111 |
Design and Fabrication ofHighly Reflective DBRs for use with Long Wavelength VCSELsMehdi, Shahideh 07 1900 (has links)
This project successfully designed, fabricated and characterized two highly
reflective distributed Bragg reflectors for use with long wavelength vertical cavity
surface emitting lasers. The first reflector consisted of 20 pairs of alternating
lnP/Ino.64Gao.36Aso.777Po.223 layers grown on an InP substrate with a theoretically predicted
normal incident reflectivity of 96.6% at a center wavelength of 1550nm. The second
DBR had 20 pairs of alternating GaAs/Ino.484Gao.5i6P layers grown on a GaAs substrate
with a theoretically predicted reflectivity of 94.9% at a center wavelength of 1550nm for
normal incident light. Experimental results obtained using a specially designed
reflectivity measurement setup confirmed reflectivity models and predictions at both
normal and variable incident light angles. However, these measurements revealed a
discrepancy between theoretical and experimental layer thickness values for both DBR
structures. Applying perturbations to the theoretical models, the actual layer thicknesses
ofthe DBRs were determined. X-ray analysis was employed to examine the periodicity
of the super-lattices along with the accuracy of lattice matching to the substrate.
Transmission electron microscopy revealed that no detectable drift in layer thickness was
apparent during growth of the DBR structures. Photoluminescence was used to
investigate any compositional variations ofthe quaternary layers in the first DBR stack. / Thesis / Master of Applied Science (MASc)
|
112 |
Electro-optics of Oblique Helicoidal CholestericsIadlovska, Olena 28 November 2022 (has links)
No description available.
|
113 |
Ion Implanted Bragg Gratings in Silicon-On-Insulator Rib WaveguidesBulk, Michael January 2008 (has links)
<p> Ion implanted Bragg gratings integrated in rib waveguide structures were simulated,
fabricated and characterized for the silicon-on-insulator (SOI) photonics platform. After
selective silicon self-implantation, to an amorphizing dose of 2x10^15 ions/cm^2, the
approximately 0.3 damage-induced increase in the refractive index provided the modulation mechanism necessary for the formation of a Bragg grating. The benefits of implanted Bragg gratings compared to the more widely utilized surface relief type gratings include planar surface retention, desirable for subsequent processing and wafer bonding, and a smaller depth of the index modulation, important for minimizing filtering bandwidths. To our knowledge, this is the first time ion implantation has been utilized to produce Bragg gratings integrated in an SOI rib waveguide. The benefits of using SOI for an optoelectronics platform include: cost minimization, reduced device size, and compatibility with silicon based microelectronics.</p> <p> Device performance was simulated using coupled mode theory (CMT) in conjunction with beam propagation methods (BPM), to determine transverse modal
profiles for computing coupling coefficients and to determine geometric dimensions suitable to achieve adequate grating strength and single-mode operation. The Monte Carlo ion implantation simulator SUSPREM4, implementing the binary collision approximation (BCA), was used to determine the amorphous silicon grating profiles. Implanted grating devices were then fabricated into SOI having a 2.5 μm device layer and were optically characterized. For a grating length of 2100 μm and an implant energy of 60 keV, the extinction ratio of the resonant wavelength was found to be -18.11 dB and -0.87 dB for TE and TM polarizations respectively. The excess loss per unit length was measured to be 1.2 dB/mm for TE polarization and 0.6 dB/mm for TM polarization. After annealing the gratings at temperatures of up to 300 °C, used to annihilate low energy point defects responsible for absorption, it was found that the excess loss per unit length was reduced to 0.3 dB/mm for TE polarization. Compared to etched gratings with similar dimensions, it was determined that the strength of the implanted gratings was approximately 2.5 times stronger for grating lengths one third the length as result of mode-shifting due to the higher index of refraction. This is of great consequence to the miniaturization and densification of Bragg grating based devices in silicon photonics.</p> / Thesis / Master of Applied Science (MASc)
|
114 |
Investigation of Partially Coherent Interaction in Fiber Bragg Grating Stabilized 980-Nm Pump ModulesWang, Jingcong 08 1900 (has links)
Partially coherent interaction of the feedback light with the field in the laser cavity is affirmed with the fiber Bragg grating (FBG) stabilized 980-nm pump lasers, on the contrast of normally accepted totally incoherent state of operation in the “coherence collapse” regime. Coherence parameter y was defined in this paper to identify the fraction of feedback light working coherently. It is shown that y can be determined by fitting the measured power-difference versus pumping-rate curve to the simulation results. Experiments confirm that coherence parameter y decreases while the distance between the FBG and the laser facet increases, and vice versa. While, if the device is kept operating in the “coherence-collapse” regime, y would not change with the amount of feedback. This work will be help to improve the performance of the high power FBG stabilized 980-nm pump laser. / Thesis / Master of Applied Science (MASc)
