• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Dq Rotating Frame Controller for Single Phase Full-Bridge Inverters Used in Small Distributed Generation Systems

Roshan, Arman 24 August 2007 (has links)
Today, small distributed power generation (DG) systems are becoming more common as the need for electric power increases. Small DG systems are usually built close to the end-user and they take advantage of using different energy sources such as wind and solar. A few examples are hybrid cars, solar houses, data centers, or hospitals in remote areas where providing clean, efficient and reliable electric power is critical to the loads. In such systems, the power is distributed from the source side to the load side via power electronic converters in the system. At low and medium power applications, the task is often left to single phase inverters where they are the only interface between sources connected to DC bus and loads connected to an AC bus. Much has been done for the control of single phase inverters in the past years; however, due to the requirements of stand alone systems and the time-varying nature of the converter, its controller design is still quite difficult, and especially so if its critical functionality within the system is taken into consideration. Part of the challenge is also due to the fact that the load is not known at all time, further complicating the controller design. This thesis proposes a different method of control for single phase inverters used in low and medium power DG systems. The new control method takes advantage of the well-known DQ transformation and analysis mostly employed for three phase converters' analysis and control design. Providing a time-invariant model of single phase inverters is the main feature of DQ transformation. In addition to that, control design of the inverter in DQ frame becomes similar to those of DC-DC and three phase converters making it easier to achieve superior performance under different operation conditions while achieving a robust controller. The transformation requires at least two independent phases for each state variable in the system; thus a second phase must be created. This thesis proposes the creation of an imaginary circuit based on the real circuit of the inverter to provide the second required phase for transformation. The state variables of the imaginary circuit are obtained by differentiating the state variables of the main inviter's circuit. The differentiation can be implemented in DSP so there is no need for additional hardware in the system, making it more attractive and cost effective method. The DQ controller not only provides superior transient response, it also provides zero steady-state error as well as low output voltage THD under nonlinear load operation. The entire controller can be implemented in a digital control board which is becoming more common in power electronics converters within the past decade. Analysis and design of a DQ controller for a 2.5kW single phase full-bridge inverter is presented in this study with the final results implemented in a FPGA/DSP based digital controller board. / Master of Science
2

Electronic Ballast for Fluorescent Lamps with DC Current

Lai, Chien-cheng 09 June 2005 (has links)
Fluorescent lamps are in general driven by ac ballasting currents. The cyclic variation in arc discharging power results in light fluctuation at twice the frequency of the ac current. Light fluctuation may be intolerable when a steady light output is required in some particular applications. To eliminate light fluctuation, an electronic ballast with dc current is proposed to operate the fluorescent lamp at a constant power. The main power conversion of the electronic ballast employs the single-stage high-power-factor inverter, which is originated from a combination of the half-bridge resonant inverter and the buck-boost converter. With such a circuit configuration, the output power can be regulated by asymmetrical pulse-width-modulation. The ac output of the inverter is then rectified and filtered to provide the dc ballasting current. Driven by dc current, however, the fluorescent lamp emits electrons unilaterally from one end leading to wearing out of emission material on the cathode filament. To solve this problem, an inverter is integrated for commutation of the lamp electrodes. Furthermore, a preheating control is included to start the fluorescent lamps with zero glow-current. A prototype is designed and built for the OSRAM T5-80W fluorescent lamp. The dc operating characteristics of starting transient, light fluctuation, lighting spectra, color temperature as well as the light fluctuation are investigated from experiments. Experimental results also show that the electronic ballast is capable of high-power-factor, dimming capability and zero glow-current preheating.
3

Inversor MultinÃvel HÃbrido SimÃtrico TrifÃsico de Cinco NÃveis Baseado na Topologias Half-Bridge/ANPC / FIVE LEVEL THREE PHASE SYMMETRICAL HYBRID MULTILEVEL INVERTER BASED ON A HALF-BRIDGE/ANPC TOPOLOGY

