• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 17
  • 11
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 89
  • 16
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Lp-theory for the boussinesq System

Acevedo Tapia, Paul Andrés January 2015 (has links)
Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática / Esta tesis está dedicada al estudio del sistema de Boussinesq estacionario: \begin{subequations}\label{sum_sp:eqn_Boussinesq} \begin{equation} -\nu \Delta\vu +(\vu\cdot\nabla)\vu+\nabla \pi=\theta\vg \text{\quad en $\Omega$,}\qquad \div\;\vu=0 \text{\quad en $\Omega$,} \end{equation} \begin{equation} -\kappa \Delta\theta +\vu\cdot\nabla\theta=h \text{\quad en $\Omega$,} \end{equation} \end{subequations} donde $\Omega\subset\R{3}$ es un conjunto abierto, acotado y conexo; $\vu$, $\pi$ y $\theta$ representan el campo de velocidades, la presión y la temperatura del fluido, respectivamente, siendo éstas las incógnitas del sistema; $\nu>0$ es la viscosidad cinemática del fluido, $\kappa>0$ es la difusividad térmica del fluido, $\vg$ es la aceleración de la gravedad y $h$ es una fuente de calor aplicada al fluido. El objetivo de esta tesis es el estudio de la teoría $L^p$ para el sistema de Boussinesq estacionario considerando dos diferentes tipos de condiciones de frontera del campo de velocidades. En efecto, en una primera etapa, se considerará la condición de frontera de Dirichlet no homogéneo \begin{equation}\label{sum_sp:cond_Dirichlet_velocity} \vu=\vub\text{\quad sobre\quad}\Gamma, \end{equation} donde $\Gamma$ denota la frontera del dominio; mientras que en una segunda etapa, el campo de velocidades tendrá prescrito la condición de frontera de Navier no homogéneo \begin{equation}\label{sum_sp:cond_Navier_velocity} \vu\cdot\vn=0,\quad 2\left[\DT(\vu)\vn\right]_{\vt}+\alpha\;\vu_{\vt}=\bm{a},\text{\quad sobre\quad}\Gamma, \end{equation} donde $\DT(\vu)=\frac{1}{2}\left(\nabla\vu+(\nabla\vu)^T\right)$ es el tensor de deformación asociado con el campo de velocidades $\vu$, $\vn$ es el vector normal unitario exterior, $\vt$ es el correspondiente vector unitario tangente, $\alpha$ y $\vNb$ son una función de fricción y un campo vectorial tangencial definidas ambas sobre la frontera. Además, la condición de frontera para la temperatura será, en las dos primeras partes, la condición de frontera de Dirichlet no homogéneo \begin{equation}\label{sum_sp:cond_Dirichlet_temperature} \theta=\thb\text{\quad sobre\quad}\Gamma. \end{equation} Así, en primer lugar, estudiamos la existencia y unicidad de la solución débil para el problema \eqref{sum_sp:eqn_Boussinesq}, \eqref{sum_sp:cond_Dirichlet_velocity} y \eqref{sum_sp:cond_Dirichlet_temperature} en el caso hilbertiano. Además, la existencia de soluciones generalizadas para $p\geq\frac{3}{2}$ y soluciones fuertes para $1<p<\infty$ es probada. También, se estudiará la existencia y unicidad de la solución muy débil. Vale la pena señalar que debido a que la condición de Dirichlet no homogénea es considerada para la velocidad, el hecho de que la frontera del dominio pueda ser no conexa juega un papel importante, ya que aparece de manera explícita en las hipótesis de algunos de los principales resultados. Por otro lado, en la segunda etapa de la tesis, se estudiará la existencia de soluciones débiles en el caso de Hilbert, así como la existencia de soluciones generalizadas para $p>2$ y soluciones fuertes para $p\geq\frac{6}{5}$ para el problema \eqref{sum_sp:eqn_Boussinesq}, \eqref{sum_sp:cond_Navier_velocity} y \eqref{sum_sp:cond_Dirichlet_temperature}. Tenga en cuenta que la suposición hecha anteriormente acerca de la no conexidad de la frontera no aparecerá aquí debido a la restricción de impermeabilidad en la frontera. Finalmente, en la última parte de esta tesis, estudiamos la teoría $L^p$ para las ecuaciones de Stokes con la condición de Navier \eqref{sum_sp:cond_Navier_velocity}. Más precisamente, nos ocuparemos de la regularidad $W^{1,p}$ para $p\geq2$ y la regularidad $W^{2,p}$ para $p\geq\frac{6}{5}$.
22

