• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A 3D Sliding Bearing Finite Element Based on The Bouc-Wen Hysteretic Model : Mathematical modelling and numerical implementation

Wei, Sicong January 2020 (has links)
Bridge bearing is an essential component with the function of connecting the superstructure and substructure of the bridge, transmitting load and providing movability to the superstructure. Under dynamic conditions, the internal friction of bridge bearing dissipates the vibration energy and therefore reduces the dynamic response of the bridge. Meanwhile, bearing friction is considered to have possible contribution to some nonlinear dynamic behaviour of the bridge structure, which requires further investigation.However, bearing friction, in most cases, are ignored or considered roughly and implicitly as part of structural damping in current bridge designing codes and methods. Most previous research was also focusing on bearing friction’s effect under high-amplitude vibration conditions, such as earthquake or heavy wind load. Bearing friction’s effect under common low-amplitude vibration in SLS such as train-induced vibration and vehicle-induced vibration is less attended. Although the effect of such low-amplitude vibration is less significant to structural safety, it plays an essential role to the bridge’s traffic safety and comfort. Meanwhile, the cumulative effect of such vibration can significantly influence the life and durability of bridge bearings due to its high occurring frequency. Hence, a clearer understanding of bearing dynamic behaviour is required to improve the understanding of bridge and bearing dynamics.In this thesis, an advanced numerical tool is developed for dynamic analysis of bearing friction. A 3D pot bearing finite element that can be implemented in commercial FE software ABAQUS, is programmed based on the mathematical friction models developed in previous research and the Bouc-Wen hysteretic model. Numerical results that accord with the results of relevant friction tests are produced by the calibrated and validated bearing finite element, giving proof that the element is capable to reflect the dynamic friction response of bridge pot bearing in reality.The 3D shell numerical model of Banafjäl bridge located on the Bothnia Line in Norrland, Sweden, is built as a study case of bridge dynamic analysis in this thesis, with implementation of the newly developed bearing element. The feasibility of implementing the bearing element in bridge dynamic analysis is proven by the numerical results. The nonlinear influence of bearing friction on the dynamic response of bridge structure, especially the influence on structural damping properties, is discussed preliminarily. The analysis results show that with the consideration of bearing friction, the damping presents a clear amplitude-dependency, which accords the phenomenon reported in previous research.
2

Application of monitoring to dynamic characterization and damage detection in bridges

Gonzalez, Ignacio January 2014 (has links)
The field of bridge monitoring is one of rapid development. Advances in sensor technologies, in data communication and processing algorithms all affect the possibilities of Structural Monitoring in Bridges. Bridges are a very critical part of a country’s infrastructure, they are expensive to build and maintain, and many uncertainties surround important factors determining their serviceability and deterioration state. As such, bridges are good candidates for monitoring. Monitoring can extend the service life and avoid or postpone replacement, repair or strengthening works. The amount of resources saved, both to the owner and the users, by reducing the amount of non-operational time can easily justify the extra investment in monitoring. This thesis consists of an extended summary and five appended papers. The thesis presents advances in sensor technology, damage identification algorithms, Bridge Weigh-In-Motion systems, and other techniques used in bridge monitoring. Four case studies are presented. In the first paper, a fully operational Bridge Weigh-In-Motion system is developed and deployed in a steel railway bridge. The gathered data was studied to obtain a characterization of the site specific traffic. In the second paper, the seasonal variability of a ballasted railway bridge is studied and characterized in its natural variability. In the third, the non-linear characteristic of a ballasted railway bridge is studied and described stochastically. In the fourth, a novel damage detection algorithm based in Bridge Weigh-In-Motion data and machine learning algorithms is presented and tested on a numerical experiment. In the fifth, a bridge and traffic monitoring system is implemented in a suspension bridge to study the cause of unexpected wear in the bridge bearings. Some of the major scientific contributions of this work are: 1) the development of a B-WIM for railway traffic capable of estimating the load on individual axles; 2) the characterization of in-situ measured railway traffic in Stockholm, with axle weights and train configuration; 3) the quantification of a hitherto unreported environmental behaviour in ballasted bridges and possible mechanisms for its explanation (this behaviour was shown to be of great importance for monitoring of bridges located in colder climate) 4) the statistical quantification of the nonlinearities of a railway bridge and its yearly variations and 5) the integration of B-WIM data into damage detection techniques. / <p>QC 20140910</p>
3

Study and Application of Modern Bridge Monitoring Techniques

González, Ignacio January 2011 (has links)
The field of monitoring is one of rapid development. Advances in sensor technologies, in data communication paradigms and data processing algorithms all influence the possibilities of Structural Health Monitoring, damage detection, traffic monitoring and other implementations of monitoring systems. Bridges are a very critical part of a country’s infrastructure, they are expensive to build and maintain, and many uncertainties surround important factors determining the serviceability and deterioration of bridges. As such, bridges are good candidates for monitoring. Monitoring can extend the service life and avoid or postpone replacement, repair or strengthening work. Many bridges constitute a bottleneck in the transport network they serve with few or no alternative routes. The amount of resources saved, both to the owner and the users, by reducing the amount of non-operational time can easily justify the extra investment in monitoring. This thesis consists of an extended summary and three appended papers. The thesis presents advances in sensor technology, damage identification algorithms and Bridge Weigh-In-Motion techniques. Two case studies are carried out. In the first a bridge and traffic monitoring system is implemented in a highway suspension bridge to study the cause of unexpected wear in the bridge bearings. In the second a fully operational Bridge Weigh-In-Motion system is developed and deployed in a steel railway bridge. The gathered data was studied to obtain a characterization of the site specific traffic. / QC 20111122
4