Ranoyca Nayana Alencar LeÃo e Silva 22 February 2013 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Este trabalho apresenta uma topologia de inversor multinÃvel hÃbrido simÃtrico trifÃsico de cinco nÃveis, concebido a partir das estruturas meia ponte e inversor com grampeamento ativo do neutro, adequado para aplicaÃÃes com alta tensÃo e alta potÃncia. SÃo apresentados os possÃveis estados de comutaÃÃo, lÃgica de acionamento, cÃlculo dos esforÃos nos semicondutores, assim como um estudo de perdas. Duas estratÃgias de modulaÃÃo sÃo selecionadas possibilitando a operaÃÃo concomitante de metade dos interruptores em baixa frequÃncia (60 Hz) e a outra em alta frequÃncia (1020 Hz), reduzindo o nÃmero de comutaÃÃes, consequentemente as perdas nos semicondutores e o conteÃdo harmÃnico da tensÃo de saÃda. Para validar a proposta, foi desenvolvido um protÃtipo com potÃncia de 7,5 kVA e tensÃo de saÃda eficaz de linha 380 V. AlÃm disso, à apresentada a implementaÃÃo de ambas as modulaÃÃes no dispositivo lÃgico programÃvel escolhido, FPGA. Os resultados experimentais da estrutura trifÃsica validam a topologia proposta. A estrutura, operando com a modulaÃÃo baseada na PD-PWM, apresentou DHT de 29,71% e WTHD de 1,93%, enquanto que a baseada na CSV-PWM apresentou DHT de 38,45% e WTHD de 7,21%. AlÃm disso, o rendimento da estrutura proposta à superior se comparado ao da topologia Half-Bridge/NPC, conforme esperado em funÃÃo das perdas na estrutura Half-Bridge/NPC serem maiores e mal distribuÃdas. / This work presents a new topology of a hybrid five-level inverter, conceived from the halfbridge and active neutral point clamped structures, suitable for high-voltage, high-power applications. The possible commutation stages, the switching drive logic, the semiconductors stresses mathematical analysis, and the losses study are presented. Two modulation techniques were selected in order to allow low-frequency (60 Hz) switches operate together with high-frequency switches (1020 Hz), reducing the number of commutations and, consequently, the overall losses and the output voltage total harmonic distortion. In order to validate the proposal, it was developed a 7.5 kVA prototype and AC line output voltage of 380 V. The digital implementation from both modulation techniques on the chosen programmable logic device FPGA is also presented. The experimental results relative to the three-phase structure validate the proposed topology. The topology, operating with the modulation based on Sinusoidal In-Phase Disposition - PWM, presented a THD of 29.71%, and WTHD of 1.93%, while the one based on the Centered Space Vector - PWM presented a THD of 38.45%, and a WTHD of 7.21%. Besides, the overall efficiency is superior when compared to the Half-Bridge/NPC topology, as expected, due to the fact that losses on this structure are higher and misdistributed.
4

Bidirectional Invertor With High Frequency Ac Link

Karuppuswamy, C 03 1900 (has links)
It is customary to obtain ac power from batteries through a power converter, where mains ac power is not readily available. Such a power converter is also needed in several mobile/ airborne/ space applications. Till recently this application is served by a H bridge inverter followed by a low frequency transformer and a passive low pass filter. The H bridge inverter employs high frequency pulse width modulation. The transformer is made of standard silicon steel. The filter is made of L and C elements. In such a converter the magnetics account for about 30% of cost and 50% of weight. Moreover the dc input current in such converters is discontinuous, leading to poor efficiency. There is need for an input filter as well. This thesis presents the development of an inverter with high frequency (hf) link. The power converter employs a boost front end resulting in continuous input current. The H bridge inverter employs phase modulation technique with soft switching features. The boost converter and the H bridge share power devices. The isolation transformer handles high frequency ac power and is compact. It is shown that the transformer size can be reduced by more than one order of magnitude. There is a rear end cycloconverter to reconvert the high frequency ac power into 50 Hz output power. Innovative pulse sequencing in the cycloconverter ensures loss-less switching. The pulse width modulation shifts the dominant harmonic frequency to double the switching frequency. The output LC filter is light. The converter can handle bidirectional power. The controller is digital. The overall concept was demonstrated through the 500 W prototype design. The proposed topology offers small size, low losses and continous input current. The controller is digital and offers totally software based compensation and settings. It is expected that on account of the small size and cost, this topology is likely to become more popular in the near future. The applications of such power converters will bring down the size and cost of UPS, solar inverters, wind mill inverters etc.
5