Controlabilidade para alguns modelos da mecânica dos fluidos

Souza, Diego Araújo de 20 March 2014 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-28T14:37:42Z No. of bitstreams: 1 arquivototal.pdf: 2200397 bytes, checksum: fa2b77afd6348b68a616a33acb7c7cb2 (MD5) / Made available in DSpace on 2016-03-28T14:37:42Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2200397 bytes, checksum: fa2b77afd6348b68a616a33acb7c7cb2 (MD5) Previous issue date: 2014-03-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The aim of this thesis is to present some controllability results for some fluid mechanic models. More precisely, we will prove the existence of controls that steer the solution of our system from a prescribed initial state to a desired final state at a given positive time. The two first Chapters deal with the controllability of the Burgers-α and Leray-α models. The Leray-α model is a regularized variant of the Navier-Stokes system (α is a small positive parameter), that can also be viewed as a model for turbulent flows; the Burgers-α model can be viewed as a related toy model of Leray-α. We prove that the Leray-α and Burgers-α models are locally null controllable, with controls uniformly bounded in α. We also prove that, if the initial data are sufficiently small, the pair state-control (that steers the solution to zero) for the Leray-α system (resp. the Burgers-α system) converges as α → 0+ to a pair state-control(that steers the solution to zero) for the Navier-Stokes equations (resp. the Burgers equation). The third Chapter is devoted to the boundary controllability of inviscid incompressible fluids for which thermal effects are important. They will be modeled through the so called Boussinesq approximation. In the zero heat diffusion case, by adapting and extending some ideas from J.-M. Coron [14] and O. Glass [45], we establish the simultaneous global exact controllability of the velocity field and the temperature for 2D and 3D flows. When the heat diffusion coefficient is positive, we present some additional results concerning exact controllability for the velocity field and local null controllability of the temperature. In the last Chapter, we prove the local exact controllability to the trajectories for a coupled system of the Boussinesq kind, with a reduced number of controls. In the state system, the unknowns are: the velocity field and pressure of the fluid (y, p), the temperature θ and an additional variable c that can be viewed as the concentration of a contaminant solute. We prove several results, that essentially show that it is sufficient to act locally in space on the equations satisfied by θ and c. / O objetivo desta tese é apresentar alguns resultados controlabilidade para alguns modelos da mecânica dos fluidos. Mais precisamente, provaremos a existência de controles que conduzem a solução do nosso sistema de um estado inicial prescrito à um estado final desejado em um tempo positivo dado. Os dois primeiros Capítulos preocupam-se com a controlabilidade dos modelos de Burgers-α e Leray-α. O modelo de Leray-α é uma variante regularizada do sistema de Navier-Stokes (α é umparâmetro positivo pequeno), que pode também ser visto como um modelo de fluxos turbulentos; já o modelo Burgers-α pode ser visto como um modelo simplificado de Leray-α. Provamos que os modelos de Leray-α e Burgers-α são localmente controláveis a zero, com controles limitados uniformemente em α. Também provamos que, se os dados iniciais são suficientemente pequenos, o par estado-controle (que conduz a solução a zero) para o sistema de Leray-α (resp. para o sistema de Burgers-α) converge quando α → 0+ a um par estado-controle (que conduz a solução a zero) para as equações de Navier-Stokes (resp. para a equação de Burgers). O terceiro Capítulo é dedicado à controlabilidade de fluidos incompressíveis invíscidos nos quais os efeitos térmicos são importantes. Estes fluidos são modelados através da então chamada Aproximação de Boussinesq. No caso emque não há difusão de calor, adaptando e estendendo algumas idéias de J.-M. Coron [14] e O. Glass [45], estabelecemos a controlabilidade exata global simultaneamente do campo velocidade e da temperatura para fluxos em 2D e 3D. Quando o coeficiente de difusão do calor é positivo, apresentamos alguns resultados sobre a controlabilidade exata global para o campo velocidade e controlabilidade nula local para a temperatura. No último Capítulo, provamos a controlabilidade exata local à trajetórias de um sistema acoplado do tipo Boussinesq, com um número reduzido de controles. Nesse sistema, as incógnitas são: o campo velocidade e a pressão do fluido (y, p), a temperatura θ e uma variável adicional c que pode ser vista como a concentração de um soluto contaminante. Provamos vários resultados, que essencialmente mostram que é suficiente atuar localmente no espaço sobre as equações satisfeitas por θ e c.
23

