• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 11
  • 10
  • 8
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 87
  • 33
  • 29
  • 22
  • 20
  • 16
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Triarylborane-BODIPY Conjugates : White Light Emission, Multi-color Cell Imaging and Small Molecule Based Solar Cells

Sarkar, Samir Kumar January 2017 (has links) (PDF)
Luminescent boron containing materials find numerous applications in modern technologies such as display/lighting, bio-imaging and sensing. Thus, investigations of structure-property relationships in organic luminescent compounds to understand their molecular and bulk properties are of fundamental importance. The main thrust of this thesis is the development of facile synthetic routes for boron containing novel polyads and study their structure-property correlations and to utilize this information to design functional materials with desired properties such as multiple emission, bio imaging, anion sensing and organic photo voltaic characteristics. This thesis contains seven chapters and the contents of each chapter are described below. Chapter 1 This chapter is a concise overview of the recent developments in the chemistry of boron based molecular systems such as triarylborane and BODIPYs. This chapter also highlights the basic nature of broad emissive materials. In addition, an advance in the frontier areas such as bio imaging is discussed in brief. Chapter 2 This chapter describes the structure and optical properties of a new triad (Borane-Bithiophene-BODIPY) 1. Triad 1 exhibits unprecedented tricolour emission when excited at borane centred high energy absorption band and also acts as a selective fluorescent and colorimetric sensor for fluoride ion with ratiometric response. The experimental results are supported by computational studies. Chapter 3 Two fluorescent compounds with similar absorption profiles and complementarily emissive properties can be regarded as the ideal couple for the generation of white-light. Two structurally close and complementarily fluorescent boron based molecular siblings 2 and 3 were prepared. The luminescence properties of individual triads were modulated to an extent to complement each other by controlling the intramolecular energy transfer in triads by fine-tuning the dihedral angle between fluorophores in 2 and 3. A binary mixture of 2 and 3 emitted white-light. Chapter 4 This chapter deals with a straight forward strategy for the generation of white-light emission in aqueous media. Using a blue-emissive AIE-active (aggregation-induced emission) 1, 8-naphthalimide- based sensitizer and a boron-dipyrromethene based red emitter as a dopant, water dispersible nanostructures with tunable emission features are produced. The white-light emissive (WL) nano-aggregates are stable at neutral pH and have been elegantly utilized for four-colour cell imaging (including near- infrared imaging). Chapter 5 This chapter describes the design and development of a NIR emitting triarylborane decorated styryl-BODIPY (4) via a facile synthetic route. Incorporation of TAB entities results in a significantly red shifted broad emission in 4 (compared to compound M3 which is devoid of TAB unit). The near coplanar orientation of Ar3B planes and BODIPY core results in a highly efficient (TAB to BODIPY) EET process in 4. Conjugate 4 acts as a highly selective and sensitive fluoride sensor with naked eye visual response as well as ratiometric fluorescent response. The dual emission in fluoride bound 4 possibly results from the restricted partial TAB to BODIPY energy transfer. Chapter 6 This chapter describes how the energy of transitions of the broad emissive molecular triads can be fine-tuned by judiciously changing the spacer oligothiophene length. A series of triarylborane and BODIPY conjugates (TAB-π-BODIPY) has been designed, and synthesized by a combined strategy of changing the connection mode between the two units, extending the conjugation size by introducing terthiophene, quaterthiophene, and pentathiophene units. The electrochemical and photophysical behavior of these conjugates were investigated. The experimental findings were rationalized by density functional theory calculations. Chapter 7 This chapter describes design and development of boron based novel electron acceptor BDY for the bulk-heterojunction solar cell. The electron mobility values of BDY was found to be of the order of standard PCBM. Bulk-heterojunction was fabricated using BDY as the electron acceptor layer. The power conversion efficiency of the newly developed solar cells with BDY as electron acceptor is much higher than the value obtained for standard cells with PCBM as the electron acceptor.
72