|
115 |
Multimode Optical Fiber Bragg Gratings: Modeling, Simulation and ExperimentsZhang, Jinsong 05 1900 (has links)
Telecommunication networks based on optical fiber technology have become a major information-transmission system, satisfying the growing demand for bandwidth due to increased internet traffic and other applications such as video on demand, etc. Fiber Bragg gratings (FBGs), in recent years, have emerged as critical components for enabling high-capacity transmission since their response can be tailored to meet the needs of specific applications. FBGs are currently the focus of intense research interest in both the fiber communications and sensing fields. Optical fiber Bragg grating structures in single-mode fiber (SMFBGs) have been studied extensively since the discovery of photosensitivity in germanium-doped silica fiber. They have been used in numerous applications ranging from wavelength-selective filtering in wavelength-division-multiple-access (WDMA) systems to temperature and strain sensing. To a lesser extent, Bragg gratings in multimode fibers have also received attention because of easy coupling with light sources. Most of the MMFBGs related research work has demonstrated the formation of a Bragg grating in a graded-index MMF and briefly reported the measured transmission spectrum. So far, there are few theoretical studies on Bragg gratings in multimode fibers. In this thesis, we investigate Bragg gratings in multimode optical fibers both theoretically and experimentally. A comprehensive numerical model for MMFBGs has been established and the corresponding computer simulation software (MMFBG simulator combined with mode solver) developed. The optical properties of MMFBGs were systematically studied for the first time using our own MMFBG numerical software package. It effectively assists the design modeling for MMFBG-based optical devices. Bragg gratings in multimode fiber were also investigated experimentally. Our theoretical simulation results show good agreement with experiments and offer the insightful explanations for the underlying physics of the device. First, the guided modes were modeled and simulated for step index multimode fibers and graded index multimode fibers with emphasis on parabolic fiber structure. These are popular, standard and commercially available MM fibers, and employed throughout our experiments. This allows us for the simulation of fiber characteristics such as cut-off wavelength, mode effective index, propagation constants and optical field distribution. It also allows for calculation of mode coupling coefficients by overlap integral between any chosen guided modes. Therefore, it serves as a powerful model for the design and analysis of optical fibers. Second, the generalized MMFBG coupled mode theory formalism is derived. The physical mechanism of the behavior of MMFBGs is studied and discussed. The general solution to the MMF Bragg grating problem is achieved by Runge-Kutta, Newton-Raphson and shooting numerical methods. Our theoretical treatment, in particular, offers the advantages which can deal with not only self-coupling but also more complicated cross-coupling interactions and can solve arbitrary large number of mode coupling problems throughout the entire spectra simultaneously for multimode FBGs, thus allowing for a precise and quantitative study of MMFBGs. Such an intensive multimode fiber Bragg grating physical modeling and simulations have not been reported previously. It provides an effective means for the design and analysis of optical fiber devices based on Bragg gratings. Third, the optical properties of multimode FBGs were studies experimentally. Numerical predications of the grating spectral characteristics under fabrication and experimental condition are calculated. The results of the numerical calculations are compared with experimentally measured spectra of multimode gratings written by ultraviolet irradiation of deuterium-sensitized fiber with grating reflectivities ranging from 78% to 99.39%. Good agreement is obtained between the theoretical simulations and the experimental results. Thus, we provide quantitative explanations for the observed experimental phenomena. These explanations give both physical insight and a more complete understanding of the nature of the interaction between the wave propagation and multimode fiber gratings. Furthermore, the spectral simulation of the actual experiments prepares a theoretical guidance for the advanced experimental investigation and also presents a step toward MMFBG device design. Finally, the optical properties of MMFBGs were also studied theoretically. To our knowledge, this is the first detailed analysis and thorough investigation on grating characteristics in MMF. It is demonstrated that the transmission and reflection spectra of fiber Bragg gratings in multimode optical fibers strongly depend on the length of grating, index modulation, period of grating, mode excitation condition and physical structure of MMF. The simulation results allow us to deeply comprehend and visualize the more sophisticated behavior within a multimode fiber grating, and will also allow us to confidently predict and evaluate the performance of more complex structure MMFBGs. It provides the fundamental principles for designing the targeted spectrum performance and settles the theoretical rationale for realizing the practical applications. Overall, the comprehensive numerical model and MMFBG solver package developed in this thesis opens a clear and broad window for understanding MMFBG mechanisms from the physical point of view. Various simulation results and spectral characteristics have been researched and discussed under both ideal and experimental conditions for the purpose of experimental analysis and device design. The results of our study indicate that a new class of potential applications based on MMFBGs can be expected in optical fiber sensors and advanced communication systems. / Thesis / Master of Applied Science (MASc)