Měnič 12V DC/230V AC / Inverter 12V DC/230V AC

Stejskal, Jiří January 2010 (has links)
This diploma thesis describes particular parts of power inverter such as gate driver, DSC, LC filter, low power supply, DC/DC converter and four-quadrant bridge and manner of its control by digital signal controller. Inverter is designated for generating of a mobile artificial electric grid (for example in a car).
6

Controle e simulação de um sistema fotovoltaico de baixa potência conectado à rede elétrica

Gil, Gloria Milena Vargas January 2016 (has links)
Orientador: Dr. José L. Azcue Puma / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia Elétrica, 2016. / Este trabalho apresenta o estudo, modelagem e projeto de um sistema de conversão de energia para a conexão de um módulo fotovoltaico com a rede elétrica. Nesta pesquisa são abordados três conversores para adequar a energia gerada por um painel fotovoltaico e conectá-la à rede elétrica. O primeiro conversor é um Boost intercalado de dois níveis encarregado de implementar o MPPT (Maximum Power Point Tracking), o segundo conversor é um Ressonante LLC que realiza o isolamento galvânico e o terceiro conversor é um inversor em ponte completa que mantém a tensão de barramento em um valor determinado e realiza a conversão de corrente contínua para corrente alternada. Os três conversores são projetados, calculando os elementos passivos que os compõem e simulando os circuitos obtidos. Também, é realizada a modelagem dos conversores e o projeto dos controladores utilizando a análise de pequenos sinais. Os resultados de simulação são apresentados utilizando os softwares PSIM e MATLAB. Na parte experimental são verificados os dois primeiros conversores usando o kit High Voltage Isolated Solar MPPT fabricado pela Texas Instruments. / This work presents the study, modeling and design of a photovoltaic conversion system for the connection of a photovoltaic module with the grid. In this research three converters are approached to adequate the generated energy for a photovoltaic panel and to transfer the energy to the grid. The first converter is an interleaved two-level boost responsible for implementing the MPPT (Maximum Power Point Tracking) the second converter is a Resonant LLC that performs galvanic isolation and the third converter is a complete bridge inverter that keeps the bus voltage at a certain value and performs the conversion of continuos current to alternating current. The three converters are designed, calculating the passive elements that compose them and simulating the obtained circuits. Also, the modeling of the inverters and the design of the controllers are performed using small signal analysis. Simulation results are presented using the PSIM and MATLAB software. In the experimental part the first two inverters are verified using the High Voltage Isolated Solar MPPT kit manufactured by Texas Instruments.
7

Conversor ressonante para geração de ozônio aplicado à água de processos de higienização industrial, com controle digital /