A 3D sliding bearing finite element based on the Bouc-Wen model : Implementation in Abaqus

Lantoine, Rémi January 2020 (has links)
As rail transportation is significantly more virtuous than airplanes or cars in terms of greenhousegases emissions, its development is being encouraged in several European countries, includingSweden. In addition, the development of railway lines on which trains can travel at higher speeds ismade in Sweden with the integration of existing infrastructure. On railway bridges, an increased trainspeed potentially leads to an increase in vibrations during passage, for which the structure may not bedesigned. It is therefore essential to know the dynamic properties of the structures used.Several studies highlight the influence of friction phenomena in sliding bearings on the dynamicproperties of bridges equipped with them. This Master Thesis is based on previous works that led tothe development of a finite element modelling the friction mechanisms that occur in these bearings.The friction occurring between a PTFE sliding plate and a steel surface is thus modelled using the Bouc-Wen model, a model for hysteresis phenomena. The finite element was developed as a Fortransubroutine, which can be integrated into the finite element calculation software Abaqus as a "userdefinedelement". It allows friction to be modelled along the longitudinal direction of the bridge onlyand can therefore only be used in two-dimensional models. The user-defined element is also based ona model that takes into account the influence of contact pressure and sliding velocity on the steel-PTFEcoefficient of friction. As several studies indicate, contact temperature can also have a significantinfluence on the value of the coefficient of friction but is not taken into account in the current model.In this project, the previously developed finite element was therefore generalized to account forfriction in both directions of the sliding plate by the means of a two-dimensional generalization of theBouc-Wen model. Based on experimental data available in scientific literature, the model forcalculating the coefficient of friction was also extended to take into account the influence of thecontact temperature. In addition, a model to update the contact temperature based on the theory ofsurface heating of semi-infinite bodies has been incorporated. Finally, this thesis presents theintegration of this updated finite element on three-dimensional models of the Banafjäl Bridge, locatedin northern Sweden. Simulations to estimate the fundamental frequencies and resonance modes ofthe structure as well as the temperature increase that can occur in a bearing during the passage of atrain were carried out on this model.
5

Live Load Testing and Analysis of the Southbound Span of U.S. Route 15 over Interstate-66

Collins, William Norfleet 25 August 2010 (has links)
more funding must be allocated for their rehabilitation or replacement. The Federal Highway Administration's (FHWA) Long-Term Bridge Performance (LTBP) Program has been developed to help bridge stakeholders make the best decisions concerning the allocation of these funds. This is done through the use of high quality data obtained through numerous testing processes. As part of the LTBP Pilot Program, researchers have performed live load tests on the U.S. Route 15 Southbound bridge over Interstate-66. The main performance and behavior characteristics focused on are service strain and deflection, wheel load distribution, dynamic load allowance, and rotational behavior of bridge bearings. Data from this test will be used as a tool in developing and refining a plan for long-term bridge monitoring. This includes identifying the primarily loaded girders and their expected range of response under ambient traffic conditions. Information obtained from this test will also aid in the refinement of finite element models by offering insight into the performance of individual bridge components, as well as overall global behavior. Finally, the methods and results of this test have been documented to allow for comparison with future testing of this bridge, which will yield information concerning the changes in bridge behavior over time. / Master of Science
6

Lávka pro pěší přes řeku Dyji / The footbridge for pedestrians over the Dyje river

Jaroš, Jakub January 2018 (has links)
The theme of this thesis is structural design of the load bearing structure of a footbridge over the river Dyje Znojmo. Span of the footbridge is 30 meters and width is 3.8 meters.
7

Lávka pro pěší / The Footbridge

Volejník, Petr January 2016 (has links)
The theme of this thesis is the design and assessment of the supporting structure of a footbridge over the river Svratka in Brno. Span bridge is 40 meters and width of 4.2 meters. The bridge is located in the administrative area Brno - Bystrc.
8

Bridge Bearings : Merits, Demerits, Practical Issues, Maintenance and Extensive Surveys on Bridge Bearing

Oladimeji Fasheyi, Adebowale January 2012 (has links)
A technical solution to the problem of unavoidable movements in bridge structures is the use of bridge bearings. Bridge bearings are small integral parts of the entire bridge structure serving several purposes, such as connection, transfer of forces, allowing movements, force damping etc. However, bridge bearings could create more problems for the bridge structure than it solves if not properly understood, especially when it receives less attention than it deserves. Technical and practical issues, such as selection of the right bearing type for use, merits and demerits of different bearing types, maintenance and monitoring, replacement, life cycle cost etc. are all imperative to ensure that bearings satisfy their purpose.   This study takes into consideration the practical and theoretical experience available for the use of bridge bearings. Two electronic surveys were used to garner knowledge and expertise from bridge engineers, bearing manufacturers and other stake holders in the course of this study, also practical knowledge concerning various types and problems of bridge bearings, maintenance, repair and replacement, life cycle costing etc. were employed in addition to physical investigation of bridge bearings in the Stockholm area of Sweden.   Generally, all bearing types were found to perform their functions satisfactorily when in good conditions, though inevitable problem of degradation reduces the life span of these bearings, especially the ones made mainly of steel being affected by corrosion. Those made of rubber components also degrade and perform poorly in low temperatures and under high load magnitude, though they are the most economical solution to many problems, especially in seismically active areas. Modern and enclosed bearing types such as pot, spherical, disc, LRB, FPB etc. are best used in critical conditions like high vertical load, extensive degree/extent of movement, seismic areas etc. but they are expensive solutions due to technicality in construction, and they are not exempted from various problems of degradation.

Page generated in 0.0963 seconds