|
116 |
Real-Time Image Processing Using Acousto-Optic Bragg DiffractionDunn, Derrek Butler 29 July 2003 (has links)
Optical image processing systems using an acousto-optic cell have been studied previously. However, these previous studies have been limited to two diffracted order in the Bragg regime and two spatial dimensions. Some comparisons between experimental data and theoretical predictions have been made. This dissertation studies image processing by acousto-optic Bragg diffraction to perform image enhanment. Theoretical results involving two diffracted orders in three spatial dimensions is presented. Experimental data is presented that confirms the validity of the theoretical results. Detailed analysis of several optical image processing system using acousto-optic modulators is presented. Also, the methodology use to derive an analytically expression in three spatial dimension for the interaction of an arbitrary light profile and a rectangular sound column in an acousto-optic cell is presented. Lastly, the ability to change the characteristics of the derived transfer function that mathematically represents the interaction of light and sound inside the acousto-optic cell is discussed and future research topics is given. / Ph. D.
|
117 |
Determination of Bragg Scatter in an Aircraft Generated Wake Vortex System for Radar DetectionMyers, Theodore J. 25 September 1997 (has links)
Remote detection and tracking of wingtip generated wake vortices is important for hazard avoidance especially near airports. Aircraft that fly through these hazardous vortices experience sudden induced roll. Experiments have demonstrated that there is sufficient radar cross section for remote detection at frequencies ranging from VHF to C band (100 MHz to 5 GHz).
The mechanism that yields this radar cross section is Bragg scattering from the index of refraction variations due to the atmospheric water vapor and potential temperature fields being mixed by the wake vortex system.
Refractive index variations of the size that correspond to half the operating radar wavelength produce the observed radar return. Previous analysis has postulated turbulence within the wake vortex to be the generator of the index of refraction variations.
In this work, a new mechanism is identified that does not assume turbulence within the wake vortex system. This "laminar flow mechanism" causes refractive index structuring that stretches into successively smaller spirals over time as the wake vortex system swirls and descends through the stratified atmosphere.
The results are quantitatively consistent with experimental data. Results indicate that this new mechanism has a sharply peaked doppler spectrum which is encouraging for coherent detection by doppler radar. / Ph. D.
|
118 |
Characterization of Optical Coupling and Back-reflection of Few Mode FibersShipton, Matthew J. 01 September 2015 (has links)
The continued growth of the communications industry has caused interest in mode-division multiplexing (MDM) techniques to flourish in recent years. These techniques allow individual waveguide modes to be used as distinct channels. However, as with any versatile technique, it should be also useful and beneficial to extend its application to other areas. This work concerns itself with an initial conceptual design of a mode-division multiplexing (MDM) enabled optical sensor network that can use modes to interrogate either specific sensors or sensor subsystems, and specifically with quanitizing and optimizing the injection and detection of the signal of interest. A hypothetical test setup is demonstrated, and the major issue of back reflection burying the intended signal is addressed, analyzed, and improved. Improvements in the signal-to-background contrast ratio (SBCR) of approximately 10dB were achieved depending on fibre type and proximal face. Suggestions for extensions to further improve the SBCR as well as for applications of this system are discussed. / Master of Science
|
119 |
High-Speed Quasi-Distributed Optical Fiber Sensing Based on Ultra-Weak Fiber Bragg GratingsMa, Lingmei 25 January 2017 (has links)
Invention of silica based optical fiber not only led to revolution in communication but also provided fundamental basis for many research areas. One example area is distributed optical fiber sensing, which has been attracting research interests for decades. Optical fiber sensors are immune to electromagnetic interference, and resistant to corrosion and can endure harsh environment so they have found applications such as structural health monitoring, intrusion detection and oil downhole measurement.
