• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 10
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 71
  • 71
  • 13
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The effects of aging and remodeling on bone quality and microdamage

O'Neal, Jessica 16 May 2011 (has links)
One indication of increasing fragility of bone is the accumulation of microscopic cracks, or microdamage, within the bone matrix. Microdamage accumulates in bone of the elderly, when changes in bone material properties and matrix architecture coupled with a decrease in bone repair mechanisms compromise bone integrity. To preserve bone mass and reduce fracture risk, therapeutics such as alendronate are prescribed which increase bone volume fraction by decreasing the rate of bone turnover. However, concerns over adverse effects of prolonged turnover suppression have been reinforced by findings of increased microdamage density with alendronate use. Microdamage formation is not always pathologic, but extensive accumulation of damage can be an indicator of reduced bone quality. The work in this thesis explores the hypothesis that microdamage in bone of lower quality will form more easily and progress more extensively than in bone of higher quality. Microdamage initiation stresses and strains were obtained for trabecular bone from older females, older males, and younger females to determine whether thresholds for damage initiation were lower in older females. Results suggest that the stress threshold for damage initiation in older females may indeed be lower compared with younger females, and that normalized strain thresholds for severe damage formation in older males may be decreased compared with older females. Damage propagation was evaluated as a function of age and sex to determine whether damage in older women progressed more extensively than in younger women or men. Results suggest that bone from older individuals had decreased resistance to crack propagation evidenced by an increased number of severely damaged trabeculae which expanded in area under cyclic loading; however no sex differences were uncovered. Finally, the stress/strain thresholds for damage initiation were investigated in alendronate-treated bone, and results indicate that a decreased stress threshold was needed to initiate damage formation of a linear and severe morphology after one year of treatment. After three years of treatment, however, micromechanical properties recovered, perhaps due to increased matrix mineralization which increased tissue level stiffness.
62

Les sérines protéases de la coagulation et leurs récepteurs "proteases-activated receptors": étude analytique de leur signalisation calcium dans une lignée endothéliale et les ostéoblastes

Daubie, Valéry 10 January 2008 (has links)
Des résultats d’expériences cliniques de reconstruction de l’os maxillaire faites à partir de la greffe d’une "pâte osseuse" gélifiée par l’ajout de facteur tissulaire ont été le primum movens de ce travail. Cette "pâte osseuse", faite d’os en poudre et de plasma enrichi en plaquette (PRP) à laquelle on ajoute du facteur tissulaire, est un modèle à la fois de la coagulation et de la régénération osseuse.<p>Pour analyser des effets de la coagulation, nous avons utilisé un modèle connu :la culture primaire de cellules endothéliales (HUVEC). Les effets in vitro des facteurs de coagulation, dénommés protéases de la coagulation, pris séparément, ont été bien étudiés dans ces cellules, néanmoins aucune information sur l’effet combiné de ces protéases ou du plasma en coagulation n’était connue. Nous avons mesuré la "signalisation calcium" comme réponse cellulaire aux différents agents et ces mesures de la signalisation calcium ont été complétées par la mesure d’une autre réponse biologique, à savoir la sécrétion de cytokines pro-inflammatoires (IL-6 et IL-8). Pour l’étude de la régénération osseuse, la signalisation calcium a été mesurée sur une lignée d’ostéosarcomes humains (SaOS-2), stimulée par des protéases de la voie extrinsèque de la coagulation (facteur VIIa, facteur Xa et thrombine). Comme réponse biologique complémentaire, nous avons évalué l’effet des protéases d’intérêt sur l’apoptose induite par l’absence de sérum dans le milieu de culture.<p>\ / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
63

TiNbOx microscaffolds for studying early bone cell-material interactions in the microscale