Alburqueque Valdivia, Marlon Jesus January 2019 (has links)
Orientador: Carlos Alberto Canesin / Resumo: No presente trabalho de dissertação, é analisado e desenvolvido um conversor ressonante com o objetivo de produzir ozônio, aplicado à água de processos de higienização industrial. Na atualidade, no ano de 2018, dois dos fatores de grande importância no desenvolvimento de conversores para geração de ozônio são: a eficiência energética, isto é, quanta energia é aproveitada em relação à energia total fornecida ao conversor, e a outra é a produção de ozônio fazendo uso dessa energia aproveitada. Os dois fatores não necessariamente estão relacionados, por exemplo, para dois conversores distintos com a mesma energia disponível, pode acontecer que em um deles possa ser produzido maiores concentrações de ozônio com um menor aproveitamento de energia. Portanto, este trabalho enfatiza a melhoria da eficiência energética na produção de ozônio, empregando comutação suave nas estruturas envolvidas do conversor ressonante proposto, o que resulta em uma eficiência energética de 91,57%. A estrutura do conversor proposto apresenta dois estágios em cascata, o primeiro deles, um conversor que é responsável por gerar um barramento CC estável de 400,5 V e que atende aos requisitos de fator de potência e distorção harmônica total com valores de 0,994 e 5,79%(para a corrente de entrada), respectivamente, e o segundo, um inversor ressonante capaz de fornecer uma tensão de 4,4 kV com uma frequência de 10 kHz que atua como fonte de alimentação de um reator conformado por câmaras de descarga usadas em ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In the present dissertation, it is studied and developed a resonant converter in order to produce ozone, applied in water treatment for cleaning processes. Currently, in the year 2018, two of the factors of great importance in the development of converters for ozone generation are: energy efficiency, that is, how much energy is used in relation to the total energy supplied to the converter, and the other is the production of ozone making use of this energy harnessed. The two factors are not necessarily related, for example, for two different converters with the same energy available, it can happen that in one of them can be produced higher concentrations of ozone with a lower use of energy. Therefore, this work emphasizes the improvement of energy efficiency in the production of ozone using soft switching in the involved structures of the proposed resonant converter, which results in an energy efficiency of 91.57%. The structure of the proposed converter has two stages in cascade, the first one, a converter that is responsible for generating a stable DC bus of 400.5 V and that meets the requirements of power factor and total harmonic distortion with values of 0.994 and 5.79% (for the input current), respectively, and the second, a resonant inverter capable of providing a voltage of 4.4 kV with a frequency of 10 kHz which acts as a power supply for a reactor formed by discharge chambers used in ozone generation applications by electric discharge. Naturally, relevant ozone info... (Complete abstract click electronic access below) / Mestre
8

Induction Motor Drives Based on Multilevel Dodecagonal and Octadecagonal Volatage Space Vectors

