111 |
Mechanical behaviour of thermally bonded bicomponent fibre nonwovens : experimental analysis and numerical modellingDemirci, Emrah January 2011 (has links)
In contrast to composites and woven fabrics, nonwoven materials have a unique web structure, which is composed of randomly oriented fibres bonded in a pattern by mechanical, thermal or chemical techniques. The type of nonwovens studied in this research is a thermally bonded one with polymer-based bicomponent fibres. Such fibres have a core/sheath structure with outer layer (sheath) having a lower melting temperature than that of the core. In thermal bonding of such fibres, as the hot calender with an engraved pattern contacts the fibrous web, bond points are formed thanks to melting of the sheath material. Molten sheath material acts as an adhesive while core parts of the fibres remain fully intact in the bond points. On the other hand, web regions, which are not in contact with the hot engraved pattern, remain unaffected and form the fibre matrix that acts as a link between bond points. With two distinct regions, namely, bond points and fibre matrix, with different structures, nonwovens exhibit a unique deformation behaviour. This research aims to analyse the complex mechanical behaviour of thermally bonded bicomponent fibre nonwoven materials using a combination of experimental and numerical methods. A novel approach is introduced in the thesis to predict the complex mechanical behaviour of thermally bonded bicomponent fibre nonwovens under various threedimensional time-dependent loading conditions. Development of the approach starts with experimental studies on thermally bonded bicomponent fibre nonwovens to achieve a better understating of their complex deformation characteristics. Mechanical performance of single bicomponent fibres is investigated with tensile and relaxation tests since they are the basic constituents of nonwoven fabrics. The fabric microstructure, which is one of the most important factors affecting its mechanical behaviour, is examined with scanning electron microscopy and X-ray micro computed tomography techniques. At the final part of experimental studies, mechanical response of thermally bonded bicomponent fibre nonwovens is characterised with several mechanical tests. (Continues...).
|
112 |
Damage characterisation and lifetime prediction of bonded joints under variable amplitude fatigue loadingShenoy, Vikram January 2009 (has links)
Adhesive bonding is one of the most attractive joining techniques for any structural application, including high profile examples in the aerospace, automotive, marine construction and electrical industries. Advantages of adhesive bonding include; superior fatigue performance, better stress distribution and higher stiffness than conventional joining techniques. When the design of bonded joints is considered, fatigue is of critical importance in most structural applications. There are two main issues that are of importance; a) in-service damage characterisation during fatigue loading and, b) lifetime prediction under both constant and variable amplitude fatigue loading. If fatigue damage characterisation is considered, there has been some work to characterise damage in-situ using the backface strain (BFS) measurement technique, however, there has been little investigation of the effects of different types of fatigue behaviour under different types of geometry and loading. Regarding fatigue lifetime prediction of bonded joints, most of the work in the literature is concentrated with constant amplitude fatigue, rather than variable amplitude fatigue. Fatigue design of a bonded structure based on constant amplitude fatigue, when the actual loading on the structure is of the variable amplitude fatigue, can result in erroneous lifetime prediction. This is because of load interaction effects caused by changes in load ratio, mean load etc., which can decrease the fatigue life considerably. Therefore, the project aims to a) provide a comprehensive study of the use of BFS measurements to characterise fatigue damage, b) develop novel techniques for predicting lifetime under constant amplitude fatigue and c) provide an insight into various types of load interaction effects. In this project, single lap joints (SLJ) and compound double cantilever beam geometries were used. Compound double cantilever beams were used mainly to determine the critical strain energy release rate and to obtain the relationship between strain energy release rate and fatigue crack growth rate. The fatigue life of SLJs was found to be dominated by crack initiation at lower fatigue loads. At higher fatigue loads, fatigue life was found to consist of three phases; initiation, stable crack propagation and fast crack growth. Using these results, a novel damage progression model was developed, which can be used to predict the remaining life of a bonded structure. A non-linear strength wearout model (NLSWM) was also proposed, based on strength wearout experiments, where a normalised strength wearout curve was found to be independent of the fatigue load applied. In this model, an empirical parameter determined from a small number of experiments, can be used to determine the residual strength and remaining life of a bonded structure. A fracture mechanics approach based on the Paris law was also used to predict the fatigue lifetime under constant amplitude fatigue. This latter method was found to under-predict the fatigue life, especially at lower fatigue loads, which was attributed to the absence of a crack initiation phase in the fracture mechanics based approach. A damage mechanics based approach, in which a damage evolution law was proposed based on plastic strain, was found to predict the fatigue life well at both lower and higher fatigue loads. This model was able to predict both initiation and propagation phases. Based on the same model, a unified fatigue methodology (UFM) was proposed, which can be used to not only predict the fatigue lifetime, but also various other fatigue parameters such as BFS, strength wearout and stiffness wearout. The final part of the project investigated variable amplitude fatigue. In this case, fatigue lifetime was found to decrease, owing to damage and crack growth acceleration in various types of variable amplitude fatigue loading spectra. A number of different strength wearout approaches were proposed to predict fatigue lifetime under variable amplitude fatigue loading. The NLSWM, where no interaction effects were considered was found to over-predict the fatigue life, especially at lower fatigue loads. However, approaches such as the modified cycle mix and normalised cycle mix approaches were found to predict the fatigue life well at all loads and for all types of variable amplitude fatigue spectra. Progressive damage models were also applied to predict fatigue lifetime under variable amplitude fatigue loading. In this case a fracture mechanics based approach was found to under-predict the fatigue life for all types of spectra at lower loads, which was established to the absence of a crack initiation phase in this method. Whereas, a damage mechanics based approach was found to over-predict the fatigue lifetime for all the types of variable amplitude fatigue spectra, however the over- prediction remained mostly within the scatter of the experimental fatigue life data. It was concluded that, the damage mechanics based approach has potential for further modification and should be tested on different types of geometry and spectra.