Herzer, Raffael 04 April 2022 (has links)
Titanium alloys are frequently used in the medical field as bone implant materials due to their excellent biocompatibility and corrosion resistance. Yet, their elastic modulus is usually significantly higher than the one of bone, which can lead to a reduction of bone tissue at the implant site. The current research is therefore focused on the development of highly porous implants, which promise a low elastic modulus close to that of bone, an enhanced bone ingrowth and an improved vascularization. However, the appropriate pore size for an optimal osseointegration still remains unclear. To that end, a transparent tubular microsystem is developed to mimic such a porous microenvironment in order to study single bone cell behavior and early bone formation processes. The system is fabricated out of an implant material (β-stabilized Ti-45Nb (wt%)). It is demonstrated that the bulk material composition, which is consisting of a high Nb content, can be closely transferred to transparent thin films by using reactive sputtering. These films then self-assemble into tubular microscaffolds (TS) with a diameter range between 10-42 μm. Biological studies are subsequently performed to investigate the response (e.g. cell adhesion, migration, osteogenic differentiation) of human Mesenchymal Stem Cells (MSC) to the TS. It is shown that cells form fewer, more diffuse focal adhesion points inside the TS compared to a planar surface and the spatial confinement causes a switch in between amoeboid and mesenchymal migration modes. In addition, it is demonstrated that cells can survive inside the TS for at least 12 days during osteogenic differentiation and partly mineralize the TS interior. The observed mineralization process is furthermore linked to the formation of hydroxyapatite crystals inside dead cells bodies, which leads to a crystallization over time. All in all, the TS platform offers an easy way to identify key factors of bone cell-implant interactions that can be used to improve the biocompatibility of the bone-implant interface in the future.
64

Testing the reliability and selectivity of different bone-cell-specific Cre- expressing mouse models for studying bone cell metabolism

Kambrath, Anuradha Valiya 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The Cre/loxP system is a tool for targeted recombination of DNA. For applying Cre recombinase-mediated genome modifications, there is a requirement for reliable, high-fidelity, and specific transgenic expression of the Cre recombinase. This study focuses on the reliability of different bone cell specific Cre models in the Cre/loxP system. In this study, DMP1-Cre transgenic mouse which has a transgene driven by DMP1 promotor that allows Cre-expression only in late stage osteoblasts and osteocytes was used. Ctsk-Cre mouse with a driven by Ctsk promoter was used so that only osteoclasts would undergo Cre-mediated recombination. E2A-Cre mouse where the Cre recombinase is driven by a global promoter E2A was also included in this study as a control line to test the Cre reporter line Ai9. Dmp1-Cre, Ctsk-Cre and E2A-Cre mice were crossed to the fluorescent Cre-reporter line—Ai9, which harbors a floxed stop codon, followed by the fluorophoremTomato, inserted into the Rosa26 locus. This construct is expected to give red fluorescence when it recombines with Cre-expressing mouse cells and no fluorescence in non-recombinant mouse cells. Double positive (Ai9+/Cre+) offspring selected by PCR were perfused, and 5mu-m thick section of bone and soft tissues were examined for red fluorescent expression. Cre positive cells were quantitated using ‘ImageJ’ software program. The DMP1-vi Cre mouse results showed significant expression in the targeted osteocytes and osteoblasts. In addition, skeletal muscle tissue also showed significant Cre- expression. Ctsk-Cre mice showed significant expression in targeted osteoclasts. But brain tissue was positive in Cre-expression. Bone-Cre mouse models are expected to express Cre recombinase only in their respective bone cells and they have been used for gene deletion studies in bone cells. However, this study has revealed that the bone cell specific Cre mouse models DMP1-Cre and Ctsk-Cre have unexpected expression in muscle and brain respectively. In order to use these models for targeted gene deletion in bone cells, further testing and studies have to be conducted.
65

Contribution of rankl regulation to bone resorption induced by PTH receptor activation in osteocytes