CHEMICAL HYDRIDE REACTOR DESIGNS FOR PORTABLE FUEL CELL DEVICES

Benjamin Hynes (8086172) 05 December 2019 (has links)
<div> <p>This research addresses the issues of electrical energy storage that warfighters in the U.S. military face. A device is presented that combines an on-demand hydrogen reactor with a state of the art proton exchange membrane fuel cell. This thesis focuses on the design criteria and analysis of the chemical hydride reactor. On demand hydrogen release can occur by controlling the hydrolysis reaction of Ammonia Borane (AB). Maleic acid is used to promote rapid release of hydrogen and trap the ammonia released from AB. Reactor designs are categorized as either delivering liquid or solid ammonia borane into an acid filled reactor. In an effort to design as simple of a system as possible, the delivery mechanisms presented do not use electronically powered devices. The primary safety criterion is that the hydrogen does not overly pressurize and meets the consumption rate of the fuel cell. Two liquid delivery architectures are proposed and tested using the assumption that a pressure differential between two chambers will deliver ammonia borane solution into a reactor. Methods of controlling the exposure of solid ammonia borane to a promoter is also presented. Pressed AB pellets were experimentally analyzed in order to characterize the interaction of solid AB in acidic solution. Designs are ranked against each other using system parameters that are applicable to man portable device. Liquid delivery architectures provided a safe and robust method of hydrolysis control. A bag reactor system that met the hydrogen requirements of a fuel cell was developed and tested. When used to compliment a fuel cell and military grade batteries, such a reactor will save weight and volume for extended missions requiring electronic equipment.<b></b></p> </div> <b><br></b>
73

Development of Hydrogen-Based Portable Power Systems for Defense Applications

Taylor B Groom (9154769) 29 July 2020 (has links)
<p>This dissertation describes the design and characterization of a lightweight hydrogen reactor coupled to a proton exchange membrane fuel cell for portable power delivery. The system is intended to recharge portable batteries in the absence of an established electrical power supply. The presented work can be divided into two endeavors; the first being an investigation of various hydrogen generation pathways and the second being the design, fabrication, and testing of a system to house hydrogen generation and deliver electrical power.</p> <p>Two hydrogen storage materials are considered for this work: ammonia borane and sodium borohydride. Organic acids are investigated for their ability to accelerate the hydrolysis of either material and generate hydrogen on-demand. In the case of ammonia borane, organic acids are investigated for a secondary role beyond reaction acceleration, serving also to purify the gas stream by capturing the ammonia that is produced during hydrolysis. Organic acids are found to accelerate the hydrolysis of ammonia borane and sodium borohydride with relative indifference towards the purity of water being used. This is advantageous as it allows the user to collect water at the point of use rather than transport highly pure water for use as a reactant. Collecting water at the point of use increases system energy density as only ammonia borane or sodium borohydride and an organic acid are transported with the system hardware.</p> <p>A custom hydrogen reactor is developed to facilitate hydrolysis of ammonia borane or sodium borohydride. The reactor is paired with a fuel cell to generate electrical power. The rate of hydrogen being generated by the system is modulated to match the fuel cell’s consumption rate and maintain a relatively constant pressure inside the reactor. This allows the system to satisfy a wide range of hydrogen consumption rates without risking over pressurization. The system is shown to produce up to 0.5 sLpm of hydrogen without exceeding 30 psia of hydrogen pressure or a temperature rise greater than 35°C.</p><p>The envisioned use for this system is portable battery charging for expeditionary forces within the United States military. This application informed several design choices and is considered when evaluating technological maturation. It is also used to compare the designed system to existing energy storage technologies.</p>
74