Asymptotics and Borel Summability: Applications to MHD, Boussinesq equations and Rigorous Stokes Constant Calculations

Rosenblatt, Heather Leah 17 September 2013 (has links)
No description available.
24

Impact of Patchy Vegetation on Wave and Runup Dynamics

Yang, Yongqian 18 August 2016 (has links)
Coastal regions are vulnerable to various natural processes, ranging from normal waves to extreme events. Given the flourishing development and large population along coastlines, various measures have been taken to mitigate the water-induced damage. Nature-based coastal protection, especially vegetation, has attracted unprecedented studies over the past two decades. To enhance understanding of this subject, this dissertation evaluates the impact of patchy vegetation on wave and runup dynamics along coastlines. Selecting from a prototype in Dalehite Cove, Galveston Bay, TX, results from a Boussinesq model (COULWAVE) showed patchy vegetation reduced up to 75% mean shoreward current in the mound-channel wetland systems. These vegetation patches also reduced the primary circulation around mounds, with a power-form relation between circulation size and various parameters (i.e., bathymetry, incident wave and vegetated roughness). Substituting spectral waves for regular waves in the similar wetlands, more energy was transferred into the higher frequencies. The impact of patchy vegetation on wave energy was frequency- and space-dependent, with increased energy observed in specific harmonics and locations. Comparison with unvegetated horizontal bathymetry demonstrated that mound-channel bathymetry was the dominant factor in transferring and dissipating wave energy, while vegetation patches added a fair contribution. As for extreme events, such as tsunamis, laboratory experiments and numerical simulations were conducted to assess the effectiveness of patchy vegetation with various roughness levels, spacings and sizes. Overall, vegetation patches reduced the most destructive loads onshore by up to 80%. Within-patch roughness variation only caused uncertainty on the hydrodynamics around the seaward patches, while the mitigation of extreme loads was not undermined. A logarithmic relation was observed between the protected area from extreme loads and the vegetated coverage. These findings will fill the knowledge gap of hydrodynamics in the presence patchy vegetation, and improve the engineering practice of coastal protection using nature-based infrastructure. / Ph. D.
25

Computational Approaches to Improving Room Heating and Cooling for Energy Efficiency in Buildings

McBee, Brian K. 23 September 2011 (has links)
With a nation-wide aim toward reducing operational energy costs in buildings, it is important to understand the dynamics of controlled heating, cooling, and air circulation of an individual room, the "One-Room Model Problem." By understanding how one most efficiently regulates a room's climate, one can use this knowledge to help develop overall best-practice power reduction strategies. A key toward effectively analyzing the "One-Room Model Problem" is to understand the capabilities and limitations of existing commercial tools designed for similar problems. In this thesis we develop methodology to link commercial Computational Fluid Dynamics (CFD) software COMSOL with standard computational mathematics software MATLAB, and design controllers that apply inlet airflow and heating or cooling to a room and investigate their effects. First, an appropriate continuum model, the Boussinesq System, is described within the framework of this problem. Next, abstract and weak formulations of the problem are described and tied to a Finite Element Method (FEM) approximation as implemented in the interface between COMSOL and MATLAB. A methodology is developed to design Linear Quadratic Regulator (LQR) controllers and associated functional gains in MATLAB which can be implemented in COMSOL. These "closed-loop" methods are then tested numerically in COMSOL and compared against "open-loop" and average state closed-loop controllers. / Ph. D.
26

Gravity currents from non-axisymmetric releases / Dynamique des courants de gravite non-axisymetriques