|
113 |
Evaluation of reclaimed asphalt pavement materials from ultra-thin bonded bituminous surfaceMusty, Haritha Yadav January 1900 (has links)
Master of Science / Department of Civil Engineering / Mustaque Hossain / The ultra-thin bonded bituminous surface (UBBS), popularly known as Novachip, is a
thin hot-mix asphalt layer with high-quality, gap-graded aggregates bonded to the existing
surface with a polymer-modified emulsion membrane. This thin surfacing improves ride quality, reduces road-tire noise, minimizes back spray, and increases visibility under wet conditions. The Kansas Department of Transportation (KDOT) has been using UBBS since 2002. Performance of this thin surface treatment strategy has been good in Kansas and elsewhere. However, some of these projects are now being rehabilitated. The objective of this study is to evaluate whether reclaimed asphalt pavement (RAP) materials from existing UBBS layers can be used in chip seal and Superpave mixtures. UBBS millings were studied with two different polymer-modified emulsions to assess their performance as precoated aggregates in chip seal. The ASTM D7000-04 sweep test was used to assess chip retention of UBBS millings. Three different mix designs were developed for both 12.5-mm and 9.5-mm nominal maximum aggregate size (NMAS)Superpave mixtures using a PG 70-22 asphalt binder and three different percentages (0%, 10%, and 20%) of reclaimed UBBS materials. The designed Superpave mixes were then tested for performance in terms of rutting and stripping using the Hamburg wheel tracking device (HWTD)and moisture sensitivity by modified Lottman tests. Sweep test results showed that UBBS millings did not improve chip retention. Superpave mix design data indicated volumetric properties of Superpave mixes with UBBS millings met all requirements specified by KDOT. HWTD and modified Lottman test results indicated all designed mixes performed better with the addition of UBBS millings as RAP materials. Field performance of UBBS projects was also evaluated. It was found that pavements treated with UBBS showed high variability in service life with majority serving six years. Before and after (BAA) studies showed that UBBS reduces pavement roughness, transverse and fatigue cracking one year after the treatment. However, no consistent improvement in rutting condition was found.