A study of ammonia borane and its derivatives

Ryan, Katharine Rachel January 2011 (has links)
This thesis reports the investigation of molecular materials for hydrogen storage applications with a particular emphasis on alkali-metal amidoboranes. I have developed new routes for the synthesis of $alpha$-LiNH$_{2}$BH$_{3}$ and NaNH$_{2}$BH$_{3}$, and have studied their hydrogen storage properties by thermogravimetric analysis, variable temperature X-ray and neutron diffraction and inelastic neutron scattering. I report the synthesis and full structural characterization of two new materials, KNH$_{2}$BH$_{3}$ and $beta$-LiNH$_{2}$BH$_{3}$, and have performed initial studies on a tetragonal phase of a variant of LiNH$_{2}$BH$_{3}$ with a preliminary structure solution. I have also performed variable temperature neutron diffraction on ammonium borodeuteride, ND$_{4}$BD$_{4}$, and report the full structural characterisation of the three phases identified as a result of these measurements. Furthermore, variable temperature inelastic neutron scatting (INS) measurements were performed on ammonia borane, NH$_{3}$BH$_{3}$, and the results are discussed in terms of crystallographic phase changes.
75

Computational Studies On Macropolyhedral Boranes And Metallaboranes

Shameema, O 08 1900 (has links)
The analysis of nature of bonding in non-classical structures is always an intriguing area of research. Typical examples of such systems are polyhedral boranes that exhibit fascinating cluster bonding where the traditional 2-center-2-electron (2c-2e) bond model fails. This thesis involves the investigation of such polyhedral borane structures and their reactivity by employing both qualitative and quantitative tools of electronic structure theory. There is an intense current interest in the macropolyhedral boranes for their applications pharmaceuticals and materials chemistry. The mno rule had been formulated to account for the electronic requirements for the macropolyhedral structures. Though useful in explaining and designing structures, electron counting rules provide a yes or no answer; not all the molelcules having stipulated number of electrons are equally stable. We have used the concept of orbital compatibility to explain the relative energies of different macropolyhedral structural patterns such as closo-closo, closo-nido and nido-nido. One of the major problems in polyhedral boron cage chemistry has been the lack of general synthetic routes for the construction of large cage systems . With this view, we explored the mechanism of the reaction of macropolyhedron B20H16 with MeCN and similar ligands, which provide an understanding of the skeletal rearrangement that occur in macropolyhedral boranes. This can help in the design and synthesis of new macropolyhedral boranes. The early examples of metallaboranes were found to adopt structures which are analogous to that of boranes and carboranes. Hypercloso metallaboranes have closo structure with less number of electrons than required by Wades rule. We have carried out a detailed DFT analysis to explore the structure and electronic relationship of 9-12 vertex closo and hypercloso structures of both borane and metallaboranes. Calculations show that in vertex hypercloso metallaborane needs only n skeleton electron pairs rather than n+1 as suggested by Wade’s rules. Stabilization of supraicosahedral boranes with more than 12 vertices by substituting BH groups by transition metal fragments is also explored with DFT calculations. Calculations show that as the number and the size of the metal atom increases the stability of supraicosahedral and condensed supraicosahedral borane structures also increases. These studies will open up new possibilities for the development of polyhedral clusters of extraordinary size.
76

Amine-Boranes: Synthesis and Applications

Henry J Hamann (10730742) 30 April 2021 (has links)
Reported herein is a brief summary of the history, properties, and applications of amine-boranes. The past methods devised for their preparation are described and the routes used to produce the compounds used in the work presented here are detailed. Building on prior synthetic approaches to amine-boranes, a new carbon dioxide mediated synthesis is presented. Proceeding through a monoacyloxyborane intermediate, the borane complexes of ammonia, primary, secondary, tertiary, and heteroaromatic amine are provided in 53-99% yields. Utilizing the amine-boranes obtained from the methods described, two divergent methods for direct amidation are introduced. The first uses amine-boranes as dual-purpose reagents, where the carboxylic acid is first activated by the borane moiety to form a triacyloxyborane-amine complex. This allows the delivery of the coordinated amine to form the amide products. A series of primary, secondary, and tertiary amides were prepared in 55-99% yields using this protocol, which displays a broad functional group tolerance. Extended from this dual-purpose methodology, a catalytic amidation is described. Utilizing ammonia-borane as a substoichiometric (10%) catalyst, a series of secondary and tertiary amide are prepared directly from carboxylic acids and amines in 59-99% yields, including amines containing typically borane reactive functionalities including alcohols, thiols, and alkenes. Amine-boranes are additionally used in two borylation methodologies. By reaction with <i>n</i>-butyl lithium, the amine-boranes are converted to the corresponding lithium aminoborohydrides, which upon reaction with a terminal alkyne provides the alkynyl borane-amine complexes in 65-98% yields. This process is compatible with both alkenes and internal alkynes, as well as a range of aprotic functionalities. A new strategy for aminoborane synthesis is also described and applied to the borylation of haloarenes. Activation of a series of amine-boranes with iodine produces the iodinated amine-borane, which undergoes dehydrohalogenation with an appropriate base to produce either monomeric or dimeric aminoboranes. Several aminoboranes were synthesized exclusively as the monomeric species, which due to their greater reactivity, were used directly in the synthesis of a series of aryl boronates in 65-99% yields.
77