Zgheib, Nadim 13 March 2015 (has links)
Les courants de gravité, écoulements issus de la présence d’un contraste de densité dans un fluide ou de la présence de fluides de densités différentes, sont rencontrés dans de nombreuses situations naturelles ou industrielles. Quelques exemples de courants de gravité sont les avalanches, les marées noires et les courants de turbidité. Certains courants de gravité peuvent représenter un danger pour l’homme ou l’environnement, il est donc nécessaire de comprendre et de prédire leur dynamique. Cette thèse a pour objectif d’étudier l’évolution de courants de gravité de masse fixée, et notamment l’influence d’une forme initiale non-axisymétrique sur la dynamique, effet jusque-là peu abordé dans la littérature. Pour cela, une large gamme de paramètres est couverte, incluant le rapport de masse volumique entre le fluide ambiant et le fluide dans le courant, le rapport de forme initiale, la forme de la section horizontale de la colonne de fluide (circulaire, rectangulaire ou en forme de croix), le nombre de Reynolds (couvrant jusqu’à 4 ordres de grandeur) et la nature du fluide lourd (salin ou chargé en particules). Deux campagnes d’expériences ont été menées et complétées par des simulations numériques hautement résolues. Le résultat majeur est que la propagation du courant et le dépôt de particules (lorsque particules il y a) sont fortement influencés par la forme initiale de la colonne de fluide. Dans le cas de la colonne initialement rectangulaire le courant se propage plus vite et dépose plus de particules dans la direction initialement de plus courte dimension. Ce comportement non-axisymétrique est observé dans une large gamme des paramètres étudiés ici. Pourtant les modèles analytiques existants et notamment le modèle dit de boîte (box model) qui prédit avec succès le comportement des courants de gravité/turbidité dans les cas plan et axisymétrique ne sont pas capables de reproduire ce phénomène. C’est pourquoi une extension du box model a été développée ici, et est en mesure de décrire la dynamique de courants de gravité de masse fixée dont la forme initiale est arbitraire. Le cas plus général d'un courant de gravité évoluant sur un plan incliné a été abordé et une dynamique intéressante a été observée. / Gravity currents are buoyancy driven flows that appear in a variety of situations in nature as well as industrial applications. Typical examples include avalanches, oil spills, and turbidity currents. Most naturally occurring gravity currents are catastrophic in nature, and therefore there is a need to understand how these currents advance, the speeds they can attain, and the range they might cover. This dissertation will focus on the short and long term evolution of gravity currents initiated from a finite release. In particular, we will focus attention to hitherto unaddressed effect of the initial shape on the dynamics of gravity currents. A range of parameters is considered, which include the density ratio between the current and the ambient (heavy, light, and Boussinesq currents), the initial height aspect ratio (height/radius), different initial cross-sectional geometries (circular, rectangular, plus-shaped), a wide range of Reynolds numbers covering 4 orders of magnitude, as well as conservative scalar and non-conservative (particle-driven) currents. A large number of experiments have been conducted with the abovementioned parameters, some of these experiments were complemented with highly-resolved direct numerical simulations. The major outcome is that the shape of the spreading current, the speed of propagation, and the final deposition profile (for particle-driven currents) are significantly influenced by the initial geometry, displaying substantial azimuthal variation. Especially for the rectangular cases, the current propagates farther and deposits more particles along the initial minor axis of the rectangular cross section. This behavior pertaining to non-axisymmetric release is robust, in the sense that it is observed for the aforementioned range of parameters, but nonetheless cannot be predicted by current theoretical models such as the box model, which has been proven to work in the context of planar and axisymmetric releases. To that end, we put forth a simple analytical model (an extension to the classical box model), well suited for accurately capturing the evolution of finite volume gravity current releases with arbitrary initial shapes. We further investigate the dynamics of a gravity current resulting from a finite volume release on a sloping boundary where we observe some surprising features.
27

[en] BREAKUP DYNAMICS OF THIN LIQUID SHEETS WITH VISCOUS INTERFACES / [pt] RUPTURA DE FILMES FINOS LÍQUIDOS COM INTERFACES VISCOSAS

