31 |
Safe human-robot interaction based on multi-sensor fusion and dexterous manipulation planningCorrales Ramón, Juan Antonio 21 July 2011 (has links)
This thesis presents several new techniques for developing safe and flexible human-robot interaction tasks where human operators cooperate with robotic manipulators. The contributions of this thesis are divided in two fields: the development of safety strategies which modify the normal behavior of the robotic manipulator when the human operator is near the robot and the development of dexterous manipulation tasks for in-hand manipulation of objects with a multi-fingered robotic hand installed at the end-effector of a robotic manipulator. / Valencian Government by the research project "Infraestructura 05/053". Spanish Ministry of Education and Science by the pre-doctoral grant AP2005-1458 and the research projects DPI2005-06222 and DPI2008-02647, which constitute the research framework of this thesis.
|
32 |
Adaptive Bounding Volume Hierarchies for Efficient Collision QueriesLarsson, Thomas January 2009 (has links)
The need for efficient interference detection frequently arises in computer graphics, robotics, virtual prototyping, surgery simulation, computer games, and visualization. To prevent bodies passing directly through each other, the simulation system must be able to track touching or intersecting geometric primitives. In interactive simulations, in which millions of geometric primitives may be involved, highly efficient collision detection algorithms are necessary. For these reasons, new adaptive collision detection algorithms for rigid and different types of deformable polygon meshes are proposed in this thesis. The solutions are based on adaptive bounding volume hierarchies. For deformable body simulation, different refit and reconstruction schemes to efficiently update the hierarchies as the models deform are presented. These methods permit the models to change their entire shape at every time step of the simulation. The types of deformable models considered are (i) polygon meshes that are deformed by arbitrary vertex repositioning, but with the mesh topology preserved, (ii) models deformed by linear morphing of a fixed number of reference meshes, and (iii) models undergoing completely unstructured relative motion among the geometric primitives. For rigid body simulation, a novel type of bounding volume, the slab cut ball, is introduced, which improves the culling efficiency of the data structure significantly at a low storage cost. Furthermore, a solution for even tighter fitting heterogeneous hierarchies is outlined, including novel intersection tests between spheres and boxes as well as ellipsoids and boxes. The results from the practical experiments indicate that significant speedups can be achieved by using these new methods for collision queries as well as for ray shooting in complex deforming scenes.
|
33 |
Structural controls on extensional-basin development triassic Ischigualasto Formation, NW ArgentinaGuthrie, Kristin M. January 2005 (has links)
Thesis (M.S.)--Miami University, Dept. of Geology, 2005. / Title from first page of PDF document. Document formatted into pages; contains [1], iv, 38 p. : ill. Includes bibliographical references (p. 35-38).
|
34 |
Sur quelques invariants classiques et nouveaux des hypergraphes / On some classical and new hypergraph invariantsMunaro, Andrea 01 December 2016 (has links)
Dans cette thèse, nous considérons plusieurs paramètres des hypergraphes et nous étudions si les restrictions aux sous-classes des hypergraphes permettent d’obtenir des propriétés combinatoires et algorithmiques souhaitables. La plupart des paramètres que nous prenons en compte sont des instances spéciales des packings et transversals des hypergraphes.Dans la première partie, nous allons nous concentrer sur les line graphs des graphes subcubiques sans triangle et nous allons démontrer que pour tous ces graphes il y a un independent set de taille au moins 3|V(G)|/10 et cette borne est optimale. Conséquence immédiate: nous obtenons une borne inférieure optimale pour la taille d’un couplage maximum dans les graphes subcubiques sans triangle. De plus, nous montrons plusieurs résultats algorithmiques liés au FEEDBACK VERTEX SET, HAMILTONIAN CYCLE et HAMILTONIAN PATH quand restreints aux line graphs des graphes subcubiques sans triangle.Puis nous examinons trois hypergraphes ayant la propriété d’Erdős-Pósa et nous cherchons à déterminer les fonctions limites optimales. Tout d’abord, nous apportons une fonction theta-bounding pour la classe des graphes subcubiques et nous étudions CLIQUE COVER: en répondant à une question de Cerioli et al., nous montrons qu’il admet un PTAS pour les graphes planaires. Par la suite, nous nous intéressons à la Conjecture de Tuza et nous montrons que la constante 2 peut être améliorée pour les graphes avec arêtes contenues dans au maximum quatre triangles et pour les graphes sans certains odd-wheels. Enfin, nous nous concentrons sur la Conjecture de Jones: nous la démontrons dans le cas des graphes sans