21 |
Optimalizace metod pro studium časných fází životního cyklu myšího polyomaviru / Optimization of methods for analysis of early steps of mouse polymavirus life cycleSoukup, Jakub January 2015 (has links)
Mouse polyomavirus is a type species of Polyomaviridae family and serves as model for studying viral infection of human pathogenic polyomaviruses. Minor proteins of viral capsid have been found to be necessary for effective initiation of infection. In order to study their role in the early steps of infection we utilized the novel Cre-LoxP system for production of the viral mutant lacking both minor proteins. Virus produced this way was compared with virus produced by standard method and we found that both systems facilitate production of mutant virus with the comparable quality and quantity. The mutant virus contained reduced amount of viral DNA and formed virions with impaired stability. For further studies of intracellular virion trafficking we prepared virions with genomes modified by thymidine analogues 5- bromo-2'-deoxyuridine (BrdU) and 5-Ethynyl-2'-deoxyuridine (EdU) and optimized the methods for analogue detection. The viral genome become accessible for detection 4 hours post infection. For ultramicroscopic analysis of translocation of virus to the nucleus we used freeze substitution. All this methods will be utilized for detailed study of distinct steps in viral infection. Key words: Mouse polyomavirus, minor proteins,...
|
22 |
Regeneration in the adult brain after focal cerebral ischemia : exploration of neurogenesis and angiogenesisJiang, Wei January 2006 (has links)
Background: Ischemic stroke ranks as the third major cause of clinical mortality and the leading cause of handicap in adults. Each year, stroke occurs in about 30,000 Swedes. The severity of an acute ischemic stroke depends mainly on the degree and duration of local cerebral blood flow (lCBF) reduction. Prompt reperfusion improves neurological deficits, spontaneous electrical activity, energy metabolism, cerebral protein synthesis (CPS), and tissue repair, among which cell proliferation (neurogenesis, gliosis) and revascularization (angiogenesis) may have important functional and therapeutic implications. Aims of the thesis: (1) To establish the photothrombotic ring stroke(PRS) model with late spontaneous reperfusion in adult mice; (2) To explore angiogenesis and neurogenesis in adult brain after focal cerebral ischemia. Materials and Methods: The PRS model in C57 BL adult mice and the middle cerebral artery suture occlusion (MCAO) model in adult Wistar rats were used. The 5-bromodeoxyuridine (BrdU) was delivered into animal after stroke induction to label DNA duplication. CBF, CPS and adenosine triphosphate (ATP) were measured by laser-Doppler flowmetry (LDF), [14C]–Iodoantipyrine and [3H]-Leucine double tracer autoradiography, and bioluminescence, respectively. Immunocytochemistry / immunofluoresence were performed to detect different proteins. The cell marker colocalization was analyzed by three-dimension (3-D) confocal. The cell counting was performed with a stereological counting system. Results: The PRS model was established in adult mice by irradiating the exposed skull with a 514.5 nm argon laser ring beam (3 mm diameter, 0.21 mm thick) at an intensity of 0.65 W/cm2 for 60s, with concurrent erythrosin B (4.25 mg/kg) intravenous infusion for 15s. The central cortical region within the ring locus was progressively encroached by an annular ring-shaped perfusion deficit, where lCBF LDF declined promptly to 43% of the baseline value at 30 min post irradiation. The lCBF-IAP amounted to 46-17-58 ml/100g/min, where CPS varied from 57-38-112% at 4h-48h-7days post ischemia. ATP declined at 4h, achieved its maximum level at 48h and was markedly reduced at 7 days postischemia. Morphologically, at 4h some neurons in the region at-risk appeared swollen, at 48h the majority were severely swollen, eosinophilic and pyknotic. Tissue morphology became partly restored at 7 days post stroke, when numerous cortical cells were immunolabeled by BrdU or the mitosis-specific marker phosphorylated histone H3 (Phos-H3). Some of these cells were even doubly immunopositive to the neuron-specific marker Neu N and the astrocyte marker GFAP, as analyzed by 3-D confocal. In adult rats exposed to MCAO, widespread BrdU-immunolabeled cells appeared in the cortex, ipsilateral striatum and dentate gyrus of the hippocampus. Some of which were doubleimmunolabeled by the neuron specific markers Map-2, β-tubulin III and Neu N as analyzed by 3-D confocal. As early as 24h postischemia, BrdU-immunopositive endothelial cells were aligned as microvessels, some of which exhibited distinguishable lumens in the ischemic boundary zone, where VEGF-A, B, C proteins and their receptors flt-1, fik-1, flt-4 were overexpressed at 72h after MCAO. Conclusion: PRS model in adult mice elicits a dynamic deterioration and then restoration of local CBF, CPS, ATP and tissue morphology in the spontaneously reperfused cerebral cortex at 7d after stroke, where cortical neurogenesis and gliosis occurred. In adult rats with MCAO, neurogenesis occurred at 30 and 60d in the penumbral cortex and striatum. Angiogenesis occurred as early as 24h, which contributed to the spontaneous reperfusion frequently observed in this setting of acute ischemic stroke.
