101 |
Modélisations, réalisations et évaluations de fibres de Bragg à grande aire effective / Modelling, characterizing and evaluating Bragg fibers with large effective areaBaskiotis, Catherine 09 May 2011 (has links)
Fondées sur des concepts théoriques plus complexes que les fibres optiques conventionnelles et d’une fabrication plus difficile, les fibres de Bragg en sont, plus de quarante ans après leur première proposition théorique, encore à leurs débuts. Le potentiel que leur confère leur mécanisme de guidage (dit « par bandes interdites photoniques ») reste, en grande partie, inexploré.Cette étude porte sur l’examen des performances des fibres de Bragg destinées au transport de fortes puissances. Pour cette application, la problématique est de concevoir une fibre permettant d’atteindre la plus grande Aire Effective possible pour son mode fondamental, tout en assurant une composition unimodale du faisceau de sortie. L’étude a été réalisée aussi bien d’un point de vue théorique, analytique, numérique qu’expérimental. Un modèle analytique permettant la modélisation des fibres de Bragg à grande Aire Effective et faibles contrastes d’indice lorsqu’elles sont exemptes de toute perturbation a tout d’abord été mis au point. Puis, le cas de l’application de macro-courbures sur les fibres de Bragg a été numériquement étudié. Enfin, le comportement des fibres de Bragg en la présence de micro-courbures a été expérimentalement analysé. Les performances des fibres de Bragg sont comparées à celles du profil de fibre le plus simple qui puisse exister : le profil saut d’indice. Les résultats numériques indiquent de meilleures performances pour les fibres de Bragg par rapport à cette solution lorsqu’elles sont exemptes de toute perturbation ou sujettes à des macro-courbures. Les premiers résultats indiquent que les sensibilités aux micro-courbures des deux types de fibre sont comparables. / Forty years after their first theoretical proposal, Bragg fibers are still in their infancy. Indeed, Bragg fibers are based on more complex theoretical concepts than conventional optical fibers and are more difficult to realize. Their potential due to their particular guiding mechanism (known as photonic bandgap) remains still largely unexplored. This study analyzes the performances of Bragg fibers for high-power delivery. For this application, the target is to design a fiber that reaches the largest possible Effective Area for the fundamental core-mode, while ensuring a single-moded output beam. The study was performed theoretically, analytically, numerically as well as experimentally. An analytical model for predicting the properties of Bragg fibers with large Effective Area and low-index contrast when they are no subjected to any perturbations has been first developed. Then, the case of the application of macro-bendings on the Bragg fiber has been studied numerically. Finally, the behavior of Bragg fiber in the presence of micro-bending has been experimentally investigated. Bragg fibers are compared to the simplest fiber profile that may exist: step index profile. The numerical results show better performances in the case of Bragg fibers when they are free from any perturbations or subjected to macro-bending. First results indicate that the sensitivities to micro-bending of the two types of fiber are comparable.
|
102 |
Development of a multi-point temperature fiber sensor based on a serial array of optical fiber interferometersDella Tamin, Michelin 29 June 2015 (has links)
M.Ing. (Electrical and Electronic Engineering) / An experimental study of a multi-point optic fibre sensor for monitoring temperature changes is presented. The multi-point optic fibre sensor is made of a serial array of weak-reflectivity identical gratings. The weak-reflectivity identical gratings form the interferometric cavities UV printed on the single mode fibre. The ability to measure temperatures changes at different cavities along the serial array is particularly interesting for the monitoring of power transformers, high temperature furnaces and jet engines. Changes in temperature in each respective cavity is measured based on the spectral shift in the phase of the light from each respective cavity. The performance of the multi-point fibre sensor system is evaluated. Further, a theoretical and experimental investigation of a serial array composed of two cavities of different lengths is conducted. This investigation is aimed at measuring the impact of the overlap of the two distinct cavities in their respective frequency domain and determining the accuracy of the measurement. The result found shows that the sensor phase response is no more linear to temperature changes. It is also found that the nonlinear response of the sensor to temperature changes increases with the magnitude of the overlap.