griffes avec degré maximal 4 et nous faisons quelques observations dans le cas des graphes subcubiques.Nous étudions ensuite la VC-dimension de certains hypergraphes résultants des graphes. En particulier, nous considérons l’hypergraphe sur l’ensemble des sommets d’un certain graphe qui est induit par la famille de ses sous-graphes k-connexes. En généralisant les résultats de Kranakis et al., nous fournissons des bornes supérieures et inférieures optimales pour la VC-dimension et nous montrons que son calcul est NP-complet, pour chacun k > 0. Enfin, nous démontrons que ce problème (dans le cas k = 1) et le problème étroitement lié CONNECTED DOMINATING SET sont soit solvables en temps polynomial ou NP-complet, quand restreints aux classes de graphes obtenues en interdisant un seul sous-graphe induit.Dans la partie finale de cette thèse, nous nous attaquons aux meta-questions suivantes: Quand est-ce qu’un certain problème “difficile” de graphe devient “facile”?; Existe-t-il des frontières séparant des instances “faciles” et “difficiles”? Afin de répondre à ces questions, dans le cas des classes héréditaires, Alekseev a introduit la notion de boundary class pour un problème NP-difficile et a montré qu’un problème Pi est NP-difficile pour une classe héréditaire X finiment défini si et seulement si X contient un boundary class pour Pi. Nouscontinuons la recherche des boundary classes pour les problèmes suivants: HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE, HAMILTONIAN PATH, FEEDBACK VERTEX SET, CONNECTED DOMINATING SET and CONNECTED VERTEX COVER. / In this thesis, we consider several hypergraph parameters and study whether restrictions to subclasses of hypergraphs allow to obtain desirable combinatorial or algorithmic properties. Most of the parameters we consider are special instances of packings and transversals of hypergraphs.In the first part, we focus on line graphs of subcubic triangle-free graphs and show that any such graph G has an independent set of size at least 3|V(G)|/10, the bound being sharp. As an immediate consequence, we obtain a tight lower bound for the matching number of subcubic triangle-free graphs. Moreover, we prove several algorithmic results related to FEEDBACK VERTEX SET, HAMILTONIAN CYCLE and HAMILTONIAN PATH when restricted to line graphs of subcubic triangle-free graphs.Then we consider three hypergraphs having the Erdős-Pósa Property and we seek to determine the optimal bounding functions. First, we provide an optimal theta-bounding function for the class of subcubic graphs and we study CLIQUE COVER: answering a question by Cerioli et al., we show it admits a PTAS for planar graphs. Then we focus on Tuza’s Conjecture and show that the constant 2 in the statement can be improved for graphs whose edges are contained in at most four triangles and graphs obtained by forbidding certain odd-wheels. Finally, we concentrate on Jones’ Conjecture: we prove it in the case of claw-free graphs with maximum degree at most 4 and we make some observations in the case of subcubic graphs.Then we study the VC-dimension of certain set systems arising from graphs. In particular, we consider the set system on the vertex set of some graph which is induced by the family of its k-connected subgraphs. Generalizing results by Kranakis et al., we provide tight upper and lower bounds for the VC-dimension and we show that its computation is NP-complete, for each k > 0. Finally, we show that this problem (in the case k = 1) and the closely related CONNECTED DOMINATING SET are either NP-complete or polynomial-time solvable when restricted to classes of graphs obtained by forbidding a single induced subgraph.In the final part of the thesis, we consider the following meta-questions: When does a certain “hard” graph problem become “easy”?; Is there any “boundary” separating “easy” and “hard” instances? In order to answer these questions in the case of hereditary classes, Alekseev introduced the notion of a boundary class for an NP-hard problem and showed that a problem Pi is NP-hard for a finitely defined (hereditary) class X if and only if X contains a boundary class for Pi. We continue the search of boundary classes for the following problems: HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE, HAMILTONIAN PATH, FEEDBACK VERTEX SET, CONNECTED DOMINATING SET and CONNECTED VERTEX COVER.
|
35 |
Raytracing pro GPUEngine / Raytracing for GPUEngineNovák, David January 2019 (has links)
The main goal of this thesis is ray tracing optimization, especially with the use of acceleration data structure. It'll be focused on discretion about various structure build strategies and their traversal. Different algorithms on the CPU and on the GPU will be implemented and compared in the thesis, specifically will be compared the speed of build and final structure quality, which have a direct influence on ray tracing performance. A ray tracing application will be implemented for the purpose of the acceleration structure quality test. A part with acceleration structure building will be added to GPUEngine library.