Ben-awadh, Abdullah Nasser 19 October 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / PTH increases osteoclasts by upregulating RANKL in cells of the osteoblastic lineage, but the precise differentiation stage of the PTH target cell remains undefined. Recent findings demonstrate that PTH regulates gene expression in osteocytes and that these cells are an important source of RANKL. We therefore investigated whether direct regulation of the RANKL gene by PTH in osteocytes is required to stimulate osteoclastic bone resorption. To address this question, we examined bone resorption and RANKL expression in transgenic mice in which PTH receptor signaling is activated only in osteocytes (DMP1-caPTHR1) crossed with mice lacking the distal control region regulated by PTH in the RANKL gene (DCR -/-). Longitudinal analysis of circulating C-terminal telopeptide (CTX) in male mice showed elevated resorption in growing mice that progressively decreased to plateau at 3-5 month of age. Resorption was significantly higher (~100%) in DMP1-caPTHR1 mice and non-significantly lower (15-30%) in DCR -/-mice, versus wild type littermates (WT) across all ages. CTX in compound DMP1-caPTHR1; DCR -/-mice was similar to DMP1-caPTHR1 mice at 1 and 2 months of age, but by 3 months of age, was significantly lower compared to DMP1-caPTHR1 mice (50% higher than WT), and by 5 months, it was undistinguishable from WT mice. Micro-CT analysis revealed lower tissue material density in the distal femur of DMP1-caPTHR1 mice, indicative of high remodeling, and this effect was partially corrected in compound vi mice. The increased resorption exhibited by DMP1-caPTHR1 mice was accompanied by elevated RANKL mRNA in bone at 1 and 5 months of age. RANKL expression levels displayed similar patterns to CTX levels in DMP1-caPTHR1; DCR -/-compound mice at 1 and 5 month of age. The same pattern of expression was observed for M-CSF. We conclude that resorption induced by PTH receptor signaling requires direct regulation of the RANKL gene in osteocytes, but this dependence is age specific. Whereas DCR-independent mechanisms involving gp130 cytokines or vitamin D 3 might operate in the growing skeleton, DCR-dependent, cAMP/PKA/CREB-activated mechanisms mediate resorption induced by PTH receptor signaling in the adult skeleton.
66

Avaliação da neoformação óssea em tíbia de coelhos utilizando cúpula de hidroxiapatita associada a diferentes biomateriais / Evaluation of new bone formation in rabbits using hydroxyapatite dome associated to different materials

MAEDA, NANCY T. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:41:41Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:07:15Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
67

Avaliação da neoformação óssea em tíbia de coelhos utilizando cúpula de hidroxiapatita associada a diferentes biomateriais / Evaluation of new bone formation in rabbits using hydroxyapatite dome associated to different materials

MAEDA, NANCY T. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:41:41Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:07:15Z (GMT). No. of bitstreams: 0 / A instalação de implantes odontológicos requer a presença de substrato ósseo adequado para garantir estabilidade e equilíbrio biomecânico. A deficiência óssea requer procedimentos de enxertia para adequar o volume para a instalação de implantes, porém a utilização de enxertos autógenos causa aumento de morbidade ao paciente e o uso de material homógeno e xenógeno apresenta dúvidas quanto à reação autoimune, transmissão de doenças e ao grau de reabsorção do enxerto. Com o grande desenvolvimento científico e tecnológico dos biomateriais, os materiais cerâmicos, tornaram-se alternativas promissoras para a recomposição da estrutura óssea perdida. As cerâmicas à base de fosfato de cálcio como a hidroxiapatita (HA) e o beta- fosfato tricálcido (beta-TCP), são materiais que apresentam qualidades desejáveis no processo de neoformação óssea como, por exemplo, a biocompatibilidade, bioatividade e osteocondutividade. A proposta deste trabalho é desenvolver e estudar corpos de prova na forma de cúpula oca de hidroxiapatita preenchidos por coágulo, beta- TCP e composto vitamínico, para estudar a osteogênese supracortical, a partir do potencial osteocondutor da cúpula de HA. As cúpulas foram obtidas por prensagem isostática a 200 MPa e sinterização ao ar a 1100°C por 60 minutos. As caracterizações físico-químicas das matérias-primas e da cúpula de HA foram realizadas por difração de raios X, microscopia eletrônica de varredura e determinação da densidade. Na caracterização biológica, foram realizados o teste de citotoxicidade in vitro e ensaio in vivo. Foram designados 9 coelhos (raça Nova Zelândia), sendo instaladas 18 cúpulas, divididas em três grupos, de acordo com o preenchimento: controle, composto vitamínico e &beta;-TCP em forma de pó. O período de reparação tecidual foi de 8 semanas, no qual foram aplicados marcadores de fluorescência. Após o período de cicatrização e eutanásia, as amostras foram incluídas em resina para a obtenção das lâminas e observadas em microscópio de fluorescência, para avaliar a quantidade de tecido ósseo neoformado, em microscópio de campo claro, para verificar as células presentes no tecido formado e por Espectroscopia de Energia Dispersiva, para análise química, da formação no interior das cúpulas. Como resultados, a cúpula de hidroxiapatita apresenta bom desempenho como arcabouço para neoformação óssea acima da cortical da tíbia de coelhos, pois manteve-se íntegra, com boa estabilidade e boa integração ao tecido ósseo, e principalmente pela neoformação óssea, demonstrando seu potencial osteocondutor. Em relação aos materiais de preenchimento, o beta-TCP apresenta maior valor de área de osso neoformado, em comparação com o coágulo. Nas cúpulas com preenchimento de composto vitamínico, não há formação de tecido ósseo pela não reabsorção do material. / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
68