|
103 |
Réalisation et caractérisation d’un laser DFB bi-mode pour applications radio sur fibre / Fabrication and characterisation of a dual-mode DFB laser for radio over fibre applicationsGinestar, Stéphane 04 December 2009 (has links)
La génération de signaux microondes, millimétriques, voire THz par voie optique est actuellement une solution technique privilégiée pour la réalisation de systèmes de (télé)communications mobiles haut débit mais encore, les réseaux de distribution d'oscillateurs locaux et de signaux d'observation ou de radar intrasatellitaires, la distribution de signaux vidéo, la communication automobile, les systèmes de visualisation THz pour la sécurité, etc… Nous reportons ici la réalisation et la caractérisation d'une source optique ultra-compacte en matériau semiconducteur permettant de générer deux modes optiques séparés de la fréquence que l'on désire créer au niveau de la photodétection. Cette source prend la forme d'un laser DFB bi-longueur d'onde émettant dans la gamme de longueurs d'onde autour de 1,55µm. Le composant a été fabriqué chez Alcatel-Thales III-VLab à partir d'une technologie propriétaire de laser DFB et dans le cade du projet Européen IPHOBAC. Différents objectifs avaient été fixés pour ce composant: accordabilité de l'écartement intermodal jusque 300 GHz, largeur de raie de l'ordre du MHz et divergence dans le plan horizontal et vertical de 10°. Le premier objectif a été atteint par la réalisation de deux lasers DFB dont l'écart de pas de réseau est différent de 0,3nm et par la variation des courants d'injection de chaque section. Le second a été globalement atteint par l'utilisation d'une structure active à puits quantiques, une nouvelle version du composant utilisant des boites quantiques devrait remplir complètement cet objectif. Le dernier objectif a été partiellement atteint par la conception et l'adjonction d'un adaptateur de mode en sortie de composant, la divergence obtenue est de 10°x17° (HxV). Dans le plan vertical, les 10° de divergence n'ont pas pu être obtenus principalement à cause de la structure du composant et des limitations que l'on s'était imposées sur la longueur totale de celui-ci. / Generation of microwave, millimetre-wave even THz signals by optical means is currently a favoured technique for a lot of system applications such as: high bit-rate wireless telecommunications, local oscillator or radar signal distribution within satellites, video signal distribution, automotive communications, THz security systems, etc… We report here the fabrication and the characterization of an ultra-compact optical source made of semiconductor material. It allows generating two optical modes that are separated by the frequency that is requested at the photodetector level. This source is composed of two DFB lasers constituting a dual-mode laser emitting in the 1.55µm wavelength range. The device has been fabricated at Alcatel-Thales III-VLab using a proprietary DFB technology and the work has been supported under the "IPHOBAC" European project. Several targets were fixed for this device: tunability of intermodal spacing up to 300GHz, optical linewidth close to the MHz as well as horizontal and vertical divergences around 10°. The first goal has been achieved by using two DFB structures with a 0.3nm difference in the grating pitch and tuning the drive current of each section. The second goal has been globally achieved by using a quantum well based active layer. A new version including quantum dot based active layer should answer positively to this target. Last objective was partially obtained by the design and the integration of a spot size converter. The divergence has been measured as 10°x17° (HxV). Concerning the vertical divergence, the target of 10° was not obtained mainly linked to the device structure and the limitations we fixed on the overall length of the device.
|
104 |
Theoretical and Experimental Studies of Optical Properties of BAlN and BGaN AlloysAlQatari, Feras S. 21 April 2019 (has links)
Wurtzite III-nitride semiconductor materials have many technically important applications in optical and electronic devices. As GaN-based visible light-emitting diodes (LEDs) and lasers starts to mature, interest in developing UV devices starts to rise. The search for materials with larger bandgaps and high refractive index contrast in the UV range has inspired multiple studies of BN-based materials and their alloys with traditional III-nitrides. Additionally, alloying III-nitrides with boron can reduce their lattice parameters giving a new option for strain engineering and lattice matching.
In this work I investigate the refractive indices of BAlN and BGaN over the entire compositional range using hybrid density functional theory (DFT). An interesting non-linear trend of the refractive index curves appears as boron content is increased in the BAlN and BGaN alloys.