Mathew, K January 2013 (has links) (PDF)
For medium and high-voltage drive applications, multilevel inverters are very popular. It is due to their superior performance compared to 2-level inverters such as reduced harmonic content in the output voltage and current, lower common mode voltage and dv=dt, and lesser voltage stress on power switches. The popular circuit topologies for multilevel inverters are neutral point clamped, cascaded H-bridge and flying capacitor based circuits. There exist different combinations of these basic topologies to realize multilevel inverters with modularity, better fault tolerance, and reliability. Due to these advantages, multilevel converters are getting good acceptance from the industry, and researchers all over the world are continuously trying to improve the performance of these converters. To meet such demands, three multilevel inverter topologies are proposed in this thesis. These topologies can be used for high-power induction motor drives, and the concepts presented are also applicable for synchronous motor drives, grid-connected inverters, etc. To get nearly sinusoidal phase current waveforms, the switching frequency of the conventional inverter has to be increased. It will lead to higher switching losses and electromagnetic interference. The problem with lower switching frequency is the intro- duction of low order harmonics in phase currents and undesirable torque ripple in the motor. The 5th and 7th harmonics are dominant for hexagonal voltage space-vector based low frequency switching, and it is possible to eliminate these harmonics by dodecagonal switching. Further improvement in the waveform quality is possible by octadecagonal voltage space-vectors. In this case, the complete elimination of 11th and 13th harmonic is possible for the entire modulation range. The concepts of dodecagonal and octadecagonal voltage space-vectors are used in the proposed inverter topologies. The first topology proposed in this thesis consists of cascaded connection of two H-bridge cells. The two cells are fed from unequal DC voltage sources having a ratio of 1 : 0:366, and this inverter can produce six concentric dodecagonal voltage space- vectors. This ratio of voltages can be obtained easily from a combination of star-delta transformers, since 1 : 0:366 = ( p 3 + 1) : 1. The cascaded connection of two H-bridge cells can generate nine asymmetric pole voltage levels, and the combined three-phase inverter can produce 729 voltage space-vectors (9 9 9). From this large number of combinations, only certain voltage space-vectors are selected, which forms dodecagonal pattern. In the case of conventional multilevel inverters, the voltage space-vector diagram consists of equilateral triangles of equal size, but for the proposed inverter, the triangular regions are isosceles and are having different sizes. By properly placing the voltage space-vectors in a sampling period, it is possible to achieve lower switching frequency for the individual cells, with substantial improvement in the harmonic spectrum of the output voltage. During the experimental veri cation, the motor is operated at di erent speeds using open loop v=f control method. The samples taken are always synchronised with the start of the sector to get synchronised PWM. The number of samples per sector is decreased with increase in the fundamental frequency to limit the switching frequency. Even though many topologies are available in literature, the most preferred topology for drives application such as traction drives is the 3-level NPC structure. This implies that the industry is still looking for viable alternatives to construct multilevel inverter topologies based on available power circuits. The second work focuses on the development of a multilevel inverter for variable speed medium-voltage drive application with dodecagonal voltage space-vectors, using lesser number of switches and power sources compared to earlier implementations. It can generate three concentric 12-sided polygonal voltage space-vectors and it is based on commonly available 2-level and 3-level inverters. A simple PWM timing computation method based on the hexagonal space-vector PWM is developed. The sampled values of the three-phase reference voltages are initially converted to the timings of a two-level inverter. These timings are mapped to the dodecagonal timings using a change of basis transformation. The voltage space- vector diagram of the proposed drive consists of sixty isosceles triangular regions, and the dodecagonal timings calculated are converted to the timings of the inner triangles. A searching algorithm is used to identify the triangular region in which the reference vector is located. A front-end recti er that may be easily implemented using standard star-delta transformers is also developed, to provide near-unity power factor. To test the performance of the inverter drive, an open-loop v=f control is used on a three-phase induction motor under no-load condition. The harmonic spectra of the phase voltages were computed in order to analyse the harmonic distortion of the waveforms. The carrier frequency was kept around 1.2 KHz for the entire range of operation. If the switching frequency is decreased, the conventional hexagonal space-vector based switching introduce signifi cant 5th, 7th, 11th and 13th harmonics in the phase currents. Out of these dominant harmonics, the 5th and 7th harmonics can be completely suppressed using dodecagonal voltage space-vector based switching as observed in the first and second work. It is also possible to remove the 11th and the 13th harmonics by using voltage space-vectors with 18 sides. The last topology is based on multilevel octadecagonal (18-sided polygon) voltage space-vectors, and it has better harmonic performance than the previously mentioned topologies. Here, a multilevel inverter system capable of producing three octadecagonal voltage space-vectors is proposed for the fi rst time, along with a simple timing calculation method. The conventional three-level inverters are only required to construct the proposed drive. Four asymmetric power supply voltages with 0:3054Vdc, 0:3473Vdc, 0:2266Vdc and 0:1207Vdc are required for the operation of the drive, and it is the main drawback of the circuit. Generally front-end isolation transformer is essential for high-power drives and these asymmetric voltages can be easily obtained from the multiple windings of the isolation transformer. The total harmonic distortion of the phase current is improved due to the 18-sided voltage space-vector switching. The ratio of the radius of the largest polygon and its inscribing circle is cos10 = 0:985. This ratio in the case of hexagonal voltage space-vector modulation is cos30 = 0:866, which means that the range of the linear modulation for the proposed scheme is signifi cantly higher. The drive is designed for open-end winding induction motors and it has better fault tolerance. It any of the inverter fails, it can be easily bypassed and the drive will be still functional with reduced speed. Open loop v=f control and rotor flux oriented vector control schemes were used during the experimental verifi cation. TMS320F2812 DSP platform was used to execute the control code for the proposed drive schemes. For the entire range of operation, the carrier was synchronized with the fundamental. For the synchronization, the sampling period is varied dynamically so that the number of samples in a triangular region is fi xed, keeping the switching frequency around 1.2 KHz. The average execution time for the v=f code was found to be 20 S, where as for vector control it took nearly 100 S. The PWM terminals and I/O lines of the DSP is used to output the timings and the triangle number respectively. To convert the triangle number and the timings to IGBT gate drive logic, an FPGA (XC3S200) was used. A constant dead-time of 1.5 S is also implemented inside the FPGA. Opto-isolated gate drivers with desaturation protection (M57962L) were used to drive the IGBTs. Hall-effect sensors were used to measure the phase currents and DC bus voltages. An incremental shaft position encoder with 2500 pulse per revolution is also connected to the motor shaft, to measure the angular velocity. 1200 V, 75 A IGBT half-bridge module is used to realize the switches. The concepts were initially simulated and experimentally verifi ed using laboratory prototypes at low power. While these concepts maybe easily extended to higher power levels by using suitably rated devices, the control techniques presented shall still remain applicable.
9