|
36 |
Pokročilé metody plánování cesty mobilního robotu / Advanced methods of mobile robot path planningMaňáková, Lenka January 2020 (has links)
This work is focused on advanced methods of mobile robot's path planning. The theoretical part describes selected graphical methods, which are useful for speeding up the process of finding the shortest paths, for example through reduction of explored nodes of the state space. In the practical part was created simulate environment in the Python language and in this environment, selected algorithms was implemented.
|
37 |
Aplikace lanového robota / Application of cable robotBulenínec, Martin January 2017 (has links)
The thesis deals with the changes of a cable robot to a manipulator. The mechanical changes are mostly about adding an active part to a moving platform with the ability to transfer objects and the effort to exchange the silicon cables for metal ones. The main part of the thesis is the proposed design and implementation of the algorithm for detection of a possible collision of the cable robot with an object in its working space.
|
38 |
Resource-Constrained Project Scheduling with Autonomous Learning EffectsTicktin, Jordan M 01 December 2019 (has links) (PDF)
It's commonly assumed that experience leads to efficiency, yet this is largely unaccounted for in resource-constrained project scheduling. This thesis considers the idea that learning effects could allow selected activities to be completed within reduced time, if they're scheduled after activities where workers learn relevant skills. This paper computationally explores the effect of this autonomous, intra-project learning on optimal makespan and problem difficulty. A learning extension is proposed to the standard RCPSP scheduling problem. Multiple parameters are considered, including project size, learning frequency, and learning intensity. A test instance generator is developed to adapt the popular PSPLIB library of scheduling problems to this model. Four different Constraint Programming model formulations are developed to efficiently solve the model. Bounding techniques are proposed for tightening optimality gaps, including four lower bounding model relaxations, an upper bounding model relaxation, and a Destructive Lower Bounding method. Hundreds of thousands of scenarios are tested to empirically determine the most efficient solution approaches and the impact of learning on project schedules. Potential makespan reduction as high as 50% is discovered, with the learning effects resembling a learning curve with a point of diminishing returns. A combination of bounding techniques is proven to produce significantly tighter optimality gaps.
|
39 |
System for Collision Detection Between Deformable Models Built on Axis Aligned Bounding Boxes and GPU Based CullingTuft, David Owen 12 January 2007 (has links) (PDF)
Collision detection between deforming models is a difficult problem for collision detection systems to handle. This problem is even more difficult when deformations are unconstrained, objects are in close proximity to one another, and when the entity count is high. We propose a method to perform collision detection between multiple deforming objects with unconstrained deformations that will give good results in close proximities. Currently no systems exist that achieve good performance on both unconstrained triangle level deformations and deformations that preserve edge connectivity. We propose a new system built as a combination of Graphics Processing Unit (GPU) based culling and Axis Aligned Bounding Box (AABB) based culling. Techniques for performing hierarchy-less GPU-based culling are given. We then discuss how and when to switch between GPU-based culling and AABB based techniques.
|
40 |
Spatial Trends and Facies Distribution of the High-Energy Alluvial Cutler Formation, Southeastern UtahAllred, Isaac John 01 June 2016 (has links)
The Cutler Formation is composed of thick, arkosic, alluvial conglomerate, sandstone, and mudstone shed southwestward from the Uncompahgre Uplift into the Paradox Basin. More basin-ward the Cutler is recognized as a group consisting of differentiable formations. Discrete formations historically have not been distinguished near the uplift, but this study identified several separate successions in the Richardson Amphitheater. Research at the Richardson Amphitheater, ~12 km southwest of the uplift and ~30 km northeast of Moab, Utah, led to a systematic subdivision of the Permian Cutler Formation proximal to the uplift. Likely driven by channel cutting and migration across the alluvial fan, six 10-20 m thick successions are partially exposed. The dominant observed facies are basal conglomerate and channel-fill trough cross-stratified sandstone overlain by finer-grained distal sheetflood and frequently pedogenically altered sandstone. Down-warping of identified successions and the presence of additional sands within the area of flexure suggest that localized salt withdrawal created a sediment depocenter in the Richardson Amphitheater, ~6 km northwest of the Onion Creek salt diapir. The identified salt withdrawal feature is more proximal to the Uncompahgre Uplift than any of the major documented salt structures in the area and was not previously documented. Six measured stratigraphic sections and hundreds of high-precision differential GPS data points outlining major lateral erosional surfaces form the basis for interpretation. Five mapped erosional surfaces (bounding surfaces based upon differential GPS point interpolation) are laterally extensive within the approximately one square kilometer study area, and as such, represent stratigraphically significant surfaces. Within the generated structural geocellular model, stratigraphic data from measured sections informed facies modeling between major surfaces. This outcrop model may serve as an analogue for subsurface systems deposited in similar settings.
|
Page generated in 0.0648 seconds