|
114 |
Comportamento de um solo residual levemente cimentado : estimativa de capacidade de carga para estacas submetidas a esforços transversaisCarretta, Mariana da Silva January 2018 (has links)
Fundações profundas, quando solicitadas ao carregamento lateral, são regidas por três critérios de projeto: resistência última do solo, carga última do elemento estrutural e deflexão máxima. Esses critérios atuam em conjunto e é necessário que sejam analisados dessa forma, visto que a falha de um deles é capaz de acarretar o colapso de todo sistema. No que tange à resistência do solo, metodologias de capacidade de carga existentes traduzem o comportamento de solos granulares e coesivos. Dada a particularidade da atuação de solos residuais na mecânica dos solos, não há uma metodologia abrangente para estacas sujeitas a solicitação de carregamento lateral nesse tipo de solo, o qual apresenta comportamento intermediário e estrutura levemente cimentada. Em vista disso, o presente trabalho propõe um método de estimativa de capacidade de carga para estacas carregadas horizontalmente, quando inseridas em solo residual e em casos em que as mesmas apresentam topo locado em superfície de solo tratado. Dessa forma, dados de provas de carga lateral pré-existentes e ensaios de laboratório executados ao longo da pesquisa serviram como base para a proposição do método, fundamentado no comportamento do material quando solicitado ao carregamento lateral Ensaios de resistência à compressão simples, compressão oedométrica, compressão isotrópica e ensaios triaxiais com medidas de módulo cisalhante demonstram que há um ponto em que se dá a quebra da estrutura cimentada do solo, passando o mesmo a se apresentar num arranjo desestruturado, refletido em maiores deformações. Uma relação linear é capaz de equacionar a capacidade de carga, tanto para estacas inseridas em solo residual quanto para estacas executadas em solo com camada superficial melhorada. Essa relação é estabelecida entre a carga de ruptura das estacas ensaiadas e a área de solo adjacente à mesma, mobilizada pelo carregamento. Os resultados demonstram que a capacidade de carga das estacas estudadas é regida pela tensão de plastificação do material. O equacionamento proposto possibilita a obtenção da carga de ruptura com base em ensaios simples e de fácil execução, tal como o ensaio de resistência à compressão simples que estabelece relação direta com a tensão de plastificação do solo estudado. / Deep foundations, when requested to lateral loading, are governed by three design criteria: ultimate soil strength, piles’ ultimate load, and maximum deflection. These criteria act together and must be analyzed in this way, since the failure of one of them is capable of causing the collapse of the entire system. Regarding soil resistance, the current bearing capacity methodologies describe the behavior of granular and cohesive soils. Given the particular behavior of the residual soils in the soil mechanics, there is no comprehensive methodology for piles subject to lateral loads and inserted in this soil type, which presents an intermediate behavior and a lightly cemented structure. Thus, the present work proposes an estimated bearing capacity for crosswise loaded piles, when inserted in residual soil and in soil with the top layer cemented. So, data from preexisting lateral loading tests and laboratory tests, performed during the research, served as a basis for the proposition of the method, based on the behavior of the material when requested to lateral loading Unconfined compression tests, oedometer consolidation tests, isotropic compression, and triaxial tests with measures of shear modulus demonstrate that there is a point where the soil's cemented structure breaks down, presenting itself in a destructured arrangement, reflected by larger strains. A linear relationship is capable of equating the bearing capacity for both, piles inserted in residual soil and piles carried out in soil with improved surface layer. This relationship is established between the rupture load of the piles tested and the area of soil adjacent to it mobilized by the loading. The results shows that the piles' bearing capacity is governed by the yield stress of the material. The proposed equation makes it possible to obtain the rupture load based on simple and easy tests, such as the unconfined compression test that establishes a direct relationship with the yield stress of the studied soil.
|
115 |
[en] DRY PORTS IN BRAZIL: OVERVIEW, ASSESSMENT AND PERSPECTIVES / [pt] PANORAMA DOS PORTOS SECOS NO BRASIL: AVALIAÇÃO E PERSPECTIVASCLAUDIA ESPINDOLA CABRAL LOUZADA 14 March 2006 (has links)
[pt] O comércio internacional é uma atividade imprescindível
que impacta
diretamente a balança comercial e, por extensão, a
capacidade de crescimento dos
países. O comércio exterior brasileiro não foge à regra e
precisa de todas as
inovações e implementações possíveis de forma a contribuir
para aumentar a
competitividade do Brasil no mundo globalizado e inseri-lo
definitivamente no
cenário econômico internacional. Os Portos Secos - antigos
Eadis - são uma
ferramenta logística inserida neste contexto podendo
desempenhar um papel vital
no comércio exterior. São uma opção para o gargalo em
portos e aeroportos, para
a armazenagem entrepostada para importadores e
exportadores, além de uma
saída de industrialização alfandegada para pequenas e
médias empresas. A
utilização de portos secos é uma realidade em países que
hoje estão na ponta do
comércio internacional. Nesta dissertação serão
apresentados o que são os portos
secos do Brasil, as legislações que os regem, vantagens na
sua utilização,
evolução dos serviços oferecidos na conjuntura atual e os
principais problemas
enfrentados e que impactam na sua atuação mais efetiva
como hub service. A
partir da síntese das informações obtidas, avaliamos como
estão estruturados os
portos secos no Brasil, seu nível de profissionalização e
tecnologias empregadas. / [en] The international trade is directly connected with the
trade balance as well
the capacity of commercial growth for each country. The
same consideration is
quite valid for Brazilian foreign trade that needs all of
the innovations and new
implementations in order to raise its competitiveness and,
definitively, to insert
Brazil into the economics international context. Known as
Eadis in the past, the
dry ports are a valid logistics alternative in the foreign
trade context. Also, they
are able to act as a smart key for Importers and
Exporters. They are an option for
some Brazilian logistics problems such as the follows:
cleaning the bottleneck in
the operation of ports and airports because they function
as a customs
warehousing; and, the option for smaller and medium size
companies to use them
as an industrial environment for custom production
activities. Around the world,
the dry ports have been used by countries operating at a
top level in the
international trade market. This dissertation will give
information about the
Brazilian dry ports, the laws involved in their
functioning, the advantages of their
utilization, the evolution of their services and the main
problems impacting their
performance as a hub service. In connection with all the
information collected, an
analysis is presented covering the structure of the dry
ports, their professional
level and the technologies applied.