VITOR HEITOR CARDOSO CUNHA 22 November 2021 (has links)
[pt] Filmes finos líquidos desempenham um grande papel em diversas aplicações cotidianas e são de interesse indiscutível para pesquisadores científicos e industriais. Evidências de filmes finos são observadas na natureza em grandes escalas, como avalanches de neve nas montanhas, escoamento de lava em vulcões e deslizamentos de terra, e em pequenas escalas, como nas vias respiratórias pulmonares e na superfície dos olhos. Eles também são estão presentes em muitas aplicações industriais, variando de resistores de filme fino de alta resistência, atomização, métodos de litografia e várias técnicas de revestimento. Entender os mecanismos que contribuem para a estabilidade de filmes finos líquidos é um problema desafiador, pois o escoamento de filmes finos apresenta uma interface fluido-fluido livre para deformar. A instabilidade de um filme fino é geralmente impulsionada por forças intermoleculares de longo alcance, também conhecidas como atrações de van der Waals, e resultam na ruptura do filme. Investigações numéricas são frequentemente usadas para entender a dinâmica de ruptura de filmes líquidos finos, abordando a evolução da espessura do filme usando derivações assintóticas da teoria da lubrificação ou técnicas de rastreamento de interface. Neste trabalho, uma investigação computacional da dinâmica de ruptura de um filme fino líquido estacionário com uma interface viscosa é apresentada. O método Arbitrary Lagrangian-Eulerian (ALE) é usado para rastrear a posição da interface. O comportamento reológico da interface viscosa é modelado pela lei constitutiva de Boussinesq-Scriven, e a solução numérica é obtida através da aproximação de elementos finitos. Os resultados mostram que a estabilidade do filme líquido fino é influenciada tanto pela reologia da superfície quanto pela atração intermolecular e que o caráter viscoso da interface retarda a quebra da folha, levando a filmes mais estáveis. / [en] Thin liquid films play a big role in many real-life applications and are of indisputable interest to scientific and industrial researchers. Evidence of thin films are observed in nature in large scales such as snow avalanches in the mountains, lava flows on volcanoes and landslides, and in small scales such as the pulmonary airways and the eye surface. They are also widespread in many industrial applications, ranging from high-resistance thin film resistors, atomization, soft-lithography methods and several coating techniques such as dip, roll, slot, spin and curtain coating. Understanding the physical mechanisms contributing to the stability of thin liquid films is a challenging problem, as thin films flows present a fluid-fluid interface which is free to deform. The interface is bounded between two liquids or a liquid and a gas, typically having its own dynamic properties from which interfacial tension effects and complex interfacial rheological behavior arises. Instability is usually driven by long-range intermolecular forces, also known as van der Waals attractions, and may result in the rupture of the layer. Numerical investigation is often used to understand the breakup dynamics of thin liquid sheets by addressing the evolution of the film thickness using either asymptotic derivations of the lubrication theory or interface tracking techniques. In this work, a computational investigation of the breakup dynamics of a stationary thin liquid sheet bounded by a passive gas with a viscous interface is presented. The Arbitrary Lagrangian-Eulerian method (ALE) is used to track the interface position. The rheological behavior of the viscous interface is modeled by the Boussinesq-Scriven constitutive law, and the numerical solution is obtained through finite element approximation. The results show that thin liquid film stability is influenced both by surface rheology and disjoining effects and that the viscous character of the interface delays the sheet breakup, leading to more stable films.
28

Coupled Boussinesq equations and nonlinear waves in layered waveguides

Moore, Kieron R. January 2013 (has links)
There exists substantial applications motivating the study of nonlinear longitudinal wave propagation in layered (or laminated) elastic waveguides, in particular within areas related to non-destructive testing, where there is a demand to understand, reinforce, and improve deformation properties of such structures. It has been shown [76] that long longitudinal waves in such structures can be accurately modelled by coupled regularised Boussinesq (cRB) equations, provided the bonding between layers is sufficiently soft. The work in this thesis firstly examines the initial-value problem (IVP) for the system of cRB equations in [76] on the infinite line, for localised or sufficiently rapidly decaying initial conditions. Using asymptotic multiple-scales expansions, a nonsecular weakly nonlinear solution of the IVP is constructed, up to the accuracy of the problem formulation. The asymptotic theory is supported with numerical simulations of the cRB equations. The weakly nonlinear solution for the equivalent IVP for a single regularised Boussinesq equation is then constructed; constituting an extension of the classical d'Alembert's formula for the leading order wave equation. The initial conditions are also extended to allow one to separately specify an O(1) and O(ε) part. Large classes of solutions are derived and several particular examples are explicitly analysed with numerical simulations. The weakly nonlinear solution is then improved by considering the IVP for a single regularised Boussinesq-type equation, in order to further develop the higher order terms in the solution. More specifically, it enables one to now correctly specify the higher order term's time dependence. Numerical simulations of the IVP are compared with several examples to justify the improvement of the solution. Finally an asymptotic procedure is developed to describe the class of radiating solitary wave solutions which exist as solutions to cRB equations under particular regimes of the parameters. The validity of the analytical solution is examined with numerical simulations of the cRB equations. Numerical simulations throughout this work are derived and implemented via developments of several finite difference schemes and pseudo-spectral methods, explained in detail in the appendices.
29