|
23 |
Central Nervous System Regulation of Fat Cell Lipid Mobilization: The Role of the Sympathetic Nervous SystemFoster, Michelle Tranace 12 January 2006 (has links)
Obesity is a growing disorder in the United States, affecting over 60% of the population. We previously defined sympathetic nervous system (SNS) outflow from brain to white adipose tissue (WAT) using a viral transneuronal tract tracer. SNS innervation of WAT is the principle initiator of lipolysis, whereas decreases in sympathetic drive promote lipid accumulation. Which of the many origins of SNS outflow from brain to WAT results in SNS-mediated changes in lipid mobilization (increases in drive) or accumulation (decrease in drive) is unknown. Previous research indicates that sympathetic denervation blocks lipid mobilization; thus, rostral sites in the neuroaxis connected to WAT via the SNS may promote WAT lipid mobilization. The hypothalamic paraventricular nucleus (PVN) may play a role via its descending projections to the intermediolateral horn of the spinal cord. Therefore, the consequences of PVN lesions (PVNx) on WAT mobilization or accumulation were tested. PVNx resulted in increased lipid accumulation, indicated by increases in retroperitoneal (RWAT) , epididymal (EWAT) , and inguinal WAT (IWAT) pad masses, in fed hamsters, but PVNx did not block fasting (56 h)-induced lipid mobilization. Because adrenal medullary catecholamines, especially epinephrine, also play a minor role in lipid mobilization, we tested the contribution of catecholamine release on lipid mobilization through adrenal demedullation (ADMEDx), with and without PVNx, and found fastinginduced lipid mobilization was not blocked. There was, however, a suggestion that distal denervation of IWAT, with and without ADMEDx, partially blocked lipid mobilization. In addition, evidence suggests SNS also may be an important controller of fat cell proliferation. Surgical denervation of WAT triggers increases in fat cell number (FCN), but have not determined if this FCN increase is due to preadipocyte proliferation or differentiation of preadipocytes into mature fat cells. We also have not demonstrated what role sensory innervation may have in regulating white adipocyte proliferation. Therefore, the role of WAT sympathetic or sensory innervation on adipocyte proliferation was tested. The SNS but not sensory denervation triggered bona fide proliferation as indicated by bromodeoxyuridine plus AD3, a specific adipocyte membrane protein, colabeling. These and previous data suggest that the SNS plays a role in regulating adiposity.
|
24 |
The Time-Course of the Effects of Growth Hormone During Zebrafish (<i>DANIO RERIO</i>) Auditory Hair Cell RegenerationWang, Yajie 01 May 2012 (has links)
Growth hormone (GH) was upregulated in the zebrafish inner ear following sound exposure in a previous study. To identify the specific role of GH in hair cell regeneration and the possible cellular mechanisms of this regeneration, groups of zebrafish were divided into baseline (no sound exposure, no injection), buffer-injected and GH-injected groups. Buffer- and GH-injected fish were exposed to a 150 Hz tone at a source level of 179 dB re 1 μPa root mean squared (RMS) for 36 h. Phalloidin-staining was used to assess the effects of GH on hair cell bundle density; BrdU-labeling was used to assess the effects of GH on cellular proliferation; TUNEL-labeling was used to assess the effects of GH on apoptosis in the zebrafish inner ear following acoustic trauma. The time-course of hair cell bundle density, cell proliferation, and apoptosis was established by combining data for baseline fishes and sound-exposed fishes at post-sound exposure day 1 (psed1), psed2, and psed3. GH-injected fish exhibited greater densities of hair cells than bufferinjected controls. In addition, GH-injected fish had higher levels of cell proliferation and lower levels of apoptosis than buffer-injected controls. This suggests that GH may play an important role in zebrafish inner ear hair cell regeneration by stimulating cellular proliferation and inhibiting cellular apoptosis.