Expression and Function of the PRL Family of Protein Tyrosine Phosphatase

Dumaual, Carmen Michelle 06 March 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The PRL family of enzymes constitutes a unique class of protein tyrosine phosphatase, consisting of three highly homologous members (PRL-1, PRL-2, and PRL-3). Family member PRL-3 is highly expressed in a number of tumor types and has recently gained much interest as a potential prognostic indicator of increased disease aggressiveness and poor clinical outcome for multiple human cancers. PRL-1 and PRL-2 are also known to promote a malignant phenotype in vitro, however, prior to the present study, little was known about their expression in human normal or tumor tissues. In addition, the biological function of all three PRL enzymes remains elusive and the underlying mechanisms by which they exert their effects are poorly understood. The current project was undertaken to expand our knowledge surrounding the normal cellular function of the PRL enzymes, the signaling pathways in which they operate, and the roles they play in the progression of human disease. We first characterized the tissue distribution and cell-type specific localization of PRL-1 and PRL-2 transcripts in a variety of normal and diseased human tissues using in situ hybridization. In normal, adult human tissues we found that PRL-1 and PRL-2 messages were almost ubiquitously expressed. Only highly specialized cell types, such as fibrocartilage cells, the taste buds of the tongue, and select neural cells displayed little to no expression of either transcript. In almost every other tissue and cell type examined, PRL-2 was expressed strongly while PRL-1 expression levels were variable. Each transcript was widely expressed in both proliferating and quiescent cells indicating that different tissues or cell types may display a unique physiological response to these genes. In support of this idea, we found alterations of PRL-1 and PRL-2 transcript levels in tumor samples to be highly tissue-type specific. PRL-1 expression was significantly increased in 100% of hepatocellular and gastric carcinomas, but significantly decreased in 100% of ovarian, 80% of breast, and 75% of lung tumors as compared to matched normal tissues from the same subjects. Likewise, PRL-2 expression was significantly higher in 100% of hepatocellular carcinomas, yet significantly lower in 54% of kidney carcinomas compared to matched normal specimens. PRL-1 expression was found to be associated with tumor grade in the prostate, ovary, and uterus, with patient gender in the bladder, and with patient age in the brain and skeletal muscle. These results suggest an important, but pleiotropic role for PRL-1 and PRL-2 in both normal tissue function and in the neoplastic process. These molecules may have a tumor promoting effect in some tissue types, but inhibit tumor formation or growth in others. To further elucidate the signaling pathways in which the PRLs operate, we focused on PRL-1 and used microarray and microRNA gene expression profiling to examine the global molecular changes that occur in response to stable PRL-1 overexpression in HEK293 cells. This analysis led to identification of several molecules not previously associated with PRL signaling, but whose expression was significantly altered by exogenous PRL-1 expression. In particular, Filamin A, RhoGDIalpha, and SPARC are attractive targets for novel mediators of PRL-1 function. We also found that PRL-1 has the capacity to indirectly influence the expression of target genes through regulation of microRNA levels and we provide evidence supporting previous observations suggesting that PRL-1 promotes cell proliferation, survival, migration, invasion, and metastasis by influencing multi-functional molecules, such as the Rho GTPases, that have essential roles in regulation of the cell cycle, cytoskeletal reorganization, and transcription factor function. The combined results of these studies have expanded our current understanding of the expression and function of the PRL family of enzymes as well as of the role these important signaling molecules play in the progression of human disease.
69