A Combined Theoretical and Experimental Study on Deposition of Solid State Materials

Lee, Veronica 08 1900 (has links)
Deposition of solid state materials span a wide variety of methods and often utilize high energy sources such as plasmas and ultra-violet light resulting in a wide variety of characteristics and applications. A fundamental understanding is essential for furthering the applications of these materials which include catalysis, molecular filtration, electronics, sensing devices, and energy storage among others. A combination of experimental and theoretical work is presented here on several materials including 2D silicates on Pd, boron oxide, and vanadium oxynitride. Silicate formation under low energy electron microscopy demonstrate film permeability to oxygen, while ab initio molecular dynamics simulations reveal the possible initial mechanisms associated with the formation of boron oxide films during atomic layer deposition. Lastly, vanadium oxynitrides have shown preferential sputtering of N over O sites and theoretical binding energies serve as a guide for assigning experimental x-ray photoelectron spectra.
78

Experimental Electron Density Determination of Unconventionally Bonded Boron / Experimentelle Elektronendichteuntersuchungen von Bor in außergewöhnlichen Bindungssituationen

Flierler, Ulrike 28 April 2009 (has links)
No description available.
79

Hydrierung von Bortrichlorid mit molekularem Wasserstoff in Gegenwart von Aminen als Hilfsbasen

Schellenberg, René 25 May 2011 (has links) (PDF)
In dieser Arbeit wurde die Möglichkeit untersucht, Bortrihalogenide mit Wasserstoff unter milden Bedingungen (T < 100 °C, p(H2) < 50 bar) zu hydrieren. Um eine Triebkraft für die thermodynamisch ungünstige Reaktion zu erhalten, wurden Amine als Hilfsbasen zugesetzt, welche den bei der Reaktion entstehenden Halogenwasserstoff als Ammoniumsalz binden und damit das Reaktionsgleichgewicht in Richtung der Produkte verschieben. Es wurden dafür verschiedene Amin-Boran bzw. Amin-HCl Addukte synthetisiert und mittels IR, NMR und DSC charakterisiert. Bei den anschließenden Hydrierungsversuchen wurden verschiedene Katalysatoren auf ihre Eignung getestet und weiterentwickelt. Unterstützt wurden die experimentellen Arbeiten durch Berechnungen mit Gaussian 03. IR- und NMR-Spektren vieler Addukte wurden berechnet und freie Reaktionsenthalpien der Hydrierung in Abhängigkeit des verwendeten Amins und Borhalogenids bestimmt. Mögliche Übergangszustände wurden diskutiert und ihre Aktivierungsenergien ermittelt.
80

Hydrierung von Bortrichlorid mit molekularem Wasserstoff in Gegenwart von Aminen als Hilfsbasen