The results of this calculation were interpolated and plotted in three dimensions for better visualization. This interpolation gives a 3D dataset that can be used in designing a myriad of devices at all binary and ternary alloy compositions in the BAlGaN system. The interpolated surface was used to find an optimum design for a strain-free, high reflection coefficient and high bandwidth DBR. The performance of this DBR was quantitatively evaluated using finite element simulations.
I found that the maximum DBR reflectivity with widest bandwidth for our materials occurs at a lattice parameter of 3.113 Å using the generated 3D dataset. I use the corresponding material pair to simulate a DBR at the wavelength 375 nm in the UVA range. A design with 25 pairs was found to have a peak reflectivity of 99.8%. This design has a predicted bandwidth of 26 nm measured at 90% peak performance. The high reflectivity and wide bandwidth of this lattice-matched design are optimal for UVA VCSEL applications.
I have assisted in exploring different metalorganic chemical vapor deposition (MOCVD) techniques, continuous growth and pulsed-flow modulation, to grow and characterize BAlN alloys. Samples grown using continuous flow show better optical quality and are characterized using spectroscopic ellipsometry. The refractive index of samples obtained experimentally is significantly below the predicted value using DFT.
|
105 |
Broadband Reflective Metalens in Visible Band Based on Bragg Reflector Multilayers for VECSEL ApplicationsAlnakhli, Zahrah J. 08 1900 (has links)
In conventional optics, curved lenses focus light rays to a focal point after light passes through them. These lenses have been designed to shape the wavefront of the incident beam as it emerges from the curved surface of the lens. Conventional lenses suffer from many limitations, such as limited optical quality for imaging and integration difficulties with other optical components due to their large size, huge thickness, as well as being difficult to manufacture. Using subwavelength structure, it is possible to fabricate flat, thin lenses (metalenses) with new optical properties not found in nature, in which many fundamental properties of light (like polarization, focal point, and phase) can be controlled with high accuracy. This results in high resolution and high quality of optical imaging.
This thesis demonstrates a new design of reflective metalens, in which the metalens structure is integrated with another optical component: Distributed Bragg Reflector (DBR). The metalens planer is a two-dimensional ultrathin planer arranged as an array with subwavelength separation distance. In recent works, a metalens was integrated with (metal/dielectric)-mirrors to form reflective metalenses. Simulation results show that, high-focusing efficiency is obtained for the lens (> 60%) with the ability to
reflect96% of total incident optical power. In comparison, the new metalens-DBR design - processes maintain the same high-focusing efficiency, but with a reflectance of 99.99%, which makes it promising for optoelectronic integration and perfectly suitable for integration with Vertical Cavity Surface Emitting Lasers (VCSEL) technology. This study of the optical properties: focal length; optical aberration; insensitivity to light polarization; and focusing efficiency of demonstrated metalens was done mainly by Finite Difference Time Domaine (FDTD) by using Lumerical FDTD solution.
|
106 |
Transverse mode selection and brightness enhancement in laser resonators by means of volume Bragg gratingsAnderson, Brian 01 January 2015 (has links)
The design of high power lasers requires large mode areas to overcome various intensity driven nonlinear effects. Increasing the aperture size within the laser can overcome these effects, but typically result in multi-transverse mode output and reduced beam quality, limiting the brightness of the system. As one possible solution, the angular selectivity of a diffractive optical element is proposed as a spatial filter, allowing for the design of compact high brightness sources not possible with conventional methods of transverse mode selection. This thesis explores the angular selectivity of volume Bragg gratings (VBGs) and their use as spatial transverse mode filters in a laser resonator. Selection of the fundamental mode of a resonator is explored using transmission Bragg gratings (TBGs) as the spatial filter. Simulations and experimental measurements are made for a planar, 1 cm long resonator demonstrating near diffraction limited output (M2 < 1.4) for aperture sizes as large as 2.0 mm. Applications to novel fiber laser designs are explored. Single mode operation of a multi-mode Yb3+ doped ribbon fiber laser (core dimensions of 107.8 ?m x 8.3 ?m) is obtained using a single transmission VBG as the filter in an external cavity resonator. Finally, a novel method of selecting a pure higher order mode to oscillate within the gain medium while simultaneously converting this higher order mode to a fundamental mode at an output coupler is proposed and demonstrated. A multiplexed transmission VBG is used as the mode converting element, selecting the 12th higher order mode for amplifications in an Yb3+ doped ribbon fiber laser, while converting the higher order mode of a laser resonator to a single lobed output beam with diffraction limited divergence.