Significant research efforts have been paid to fiber sensing area, many techniques have been developed and some of them have been successfully demonstrated, however achieving both high-speed and long-range is still under intensive research.
This dissertation proposes and demonstrates a technique with the capability of simultaneous long-range and high-speed sensing by employing serial ultra-weak fiber Bragg gratings (UW-FBGs) and dispersive components. Various factors which have influence on the system performance, including wavelength resolution, spatial resolution and sensing rate, are analyzed. Different types of light sources and dispersive units were designed and a sensing system was built. With this system, both static and dynamic response were measured, and a sensing link consisting of more than 2000 UW-FBGs was successfully measured at the speed of 20kHz. The noise sources of the system were also theoretically analyzed and experimentally measured. This demonstrated sensing technique can be applied to long range temperature and strain sensing. / Ph. D. / Optical fiber is a thin glass rod with normally two layers of slightly different silica. Because of its low loss, optical fiber can guide light for a long distance without causing significant signal fading. Modifications can be made to a small section of an optical fiber to form a fiber Bragg grating, whose optical characteristics are dependent on its temperature or the strain applied to it.
This dissertation proposes a technique with the ability of measuring the temperature or strain of a long length of optical fiber which has large quantity of fiber Bragg gratings fabricated in it. Along with the capability of long range sensing, this technique also has high sensing speed. It has been demonstrated that the sensing system could perform measurement in every 50µs when the optical fiber has about 2000 fiber Bragg gratings in it. The resolution, if converted to temperature, is about 1.5°C and the accuracy is 2°C.
With the ability of monitoring temperature or strain of a large span at high speed, this technique could be used in areas such as civil structure and air craft health monitoring, instruction detection and high speed temperature monitoring.
|
120 |
Lasers à fibre femtoseconde utilisant une paire de réseaux de Bragg à pas variableDuval, Simon 23 April 2018 (has links)
Ce mémoire traite de la conception et de la mise en opération d’un nouveau type de laser femtoseconde à fibre optique intégrant une paire de réseaux de Bragg à pas variable. La présence de ces éléments de dispersion opposée dans une cavité en anneau révèle une toute nouvelle dynamique temporelle en régime permanent. Une impulsion femtoseconde qui se propage dans une section de la cavité est localement transformée en une impulsion picoseconde grandement chirpée dans l’autre section. Cette dernière section agit essentiellement comme une ligne à délai purement dispersive et peut donc être modifiée de façon à varier la dispersion nette ainsi que la cadence du laser sans pour autant accroître les effets non linéaires. Le laser à l’erbium introduit dans ce mémoire, qui génère des impulsions sous la centaine de femtosecondes dans tous les régimes de dispersion étudiés, pourrait éventuellement devenir une source à impulsions ultrabrèves (< 50 fs) de très grande énergie (> 20 nJ). Cette source serait donc une excellente alternative tout-fibre aux lasers à l’état solide femtoseconde. / In this master’s thesis, we present a new type of femtosecond fiber ring laser that uses a pair of chirped fiber Bragg gratings with opposite dispersion. The presence of such elements in a ring cavity reveals a new mode locking regime where a femtosecond pulse evolving in one section of the cavity is locally transformed into a highly chirped picosecond pulse that propagates in the remaining part of the cavity. The section in which the highly chirped pulse propagates acts essentially as an all-fiber linear dispersive delay line. This portion can thus be modified in order to change the net cavity dispersion or the repetition rate of the laser without significantly increasing the nonlinear effects in the cavity. This erbium-doped fiber laser that generates sub-100 fs pulses in any dispersion regime can potentially produce highenergy ultrashort pulses (> 20 nJ; < 50 fs). This source appears to be a practical all-fiber alternative to femtosecond solid-state lasers.
|
Page generated in 0.1018 seconds