Theorie L^p pour le système de boussinesq / L^p-theory for the boussinesq system

Acevedo Tapia, Paul Andres 16 September 2015 (has links)
Cette thèse est consacrée à l’étude du système de Boussinesq stationnaire:-νΔu+(u⋅∇)u+∇π=θg, div u=0,dans Ω(1a)-κΔθ+u⋅∇θ=h,dans Ω (1b)où Ω⊂R^3 est un ouvert, borné et connexe; les inconnues du système sont u,π et θ: la vitesse, la pression et la température du fluide, respectivement; ν>0 est la viscosité cinématique du fluide, κ>0 est la diffusivité thermique du fluide, g est l’accélération de la pesanteur et h est une source de chaleur appliquée au fluide.L’objectif de cette thèse est l’étude de la théorie L^p pour le système de Boussinesq en considérant deux différents types de conditions aux limites du champ de vitesse. En effet, dans une première partie, nous considérons une condition de Dirichlet non homogèneu=u_b, sur Γ (2)où Γ désigne la frontière du domaine. Dans une deuxième partie, nous considérons une condition de Navier non homogèneu⋅n=0,2[D(u)n]_τ+αu_τ=a,sur Γ(3)où D(u)=1/2 (∇u+(∇u)^T ) est le tenseur de déformation associé au champ de vitesse u, n est le vecteur normal unitaire extérieur, τ est le correspondant vecteur tangent unitaire, α et a sont une fonction scalaire de friction et un champ de vecteur tangentiel donnés sur la frontière, respectivement. De plus, la condition aux limites pour la température sera, dans les deux premières parties, une condition aux limites de Dirichlet non homogèneθ=θ_b, sur Γ. (4)Alors, premièrement, nous étudions l’existence et l’unicité d’une solution faible pour le problème (1), (2) et (4) dans le cas hilbertien. Également, l’existence de solutions généralisées pour p≥3/2 et des solutions fortes pour 1<p<∞ est démontrée. De plus, l’existence et l’unicité de la solution très faible sont étudiées. Il est intéressant de noter que puisque une condition de Dirichlet non homogène est considérée pour le champ de vitesse, le fait que la frontière du domaine pourrait être non-connexe joue un rôle fondamental puisque cela apparait de manière explicite dans les hypothèses des principaux résultats.D’autre part, dans la deuxième partie, nous étudions l’existence de solutions faibles dans le cas hilbertien, ainsi que l’existence de solutions généralisées pour p>2 et des solutions fortes pour p≥6/5 pour le problème (1), (3) et (4). Notez que l’hypothèse d’une frontière non-connexe, mentionnée précédemment, ne figurait pas dans cette partie du travail en raison de la restriction d’imperméabilité de la frontière.Enfin, dans la dernière partie de cette thèse, nous étudions la théorie L^p pour les équations de Stokes avec la condition de Navier (3). Plus précisément, nous examinons la régularité W^(1,p) pour p≥2 et la régularité W^(2,p) pour p≥6/5.Mots clés: système de Boussinesq; régularité L^p; solutions faibles; solutions fortes; solutions très faibles / This thesis is dedicated to the study of the stationary Boussinesq system:-νΔu+(u⋅∇)u+∇π=θg, div u=0,in Ω(1a)-κΔθ+u⋅∇θ=h,in Ω (1b)where Ω⊂R^3 is an open bounded connected set; u,π and θ are the velocity field, pressure and temperature of the fluid, respectively, and stand for the unknowns of the system; ν>0 is the kinematic viscosity of the fluid, κ>0 is the thermal diffusivity of the fluid, g is the gravitational acceleration and h is a heat source applied to the fluid.The aim of this thesis is the study of the L^p-theory for the stationary Boussinesq system in the context of two different types of boundary conditions for the velocity field. Indeed, in the first part of the thesis, we will consider a non-homogeneous Dirichlet boundary conditionu=u_b, on Γ (2)where Γ denotes the boundary of the domain; meanwhile in the second part, the velocity field will be prescribed through a non-homogeneous Navier boundary conditionu⋅n=0,2[D(u)n]_τ+αu_τ=a,on Γ(3)where D(u)=1/2 (∇u+(∇u)^T ) is the strain tensor associated with the velocity field u, n is the unit outward normal vector, τ is the corresponding unit tangent vector, α and a are a friction scalar function and a tangential vector field defined both on the boundary, respectively. Further, the boundary condition for the temperature will be, in the first two parts of the thesis, a non-homogeneous Dirichlet boundary conditionθ=θ_b, on Γ. (4)Then, firstly, we study the existence and uniqueness of the weak solution for the problem (1), (2) and (4) in the hilbertian case. Also, the existence of generalized solutions for p≥3/2 and strong solutions for 1<p<∞ is showed. Furthermore, the existence and uniqueness of the very weak solution is studied. It is worth to note that because a non-homogeneous Dirichlet boundary condition is considered for the velocity field, the fact that the boundary of the domain could be non-connected plays a fundamental role since it appears in an explicit way in the assumptions of some of the main results.In the second part, we study the existence of weak solutions in the hilbertian case, as well as the existence of generalized solutions for p>2 and strong solutions for p≥6/5 for the problem (1), (3) and (4). Note that the assumption of a non-connected boundary, which was mentioned before, will not appear here due to the impermeability restriction on the boundary.Finally, in the last part of this thesis, we study the L^p-theory for the Stokes equations with Navier boundary condition (3). Specifically, we deal with the W^(1,p)-regularity for p≥2 and the W^(2,p)-regularity for p≥6/5.Keywords: Boussinesq system; L^p-regularity; weak solutions; strong solutions; very weak solutions
30