Dissecting the cellular and molecular mechanisms mediating neurofibromatosis type 1 related bone defects

Rhodes, Steven David 03 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Skeletal manifestations including short stature, osteoporosis, kyphoscoliosis, and tibial dysplasia cumulatively affect approximately 70% of patients with neurofibromatosis type 1 (NF1). Tibial pseudarthrosis, the chronic non-union of a spontaneous fracture, is a debilitating skeletal malady affecting young children with NF1. These non-healing fractures respond poorly to treatment and often require amputation of the affected limb due to limited understanding of the causative mechanisms. To better understand the cellular and molecular pathogenesis of these osseous defects, we have established a new mouse model which recapitulates a spectrum of skeletal pathologies frequently observed in patients with NF1. Nf1flox/-;Col2.3Cre mice, harboring Nf1 nullizygous osteoblasts on a Nf1+/- background, exhibit multiple osseous defects which are closely reminiscent of those found in NF1 patients, including runting (short stature), bone mass deficits, spinal deformities, and tibial fracture non-union. Through adoptive bone marrow transfer studies, we have demonstrated that the Nf1 haploinsufficient hematopoietic system pivotally mediates the pathogenesis of bone loss and fracture non-union in Nf1flox/-;Col2.3Cre mice. By genetic ablation of a single Nf1 allele in early myeloid development, under the control of LysMCre, we have further delineated that Nf1 haploinsufficient myeloid progenitors and osteoclasts are the culprit lineages mediating accelerated bone loss. Interestingly, conditional Nf1 haploinsufficiency in mature osteoclasts, induced by CtskCre, was insufficient to trigger enhanced lytic activity. These data provide direct genetic evidence for Nf1’s temporal significance as a gatekeeper of the osteoclast progenitor pool in primitive myelopoiesis. On the molecular level, we found that transforming growth factor-beta1 (TGF-β1), a primary mediator in the spatiotemporal coupling of bone remodeling, is pathologically overexpressed by five- to six- fold in both NF1 patients and in mice. Nf1 deficient osteoblasts, the principal source of TGF-β1 in the bone matrix, overexpress TGF-β1 in a gene dosage dependent fashion. Moreover, p21Ras dependent hyperactivation of the Smad pathway accentuates responses to pathological TGF-β1 signals in Nf1 deficient bone cells. As a proof of concept, we demonstrate that pharmacologic TβRI kinase inhibition can rescue bone mass defects and prevent tibial fracture non-union in Nf1flox/-;Col2.3Cre mice, suggesting that targeting TGF-β1 signaling in myeloid lineages may provide therapeutic benefit for treating NF1 skeletal defects.
70

The role of STAT3 in osteoclast mediated bone resorption

Himes, Evan 01 August 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Signal Transducer and Activator of Transcription 3 (STAT3) is known to be related to bone metabolism. Mutation of STAT3 causes a rare disorder in which serum levels of IgE are elevated. This causes various skeletal problems similar to osteoporosis. To examine the effect of STAT3 in the osteoclast, we obtained two osteoclast specific STAT3 knockout mouse models: one using the CTSK promoter to drive Cre recombinase and another using a TRAP promoter. Examination of these mice at 8 weeks of age revealed a decreased trabecular bone volume in CTSK specific STAT3 knockout mice along with a slight decrease in osteoclast number in both CTSK and TRAP specific STAT3 knockout females. We also noticed changes in bone mineral density and bone mechanical strength in females. These data suggest that STAT3 plays a part in the function of the osteoclast.

Page generated in 0.0646 seconds