|
25 |
Evidence for partial epithelial-to-mesenchymal transition and recruitment of motile blastoderm edge cells during avian epibolyFutterman, Matthew 06 June 2011 (has links)
Embryonic epiboly has become an important developmental model for studying the mechanisms underlying collective movements of epithelial cells. In the last couple of decades, most studies of epiboly have utilized Xenopus or zebrafish as genetically tractable model organisms, while the avian epiboly model has received virtually no attention. Here, we re-visit epiboly in quail embryos and characterize several molecular markers of epithelial-to-mesenchymal transition (EMT) in the inner zone of the extraembryonic Area Opaca and at the blastoderm edge. Our results show that the intermediate filament vimentin, a widely-used marker of the mesenchymal phenotype, is strongly expressed in the edge cells compared to the cells in the inner zone, and that epiboly is inhibited when embryos are treated with Withaferin-A, a vimentin-targeting drug. Laminin, an extracellular matrix protein that is a major structural and adhesive component of the epiblast basement membrane, is notably absent from the blastoderm edge, and shows three distinct morphological regions approaching the leading edge. While these expression profiles are consistent with a mesenchymal phenotype, several other epithelial markers, including cytokeratin, β-catenin, and E-cadherin, were present in the blastoderm edge cells. Moreover, the results of a BrDU proliferation assay suggest that expansion of the edge cell population is primarily due to recruitment of cells from the inner zone, and not proliferation. Taken together, our data suggest that the edge cells of the avian blastoderm have characteristics of both epithelial and mesenchymal cells, and could serve as an in-vivo model for cancer and wound healing studies.
|
26 |
Chronic Deep Brain Stimulation and Pharmacotherapy for the Treatment of Depression: Effects on Neuroplasticity in RatsIsabella, Silvia 30 May 2011 (has links)
Deep brain stimulation (DBS) is currently being investigated as a therapy for treatment-resistant depression, with promising results. However, it is not clear whether or not DBS works via the same mechanisms as those induced by antidepressant medications. Processes currently implicated in antidepressant effects include neuroplastic changes and promotion of neurogenesis. We investigated the effects of chronic treatment with three different classes of antidepressants and DBS on markers of neuroplasticity (brain-derived neurotrophic factor, (BDNF), and phosphorylated cyclic-AMP regulatory element binding protein, (pCREB)) and neurogenesis (Ki-67, bromodeoxyuridine (BrdU) and doublecortin) in the rat hippocampus. No clear treatment effects were seen on BDNF, pCREB and Ki-67 levels. However all treatments caused increased levels of BrdU (range: 46%-96%) and doublecortin (8%-61%), although these effects were statistically significant only for DBS and amitriptyline, respectively. This overall pattern of results may suggest that diverse antidepressant treatments could possibly share common mechanisms involving cell survival and neuronal differentiation. Potentiated effects of DBS on cell survival may underlie its efficacy in treatment-resistant depression.
|
27 |
Chronic Deep Brain Stimulation and Pharmacotherapy for the Treatment of Depression: Effects on Neuroplasticity in RatsIsabella, Silvia 30 May 2011 (has links)
Deep brain stimulation (DBS) is currently being investigated as a therapy for treatment-resistant depression, with promising results. However, it is not clear whether or not DBS works via the same mechanisms as those induced by antidepressant medications. Processes currently implicated in antidepressant effects include neuroplastic changes and promotion of neurogenesis. We investigated the effects of chronic treatment with three different classes of antidepressants and DBS on markers of neuroplasticity (brain-derived neurotrophic factor, (BDNF), and phosphorylated cyclic-AMP regulatory element binding protein, (pCREB)) and neurogenesis (Ki-67, bromodeoxyuridine (BrdU) and doublecortin) in the rat hippocampus. No clear treatment effects were seen on BDNF, pCREB and Ki-67 levels. However all treatments caused increased levels of BrdU (range: 46%-96%) and doublecortin (8%-61%), although these effects were statistically significant only for DBS and amitriptyline, respectively. This overall pattern of results may suggest that diverse antidepressant treatments could possibly share common mechanisms involving cell survival and neuronal differentiation. Potentiated effects of DBS on cell survival may underlie its efficacy in treatment-resistant depression.