|
107 |
Ultra High Density Spectral Beam Combining By Thermal Tuning Of Volume Bragg Gratings In Photo-thermo-refractive GlassDrachenberg, Derrek 01 January 2011 (has links)
High power lasers with diffraction limited beam quality are desired for many applications in defense and manufacturing. A lot of applications require laser beams at the 100 kW power level along with divergence close to the diffraction limit. The figure of merit for a beam used in such applications should be radiance which determines the laser power delivered to a remote target. One of the primary limiting factors is thermal distortion of a laser beam caused by excessive heat generated in the laser media. Combination of multiple laser beams is usually considered as a method to mitigate these limitations. Spectral beam combining (SBC) by volume Bragg gratings (VBGs) is a very promising method for the future of high radiance lasers that needs to achieve 100 kW-level power. This work is dedicated to development of methods to increase spectral density of combined beams keeping their divergence at an acceptably low level. A new figure of merit for a beam combining system is proposed, the Beam Combining Factor (BCF), which makes it possible to distinguish the quality of the individual beams from the quality of beam combining. Also presented is a method of including the effect of beam divergence and spectral bandwidth on the performance of VBGs, as well as a method to optimize VBG parameters in terms of thickness and refractive index modulation for an arbitrary number of beams. A novel thermal tuning technique and apparatus is presented with which the SBC system can be tuned for peak efficiency from low to high power without the need for mechanical re- iv alignment. Finally, a thermally tuned SBC system with five beams, with a spectral separation between beams of 0.25 nm at a total power of 685 W is presented. The results show the highest power spectral density and highest spectral radiance of any SBC system to date. Recent demonstrations in SBC by multiplexed VBGs and the use of super Gaussian beams for beam quality improvement are also discussed.
|
108 |
Far-infrared/millimeter Wave Source And Component Development For Imaging And SpectroscopyDu Bosq, Todd 01 January 2007 (has links)
The far-infrared and millimeter wave (FIR/mmW) (wavelength 75 micrometer to 10 mm) portion of the electromagnetic spectrum is fairly underdeveloped technologically, owing to the large amount of atmospheric attenuation in that range. At present, the FIR/mmW region is lacking in compact, high-brightness radiation sources and practical imaging systems. This dissertation focuses on development of two complementary technologies in this area - an active mmW imaging system and high-reflectivity Bragg mirrors for the FIR p-Ge laser. The imaging system uses a vector network analyzer in the frequency range of 90-140 GHz as the radiation source and receiver. Raster scanning is used to map a two-dimensional field of view, demonstrating the detection and imaging of buried plastic landmines. Principal components analysis is used for hyperspectral signal processing, where a series of images is taken at discrete frequencies. Results are obtained as a function of depth and disturbance of the soil surface. In support of this study, various types of soils were characterized for scattering loss across the mmW/FIR region, with measured results compared to theory. This mmW imaging system was also used to demonstrate imaging through walls and other obscuring materials, as well as for imaging of rocks beneath volcanic sand, simulating the conditions encountered by an imaging system on a Mars rover vehicle. Furthermore, a high-reflectivity Si-etalon FIR mirror design was developed and demonstrated as a cavity mirror for the p-Ge laser. These components stand to have a number of systems-level impacts on FIR imagers. In the context of an active illuminator, they may allow narrowband selection from the broad emission spectrum of the p-Ge laser source. These mirrors can also be used in a Fabry-Perot FIR scanning spectrometer, where the resulting high finesse would give discrimination advantages in chemical sensing and astrophysical spectroscopy applications.
|
109 |
Wavelength Accuracy Study for High-Density Fiber Bragg Grating Sensor Systems Using a Rapidly-Swept Akinetic-Laser SourceEgorov, Jacob 01 June 2016 (has links) (PDF)
This thesis studies the center wavelength accuracy of a Fiber Bragg Grating Sensor system that has a large number of sensor elements both as a function of wavelength and as a function of position. Determining the center wavelength of each of the fiber optic sensors is a critical parameter that ultimately determines sensor accuracy. The high density environment can result in degradation of accuracy of the center wavelength measurement. This thesis aims to quantify this measurement error both with theoretical and experimental studies.