A unified spectral/hp element depth-integrated Boussinesq model for nonlinear wave-floating body interaction / Un modèle Boussinesq intégré en profondeur unifié d’élément spectral/hp pour une interaction nonlinéaire vague-corps flottante

Bosi, Umberto 17 June 2019 (has links)
Le secteur de l’énergie houlomotrice s’appuie fortement sur la modélisation mathématique et la simulation d’expériences physiques mettant en jeu les interactions entre les ondes et les corps. Dans ce travail, nous avons développé un modèle d’interaction de fidélité moyenne vague-corps pour la simulation de structures tronquées flottantes fonctionnant en mouvement vertical. Ce travail concerne l’ingénierie de l’énergie marine, pour des applications telles que les convertisseurs d’énergie de vague (WEC) à absorption ponctuelle, même si ses applications peuvent aussi être utilisées en ingénierie maritime et navale. Les motivations de ce travail reposent sur les méthodes standard actuelles pour décrire l’interaction corps-vague. Cellesci sont basées sur des modèles résolvant le flux de potentiel linéaire (LPF), du fait de leur grande efficacité. Cependant, les modèles LPF sont basés sur l’hypothèse de faible amplitude et ne peuvent pas répresenter les effets hydrodynamiques non linéaires, importants pour le WEC opérant dans la région de résonance ou dans les régions proches du rivage. En effet, il a été démontré que les modèles LFP prédisent de manière excessive la production de puissance, sauf si des coefficients de traînée sont calibrés. Plus récemment, des simulations Reynolds Averaged Navier-Stokes (RANS) ont été utilisées pour les WEC. RANS est un modèle complet et précis, mais très coûteux en calcul. Il n’est ni adapté à l’optimisation d’appareils uniques ni aux parcs énergétiques. Nous avons donc proposé un modèle de fidélité moyenne basé sur des équations de type Boussinesq, afin d’améliorer le compromis entre précision et efficacité. Les équations de type Boussinesq sont des modèles d’ondes intégrées en profondeur et ont été un outil d’ingénierie standard pour la simulation numérique de la propagation d’ondes non linéaires dans les eaux peu profondes et les zones côtières. Grâce à l’élimination de la dimension verticale, le modèle résultant est très efficace et évite la description temporelle de la limite entre la surface libre et l’air. Jiang (2001) a proposé un modèle de Boussinesq unifié, décomposant le problème en deux domaines : surface libre et corps. Dans cette méthode, le domaine du corps est également modélisé par une approche intégrée en profondeur - d’où le terme unifié. Récemment, Lannes (2016) avait analysé de manière rigoureuse une configuration similaire dans une équation non linéaire en eaux peu profondes, en déduisant une solution exacte et semi-analitique pour des corps en mouvement. Suivant la même approche, Godlewski et al. (2018) a élaboré un modèle de flux d’eau peu profonde encombrée. [...] Dans cette thèse, nous développons les résultats présentés par Eskilsson et al. (2016) et Bosi et al. (2019). Le modèle est étendu à deux dimensions horizontales. Le modèle 1D est vérifié à l’aide de solutions fabriquées et validé par rapport aux résultats publiés sur l’interaction vague-corps en 1D pour les pontons fixes et corps en mouvement de soulèvement forcé et libre. Les résultats des preuves de concept de la simulation de plusieurs corps sont présentés. Nous validons et vérifions le modèle 2D en suivant des étapes similaires. Enfin, nous mettons en oeuvre la technique de verrouillage, une méthode de contrôle de mouvement du corps pour améliorer la réponse au mouvement des vagues. Il est démontré que le modèle possède une excellente précision, qu’il est pertinent pour les applications d’ondes en interaction avec des dispositifs