|
28 |
Behavioural and Molecular Outcomes of Early Life Immune Challenge in Mice / Early Life Immune Challenge In MiceSidor, Michelle M. 12 1900 (has links)
<p> Although historically treated as separate systems, there is considerable interaction between the immune system and brain. It has become increasingly clear that immunebrain communication is important to both health and disease. An immunogenic challenge given during the first postnatal week in rodents impacts the developing central nervous system (CNS) leading to long-term behavioural and molecular alterations reflective of enhanced stress-reactivity. Anxiety and depression are stress-related pathologies with a proposed neurodevelopmental origin suggesting that perturbation to neonatal immunebrain signalling may contribute to psychopathology. The current body of work examined the long-term impact of an early immune challenge on behavioural and molecular phenotypes associated with anxiety and depression. Mice were administered lipopolysaccharide (LPS) on postnatal days three and five. The emergence of anxietyrelated behaviour was characterized along the developmental trajectory of LPS-mice concurrent with changes to serotonergic neurocircuitry. Adult depressive-related behaviour was assessed in the forced swim test (FST) along with hippocampal neurogenesis as revealed by immunoreactivity for bromodeoxyuridine (BrdU) and doublecortin (DCX). The results demonstrated a sex-specific alteration in both the temporal emergence and phenotypic variant of anxiety-related behaviours displayed by LPS-mice. This was accompanied by changes to CNS serotonergic-related gene expression that coincided with a critical developmental time window essential to the establishment of emotionality. Adult LPS-mice exhibited hyperactivity during the FST that was accompanied by increased doublecortin immunoreactivity in the dorsal and ventral hippocampus, reflecting enhanced immature neuronal differentiation. The current results demonstrate that an early immune challenge impacts the developing CNS leading to enhanced emotional-reactivity. Altered serotonergic neurocircuitry and adult hippocampal neurogenesis may underlie behavioural abnormalities. The current body of work demonstrates a preeminent role for early-life immune disturbance in psychopathology and advances understanding of how immune-brain signalling impacts the developing CNS and confers risk for later disease. </p> / Thesis / Doctor of Philosophy (PhD)
|
29 |
The Kinetics of G2 and M Transitions Regulated by B CyclinsHuang, Yehong 21 February 2014 (has links)
No description available.
|
30 |
Hippocampal Neurogenesis In Amyotrophic Lateral Sclerosis Like MiceMa, Xiaoxing 10 1900 (has links)
<p> G93A SODI mice (G93A mice) are a transgenic model over-expressing a mutant human Cu/Zn-SOD gene, and are a model for amyotrophic lateral sclerosis (ALS), a predominantly motor neurodegenerative disease. Hippocampal neurogenesis in the subgranular zone (SGZ) of dentate gyms (DG) occurs throughout the life. It is regulated by many pathological and physiological processes. There is controversy with respect to the basal level of hippocampal neurogenesis and its response to exercise in neurodegenerative diseases and their mouse models. Little information regarding hippocampal neurogenesis is available in G93A mice. The present study was designed to study the impact of treadmill exercise and sex differences on hippocampal neurogenesis in this model. In addition, potential molecular mechanisms regulating hippocampal neurogenesis including growth factors (BDNF and IGFl) and oxidative stress (SOD2, catalase, 8-0Hdg, and 3-NT) were also addressed in the study. Bromodeoxyuridine (BrdU) was used to label newly generated cells. G93A and wild type (WT) mice were subjected to treadmill exercise (EX) or a sedentary (SEO) lifestyle. Immunohistochemistry was used to detect BrdU labeled newly proliferating cells, surviving cells, and their phenotype, as well as for determination of oxidative stress. BDNF and IGFl mRNA expression was assessed by in situ hybridization. Results showed that (1) G93A mice had an elevated basal level of hippocampal neurogenesis for both cell survival and neuronal differentiation, a growth factor (BDNF mRNA), and an oxidative stress marker (NT), as compared to wild type sedentary mice. (2) Treadmill running did not show any further effect on hippocampal neurogenesis, growth factors, oxidative stress, and antioxidant enzymes in G93A mice, while treadmill running promoted hippocampal neurogenes1s and expression of the growth factor (BDNF mRNA), and lowered oxidative stress (8-0Hdg) in WT mice. (3) There also were sex differences in hippocampal neurogenesis in G93A mice, whereby male G93A mice had a significant higher level of cell proliferation but a lower level of survival than female G93A mice. (4) The DG BDNF mRNA was associated with cell survival and neuronal differentiation in sedentary G93A mice, suggesting that BDNF is associated with a higher basal level of hippocampal neurogenesis in G93A mice. We conclude that G93A mice are more permissive in the context of hippocampal neurogenesis, which is associated with elevated DG BDNF mRNA expression. Running did not have impact on hippocampal neurogenesis and BDNF mRNA expression in G93A mice, probably due to a 'ceiling effect' of the already heightened basal levels of hippocampal neurogenesis and BDNF mRNA in this model. In addition, sex differences also affect hippocampal neurogenes1s, but the further study is needed to clarify the underlying molecular mechanisms. </p> / Thesis / Doctor of Philosophy (PhD)
|
Page generated in 0.0557 seconds