Induction Motor Drives Based on Multilevel Dodecagonal and Octadecagonal Volatage Space Vectors

Mathew, K January 2013 (has links) (PDF)
For medium and high-voltage drive applications, multilevel inverters are very popular. It is due to their superior performance compared to 2-level inverters such as reduced harmonic content in the output voltage and current, lower common mode voltage and dv=dt, and lesser voltage stress on power switches. The popular circuit topologies for multilevel inverters are neutral point clamped, cascaded H-bridge and flying capacitor based circuits. There exist different combinations of these basic topologies to realize multilevel inverters with modularity, better fault tolerance, and reliability. Due to these advantages, multilevel converters are getting good acceptance from the industry, and researchers all over the world are continuously trying to improve the performance of these converters. To meet such demands, three multilevel inverter topologies are proposed in this thesis. These topologies can be used for high-power induction motor drives, and the concepts presented are also applicable for synchronous motor drives, grid-connected inverters, etc. To get nearly sinusoidal phase current waveforms, the switching frequency of the conventional inverter has to be increased. It will lead to higher switching losses and electromagnetic interference. The problem with lower switching frequency is the intro- duction of low order harmonics in phase currents and undesirable torque ripple in the motor. The 5th and 7th harmonics are dominant for hexagonal voltage space-vector based low frequency switching, and it is possible to eliminate these harmonics by dodecagonal switching. Further improvement in the waveform quality is possible by octadecagonal voltage space-vectors. In this case, the complete elimination of 11th and 13th harmonic is possible for the entire modulation range. The concepts of dodecagonal and octadecagonal voltage space-vectors are used in the proposed inverter topologies. The first topology proposed in this thesis consists of cascaded connection of two H-bridge cells. The two cells are fed from unequal DC voltage sources having a ratio of 1 : 0:366, and this inverter can produce six concentric dodecagonal voltage space- vectors. This ratio of voltages can be obtained easily from a combination of star-delta transformers, since 1 : 0:366 = ( p 3 + 1) : 1. The cascaded connection of two H-bridge cells can generate nine asymmetric pole voltage levels, and the combined three-phase inverter can produce 729 voltage space-vectors (9 9 9). From this large number of combinations, only certain voltage space-vectors are selected, which forms dodecagonal pattern. In the case of conventional multilevel inverters, the voltage space-vector diagram consists of equilateral triangles of equal size, but for the proposed inverter, the triangular regions are isosceles and are having different sizes. By properly placing the voltage space-vectors in a sampling period, it is possible to achieve lower switching frequency for the individual cells, with substantial improvement in the harmonic spectrum of the output voltage. During the experimental veri cation, the motor is operated at di erent speeds using open loop v=f control method. The samples taken are always synchronised with the start of the sector to get synchronised PWM. The number of samples per sector is decreased with increase in the fundamental frequency to limit the switching frequency. Even though many topologies are available in literature, the most preferred topology for drives application such as traction drives is the 3-level NPC structure. This implies that the industry is still looking for viable alternatives to construct multilevel inverter topologies based on available power circuits. The second work focuses on the development of a multilevel inverter for variable speed medium-voltage drive application with dodecagonal voltage space-vectors, using lesser number of switches and power sources compared to earlier implementations. It can generate three concentric 12-sided polygonal voltage space-vectors and it is based on commonly available 2-level and 3-level inverters. A simple PWM timing computation method based on the hexagonal space-vector PWM is developed. The sampled values of the three-phase reference voltages are initially converted to the timings of a two-level inverter. These timings are mapped to the dodecagonal timings using a change of basis transformation. The voltage space- vector diagram of the proposed drive consists