|
116 |
A Study On The Utilization Of Waste Cement-bonded Wood Particle Board As A Raw Material And A Secondary Fuel In Cement ManufacturingYilmaz, Mustafa 01 September 2012 (has links) (PDF)
A considerable amount of waste is obtained as a result of edge-cutting operations during cement-bonded wood particle board (CBWPB) manufacturing. This waste material which basically contains wood chips and hydrated cement has to be disposed of and does not have any economical value. However, it can be burned in cement rotary kilns and may result in energy savings to a certain extent due to the presence of wood particles as a secondary fuel and since the hydrated cement may be decomposed and then reform clinker compounds during the calcination process.
In this experimental study, the possibility of using waste CBWPB in cement manufacturing and its effects on energy consumption and cement characteristics will be investigated. The reference mix, corrective limestone, CBWPB waste and coal, were used as raw materials to prepare six different raw meals whose chemical compositions was similar to reference mix. All six raw mixes (including the reference) were calcined under the same conditions to produce clinkers. The compositions and micro structure of the clinkers obtained were comparatively analyzed by wet analysis, XRF and XRD techniques. Cements were obtained by intergrinding the clinkers with 5% (by mass) gypsum rock and standard tests were carried out on each of the cements. In addition to these, since CBWPB waste contains wood about 30% by weight, its contribution to fuel consumption during clinker production was also analyzed.
The test results revealed that CBWPB waste can be used as a cement raw material since CBWPB waste has the similar chemical composition with the reference raw mix. CBWPB, which contains about 30% (by mass) wood, contributes to the heating process during calcination and results in lower amount of primary fuel requirement.
|
117 |
Bonded Particle Model for Jointed Rock MassMas Ivars, Diego January 2010 (has links)
Jointed rock masses are formed of intact rock and joints. There-fore, proper characterization of rock mass behavior has to consid-er the combined behavior of the intact rock blocks and that of the joints. This thesis presents the theoretical background of the Synthetic Rock Mass (SRM) modeling technique along with example applica-tions. The SRM technique is a new approach for simulating the mechanical behavior of jointed rock masses. The technique uses the Bonded Particle Model (BPM) for rock to represent intact ma-terial and the Smooth-Joint Contact Model (SJM) to represent the in situ joint network. In this manner, the macroscopic behaviour of an SRM sample depends on both the creation of new fractures through intact material, and slip/opening of pre-existing joints. SRM samples containing thousands of non-persistent joints can be submitted to standard laboratory tests (UCS, triaxial loading, and direct tension tests) or tested under a non-trivial stress path repre-sentative of the stresses induced during the engineering activity under study. Output from the SRM methodology includes pre-peak properties (modulus, damage threshold, peak strength) and post-peak proper-ties (brittleness, dilation angle, residual strength, fragmentation). Of particular interest is the ability to obtain predictions of rock mass scale effects, anisotropy and brittleness; properties that can-not be obtained using empirical methods of property estimation. Additionally, the nature of yielding and fracturing can be studied as the rock mass fails. This information can improve our understand-ing of rock mass failure mechanisms. / QC20100720
|
118 |
Cytocompatible coatings to control cell activityDrachuk, Irina 27 August 2014 (has links)
Cell-surface engineering has been attracting increased interest in the field of biotechnology, tissue engineering, cell therapy, or biosensors/bioelectronics. Thin nanocoatings or sometimes referred as nanoshells allow for modifying and controlling variety of cell properties, specifically retardation of cell division or growth, masking immunological properties, providing chemical and mechanical resistance to external stressors, and ability to further functionalize shells in order to guide cells attachment, their proliferation and function in artificial environment.
Bottom-up approach, utilizing layer-by-layer (LbL) assembly of wide variety of different components (synthetic and natural polyelectrolytes, nanoparticles, and other nano-structures) has been introduced and elaborated to modify cell surfaces. Despite successful examples of the LbL-based cell encapsulation with polyelectrolytes, cytotoxicity of their polycation components possesses severe limitations for this approach. Additionally, by constructing rigid non-permeable shells can suppress the essential properties of cells.
