nonhydrolytic sol-gel (NHSG) pathway provided excellent microextraction performance for catecholamines: low detection limits (5.6 – 9.6 pM), enhanced run-to-run reproducibility (RSD 0.6 – 5.1 %), excellent desorption efficiency (95.0 – 99.5 %) and high enrichment factors (EF) for epinephrine (EF ~ 1480) and for dopamine (EF ~ 2650) extracted from aqueous and synthetic urine samples at pH 10.5. Run-to-run and capillary-to-capillary reproducibility remained below 5 % when the peak area or the sorbent-mass was used as the reproducibility criterion. Niobia-based sol-gel sorbents prepared with and without organic ligand (polyethylenimine) were utilized as microextraction media for the enrichment of phosphorylated and nonphosphorylated tetrapeptide VYKA. Sol-gel niobia-based sorbents with covalently anchored polyethylenimine showed excellent selectivity toward the phosphopeptide compared to analogous titania-based sorbents. Specific extraction (SE) values were higher by 97.0 % when obtained by niobia-based sorbents. Excellent run-to-run peak area reproducibility (RSD < 5.1 %) and high EF of ~ 4000 were achieved. The sol-gel niobia-based coating facilitated excellent desorption efficiency (97.5 %), which suggests that the surface of the niobia sorbent possesses moderate-strength Lewis acid sites that avoided the need for special elution solvents that are conventionally used for the desorption of phosphorylated molecules from titania-based sorbents. The sol-gel pathway for the creation of microextraction phases is versatile and capable to provide unique control on the characteristics of the sorbents that are critically important for many sample preparation applications.
|
127 |
Studium adheze lepených balistických kompozitů v závislosti na použitých materiálech. / The study of adhesion of glued balistic composites on the dependence of materials used.Dobiáš, Jiří January 2018 (has links)
The aim of this work was to investigate the properties of bonded ballistic materialsBalistic composites are mainly glued to reduce weight while keeping their protective properties. On this basis, the materials used were ballistic steel, ceramics, rubber kevlar, non-gummed kevlar, Dyneema and fiberglass. For bonding used were a one-component adhesive Collano 36.104 and two-component adhesive Biresin U1305. The strength of the joint was measured in shear at tensile loads. From these results, deformation energy was further calculated.
|
128 |
Tensile Strength of Bonded Lap-mitered Butt-Joints between Layered CFRP Bands : -In collaboration with RUAG Space ABZeeshan, Muhammad January 2014 (has links)
Joints in structures always cause strength reduction. The percentage of strength reduction depends upon the selection of several factors such as: type of joint (i.e. adhesive or mechanical), technique of joint (i.e. lap joint, butt joint etc.), geometry of joint, mode of load application etc. Here in this research, the strength of adhesively bonded butt joints with several geometries, later referred as joint angles, is investigated under uniaxial tension loading. Adhesively bonded simple butt joints, where joints are placed perpendicular to the loading direction are in common practice mainly because of ease in manufacturing process. But when the joint is fabricated with an angle respective to the loading direction, the geometry of the joint itself affects the strength of the joint significantly. Without going too deep into other factors that affects the joint strength such as manufacturing techniques, manufacturing defects, material behavior etc. only the geometry of the joint is considered and it is evaluated whether it is worth to change the joint geometry or not. The significant issue in adhesive joint technology is the prediction of joint strength. However, an approach similar to plastic yield criterion later referred as elastic limit offset method (attempted for 0.025% offset) is considered to estimate the linear elastic limit. Since RUAG Space AB (the industry for which this project is performed) is only interested in the linear elastic regime of the stress-strain curve, therefore the elastic limit offset method is considered to be the suitable one. The present work is concerned with the study of adhesively bonded angled butt joint vs. strength behavior. The strength of adhesively bonded butt joints is examined for several butt joint angles under uniaxial tensile loading. The employed butt joint angles are: 0°, 30°, 45°, 60° and 75°. The main objective of the current investigation is to find the joint angle that has the highest strength or the highest capability of load transfer. In addition to the above, the influence of the joint on the stress field, joint strength and type of failure is also evaluated using DSP (Digital Speckle Photography) technique and simulated using well known finite element tool, ABAQUS. It is observed that specific strength of the joint is greatly influenced with joint angle. The 45° joint showed the highest elasticity and failed like ductile behavior whereas 75° joint showed the lowest elasticity and failure was purely brittle. Moreover, post-failure inspection of fractured surfaces showed cohesive failure (failure within adhesive layers) for 0°, 30°, 45° and 60°whereas 75° showed composite or adherend failure. The simulation is performed for each joint angle. However to validate the model only 45° and 75° joints results are compared with experimental results and plotted in the report. The simulation results of these angles showed good agreement with the experimental ones. Moreover, the stress fields for each joint angle are captured (from ABAQUS), showing that all joints are susceptible to inter-laminar shear. Besides, the relative slip between the top and middle adherends is also calculated, the results show that, the 45° joint has higher tendency of relative slip than others.
|
129 |
Progresivní styčníky FRP kompozitů konstrukcí dopravní infrastruktury / Joints from FRP composite intended for transport infrastructureSimon, Pavel January 2018 (has links)
This thesis deals with junction points of construction used in transport infrastructure, which are made of FRP composite material. Main focus is on bonded joints. The material and geometrical criteria od FRP material and there influence to junctions are analyzed. In sequential steps the development of the design of joints applicable to reference constructions - pedestrian walkways is documented. There are also presented practical experiences from the tests of joints of overlapped and single-sided joints, as well as experience from the design, production and testing of two types of pedestrian bridges on a real scale. Furthermore, extensive comparison of joints, in particular T-joints with closed profiles for selected types of fasteners, is provided. From a simple connection, screws and rivets or plain bonding to combined joints. These are assessed both in terms of bearing capacity and their deformation behavior. These tests are performed for two material combinations, FRP-FRP and FRP-steel.
|
130 |
Predicting and Validating Multiple Defects in Metal Casting Processes Using an Integrated Computational Materials Engineering ApproachLu, Yan 30 September 2019 (has links)
No description available.
|
Page generated in 0.0329 seconds