à énergie houlomotrice et qu’il peut être étendu pour simuler des cas plus complexes. / The wave energy sector relies heavily on mathematical modelling and simulation of the interactions between waves and floating bodies. In this work, we have developed a medium-fidelity wave-body interaction model for the simulation of truncated surface piercing structures operating in heave motion, such as point absorbers wave energy converters (WECs). The motivation of the work lies in the present approach to wave-body interaction. The standard approach is to use models based on linear potential flow (LPF). LPF models are based on the small amplitude/ small motion assumption and, while highly computational efficient, cannot account for nonlinear hydrodynamic effects (except for Morison-type drag). Nonlinear effects are particularly important for WEC operating in resonance, or in nearshore regions where wave transformations are expected. More recently, Reynolds Averaged Navier-Stokes (RANS) simulations have been employed for modelling WECs. RANS is a complete and accurate model but computationally very costly. At present RANS models are therefore unsuited for the optimization of single devices, not to mention energy farms. Thus, we propose a numerical model based built on Boussinesq-type equations to include wave-wave interaction as well as finite body motion in a computationally efficient formulation. Boussinesq-type equations are depth-integrated wave models and are standard engineering tool for numerical simulation of propagation of nonlinear wave in shallow water and coastal areas. Thanks to the elimination of the vertical dimension and the avoidance of a time-dependent computational the resulting model is very computational efficient. Jiang (Jiang, 2001) proposed a unified Boussinesq model, decomposing the problem into free surface and body domains. Notably, in Jiang’s methodology also the body domain is modeled by a depth-integrated approach –hence the term unified. As all models based on Boussinesq-type equations, the model is limited to shallow and intermediate depth regimes. We consider the Madsen and Sørensen model, an enhanced Boussinesq model, for the propagation of waves. We employ a spectral/hp finite element method (SEM) to discretize the governing equations. The continuous SEM is used inside each domain and flux-based coupling conditions are derived from the discontinuous Galerkin method. The use of SEM give support for the use of adaptive meshes for geometric flexibility and high-order accurate approximations makes the scheme computationally efficient. In this thesis, we present 1D results for the propagation and interaction of waves with floating structures. The 1D model is verified using manufactured solutions. The model is then validated against published results for wave-body interaction. The hydrostatic cases (forced motion and decay test) are compared to analytical and semi-analytical solutions (Lannes, 2017), while the non-hydrostatic tests (fixed pontoon and freely heaving bodies) are compared to RANS reference solutions. The model is easily extended to handle multiple bodies and a proof-of-concept result is presented. Finally, we implement the latching technique, a method to control the movement of the body such that the response to the wave movement is improved. The model is extended to two horizontal dimensions and verified and validated against manufactured solutions and RANS simulations. The model is found to have a good accuracy both in one and two dimensions and is relevant for applications of waves interacting with wave energy devices. The model can be extended to simulate more complex cases such as WEC farms/arrays or include power generation systems to the device.

Page generated in 0.0728 seconds