In this view, the goal of this research is to explore the formation of cyto-compatible ultrathin coatings from synthetic and natural polymers through utilization of non-cationic counterparts, with possibility to actively control cell division, provide protection from external environment, and temper shell properties in order to elicit or change specific cell response.
|
119 |
Mechanical Properties Of Cfrp AnchoragesOzdemir, Gokhan 01 February 2005 (has links) (PDF)
Due to inadequate lateral stiffness, many reinforced concrete buildings are highly damaged or collapsed in Turkey after the major earthquake. To improve the behavior of such buildings and to prevent them from collapse, repair and/or strengthening of some reinforced concrete elements is required. One of the strengthening techniques is the use of CFRP sheets on the existing hollow brick masonry infill. While using the CFRP sheets their attachment to both structural and non-structural members are provided by CFRP anchor dowels. In this study, by means of the prepared test setup, the pull-out strength capacities of CFRP anchor dowels are measured. The effects of concrete compressive strength, anchorage depth, anchorage diameter, and number of fibers on the tensile strength capacity of CFRP anchor dowel are studied.
|
120 |
Effet des défauts d'adhésion sur la résistance mécanique des assemblages collés / Effect of adhesion defects on the mechanical resistance of bonded assembliesTaleb Ali, Mahfoudh 04 May 2018 (has links)
Le collage structural est une technique d’assemblage de plus en plus demandée aujourd’hui dans beaucoup de domaines comme l’automobile, l’aéronautique, l’aérospatial et dans d’autres domaines comme la construction, le sport et les loisirs. Cette technique très avantageuse, permet l’assemblage de matériaux semblables ou différents à l’aide d’un adhésif, la réduction importante du poids et la répartition uniforme des charges sur l’assemblage. Malgré ses avantages, le collage souffre encore de quelques inconvénients liés à l’existence de défauts dans les joints de colle. Parmi eux, il existe des défauts qui sont situés à l’interface colle/substrat comme un « kissing bond » ou un mauvais état de surface, qui restent indétectables ou difficilement détectables utilisant les techniques de contrôle non destructives. Donc, afin de prendre en compte l’existence des défauts d’adhésion dans les assemblages collés lors de la phase de conception, il est nécessaire de fournir un modèle analytique capable de prédire la propagation de fissure. Dans cette thèse, un modèle analytique qui prédit la propagation de fissure et qui évalue la résistance effective d’un assemblage collé contenant des défauts d’adhésion a été développé. Un défaut a généralement une géométrie complexe, et une étude générique est difficilement réalisable ce qui nous amène à considérer des géométries de défauts idéales. Le modèle a été vérifié par des expériences réalisées sur des éprouvettes DCB. Des simulations numériques utilisant la méthode de zone cohésive ont été réalisées également pour décrire plus complètement le processus de décohésion et simuler les essais expérimentaux. La dernière partie de ce travail a été dédiée à l’étude de la fissuration des éprouvettes en alliage de titane. Profitant de la collaboration avec Safran et Alphanov, les substrats ont subi un traitement de surface laser en laissant des zones non traitées. Le but de cette partie était de vérifier le modèle analytique proposé avec des configurations plus complexes. / Structural adhesive bonding has known an increasing use in many fields like aeronautics, aerospace and automotive and other fields like construction and sports. This very advantageous technique allows the assembly of similar or different materials using an adhesive, the significant reduction in weight and a uniform distribution of loads on the assembly. Despite its advantages, the bonding still suffers from some disadvantages related to the existence of defects in the bonded joints. Among them, there are defects that are located at the interface glue / substrate as "kissing bond" or poor surface due to bad surface treatment, which remain undetectable or hardly detectable using non-destructive control techniques. Therefore, in order to take into account the existence of adhesion defects in bonded assemblies during the design phase, it is necessary to provide an analytical model capable of predicting crack propagation and estimate the criticality of a defect. In this thesis, an analytical model that predicts crack propagation and evaluates the effective strength of a bonded assembly containing adhesion defects has been developed. A defect usually has a complex geometry, and a generic study is difficult to achieve, which leads us to consider ideal defect geometries. The model was verified by experiments performed on DCB specimens. Numerical simulations using the cohesive zone method were also performed to more fully describe the decohesion process and to simulate the experimental tests. The last part of this work was devoted to the study of titanium alloy assembly containing patterns. Taking advantage of the collaboration with Safran and Alphanov, the substrates underwent a laser surface treatment leaving untreated areas. The purpose of this part was to check the proposed analytical model with more complex configurations.
|
Page generated in 0.042 seconds