There are many sensing applications where optical fiber sensors are preferred over electrical sensors, such as the oil and gas industry where fiber optic sensors are used to monitor wells and pipelines due to their low signal degradation over long distances and immunity to harsh physical environments. Fiber Bragg grating (FBG) sensors in particular have widespread use because of their versatility, measurement sensitivity, and distributed multiplexing abilities. In conventional wavelength multiplexing, up to 50 FBG sensors are spread out over a band of 100nm, each with a center wavelength difference large enough so that each element can be individually measured. However, numerous sensing applications require several hundred to over a thousand sensors cascaded together on a single fiber. These sensor arrays use a combination of WDM and TDM for measurements, where many FBG sensors with the same center wavelength are separated by a long enough length of fiber so that the reflected signals are separated in time.
These Wavelength-to-Time Domain Multiplexing (W-TDM) measurements are enabled by Insight Photonic’s new ‘akinetically’ swept, all-semiconductor laser. This laser is a Vernier-Tuned Distributed Bragg Reflector (VT-DBR) device, capable of rapidly sweeping through different wavelengths without any moving parts. Attributes that make this laser superior to mechanically-swept lasers include: 1) short and long term consistent sweep-sweep reliability, 2) availability at many wavelengths, 3) a narrow linewidth with single longitudinal mode, and 4) the ability to do non-traditional sweep patterns that facilitate measurement of high-density sensor networks.
In this thesis, experiments will be performed in the lab with the Insight VT-DBR laser to determine how accurately the center wavelength of a single Fiber Bragg grating can be measured. Experiments will also be performed with two and three FBGs to compare different algorithmic approaches to measurements. The second part of the thesis will simulate both single and multiple FBG sensor environments, comparing the center wavelength measurement accuracy results for different parameters including signal-to-noise ratios, wavelength point density, FBG loss and width, and multiple algorithmic approaches. The results of these experiments and simulations will demonstrate how accurate a FBG sensor system is at particular parameters, which will be useful to those designing a sensor network or performing similar experiments.
|
110 |
Modélisation vectorielle de la biréfringence photoinduite observée dans les réseaux photoinscritsNezih, Belhadj 13 April 2018 (has links)
L'omniprésence de la biréfringence photoinduite dans les réseaux optiques photoinscrits, présente un défi important pour l'ingéniosité du procédé de fabrication de ce type de composants. Des études précédentes ont identifié trois contributions à la biréfringence photoinduite dans les réseaux : le stress photoinduit causé par la densification de la structure du verre dans le coeur photosensible de la fibre, l'anisotropie causée par l'excitation préférentielle des défauts d'oxygènes dans la matrice du verre et la biréfringence de forme causée par l'asymétrie du profil du changement d'indice dans le plan transverse. Dans l'objectif de contribuer aux travaux qui visent à remédier à la biréfringence photoinduite, nous nous proposons dans la première partie de cette thèse, de la caractériser et de quantifier les différents facteurs qui y contribuent. Nous calculerons la biréfringence de forme dans différents types de fibres à l'aide d'une méthode vectorielle d'éléments finis d'ordre élevé. Nous évaluerons la biréfringence causée par le stress photoinduit en mettant en évidence, à travers une mesure tomographique, l'asymétrie de la distribution de stress et l'anisotropie d'indice dans la fibre irradiée. Nous en déduirons par la suite la valeur de la contribution de ce type de biréfringence à la biréfringence photoinduite totale. Vu la nature vectorielle de l'onde dans les réseaux biréfringents, il est important de se procurer un outil numérique pour l'analyse et la prédiction de la propagation de l'onde vectorielle dans les réseaux optiques. Ainsi, nous nous proposons dans la deuxième partie de cette thèse, de développer un outil de calcul pouvant décrire l'évolution de la polarisation dans les structures périodiques en tenant compte de la propagation bidirectionnelle de l'onde et de la rotation des axes propres de polarisation dans les régions illuminées et non illuminées du réseau.
|
Page generated in 0.0326 seconds