Schellenberg, René 05 May 2011 (has links)
In dieser Arbeit wurde die Möglichkeit untersucht, Bortrihalogenide mit Wasserstoff unter milden Bedingungen (T < 100 °C, p(H2) < 50 bar) zu hydrieren. Um eine Triebkraft für die thermodynamisch ungünstige Reaktion zu erhalten, wurden Amine als Hilfsbasen zugesetzt, welche den bei der Reaktion entstehenden Halogenwasserstoff als Ammoniumsalz binden und damit das Reaktionsgleichgewicht in Richtung der Produkte verschieben. Es wurden dafür verschiedene Amin-Boran bzw. Amin-HCl Addukte synthetisiert und mittels IR, NMR und DSC charakterisiert. Bei den anschließenden Hydrierungsversuchen wurden verschiedene Katalysatoren auf ihre Eignung getestet und weiterentwickelt. Unterstützt wurden die experimentellen Arbeiten durch Berechnungen mit Gaussian 03. IR- und NMR-Spektren vieler Addukte wurden berechnet und freie Reaktionsenthalpien der Hydrierung in Abhängigkeit des verwendeten Amins und Borhalogenids bestimmt. Mögliche Übergangszustände wurden diskutiert und ihre Aktivierungsenergien ermittelt.:1. Einleitung und Problemstellung 2. Stand der Wissenschaft 2.1. Allgemeines 2.2. Die Amin-Boran-Addukte 2.3. Hydrierung mit Wasserstoff 2.3.1. Allgemeine Konzepte 2.3.2. Katalytische Hydrierung 2.3.3. Thermodynamische und kinetische Betrachtungen 2.4. Hydrierung mit Hydrosilanen 2.5. Quantenchemische Berechnungen 2.5.1. Grundlagen 2.5.2. Die Dichtefunktionaltheorie 2.5.3. Basissätze 2.5.4. Die Optimierungsverfahren 2.5.5. Übergangszustandsrechnungen 2.5.6. Weitere verwendete Methoden 2.6. 11B-NMR 3. Geräteteil 4. Durchgeführte Synthesen 4.1. Synthese von N-Ethyldiphenylamin 4.2. Synthese von N-Ethylbis(p-tolyl)amin 4.3. Synthese der BN-Addukte 4.4. Synthese der HCl-Addukte 4.5. Synthese von P-1 Nickel 5. Ergebnisse 5.1. Berechnungen mit Gaussian 5.1.1. Das Reaktionssystem auf Grundlage des Bortrichlorids 5.1.2. Die Hydrierung von Bortribromid und Bortriiodid mit Wasserstoff 5.1.3. Hydrierung mit Triethylsilan 5.1.4. Zusammenfassende Betrachtung der berechneten Ergebnisse 5.2. Die Addukte 5.2.1. Die "Amingrundtypen" 5.2.2. Die Addukte modifizierter Amine 5.2.3. Zusammenfassung 5.3. Hydrierung mit Triethylsilan 5.3.1. Allgemeines 5.3.2. Vergleich der Hydrierung der Bortrichlorid-Addukte von Triethylamin und N,N-Diethylanilin 5.3.3. Hydrierung bei verschiedenen Temperaturen 5.3.4. Zusammenfassung 5.4. Hydrierung mit Wasserstoff 5.4.1. Allgemeines 5.4.2. Hydrierversuche im Einkammerreaktor 5.4.3. Hydrierversuche im Zweikammerreaktor 5.4.4. Zusammenfassung 5.5. Weitere durchgeführte Experimente 5.5.1. Hydrierung von Disilanen 5.5.2. Zusatz von Chloridakzeptoren 6. Zusammenfassung und Ausblick 7. Anhang 7.1. Analytische Daten und Produktidentifizierung 7.1.1. NMR-Daten 7.1.2. IR-Daten 7.1.3. Einkristalldaten 7.2. Gaussian 03 Daten 7.2.1. Energien der Grundzustände 7.2.2. Energien der Übergangszustände 7.2.3. Berechnete IR-Spektren 7.2.4. Berechnete Reaktionsgrößen 7.2.5. Isotrope Abschirmungen 7.3. DSC-Daten 7.3.1. Boran-Amin-Addukte 7.3.2. HCl-Amin-Addukte 7.4. Die Hydrierungsansätze 8. Literaturverzeichnis 9. Formelverzeichnis

Page generated in 0.0287 seconds