of sixty isosceles triangular regions, and the dodecagonal timings calculated are converted to the timings of the inner triangles. A searching algorithm is used to identify the triangular region in which the reference vector is located. A front-end recti er that may be easily implemented using standard star-delta transformers is also developed, to provide near-unity power factor. To test the performance of the inverter drive, an open-loop v=f control is used on a three-phase induction motor under no-load condition. The harmonic spectra of the phase voltages were computed in order to analyse the harmonic distortion of the waveforms. The carrier frequency was kept around 1.2 KHz for the entire range of operation. If the switching frequency is decreased, the conventional hexagonal space-vector based switching introduce signifi cant 5th, 7th, 11th and 13th harmonics in the phase currents. Out of these dominant harmonics, the 5th and 7th harmonics can be completely suppressed using dodecagonal voltage space-vector based switching as observed in the first and second work. It is also possible to remove the 11th and the 13th harmonics by using voltage space-vectors with 18 sides. The last topology is based on multilevel octadecagonal (18-sided polygon) voltage space-vectors, and it has better harmonic performance than the previously mentioned topologies. Here, a multilevel inverter system capable of producing three octadecagonal voltage space-vectors is proposed for the fi rst time, along with a simple timing calculation method. The conventional three-level inverters are only required to construct the proposed drive. Four asymmetric power supply voltages with 0:3054Vdc, 0:3473Vdc, 0:2266Vdc and 0:1207Vdc are required for the operation of the drive, and it is the main drawback of the circuit. Generally front-end isolation transformer is essential for high-power drives and these asymmetric voltages can be easily obtained from the multiple windings of the isolation transformer. The total harmonic distortion of the phase current is improved due to the 18-sided voltage space-vector switching. The ratio of the radius of the largest polygon and its inscribing circle is cos10 = 0:985. This ratio in the case of hexagonal voltage space-vector modulation is cos30 = 0:866, which means that the range of the linear modulation for the proposed scheme is signifi cantly higher. The drive is designed for open-end winding induction motors and it has better fault tolerance. It any of the inverter fails, it can be easily bypassed and the drive will be still functional with reduced speed. Open loop v=f control and rotor flux oriented vector control schemes were used during the experimental verifi cation. TMS320F2812 DSP platform was used to execute the control code for the proposed drive schemes. For the entire range of operation, the carrier was synchronized with the fundamental. For the synchronization, the sampling period is varied dynamically so that the number of samples in a triangular region is fi xed, keeping the switching frequency around 1.2 KHz. The average execution time for the v=f code was found to be 20 S, where as for vector control it took nearly 100 S. The PWM terminals and I/O lines of the DSP is used to output the timings and the triangle number respectively. To convert the triangle number and the timings to IGBT gate drive logic, an FPGA (XC3S200) was used. A constant dead-time of 1.5 S is also implemented inside the FPGA. Opto-isolated gate drivers with desaturation protection (M57962L) were used to drive the IGBTs. Hall-effect sensors were used to measure the phase currents and DC bus voltages. An incremental shaft position encoder with 2500 pulse per revolution is also connected to the motor shaft, to measure the angular velocity. 1200 V, 75 A IGBT half-bridge module is used to realize the switches. The concepts were initially simulated and experimentally verifi ed using laboratory prototypes at low power. While these concepts maybe easily extended to higher power levels by using suitably rated devices, the control techniques presented shall still remain applicable.
10

Jednofázový pulzní měnič DC/AC s digitálním řízením / DC/AC inverter with digital control

Štaffa, Jan January 2009 (has links)
This work is focused on single phase inverters, which are used for the conversion of the direct current to the alternating current and are nowdays used especially in systems of back-up power supply. The specific aim of this work is implementation of design hight power circuit of inverter include calculation of control algorithm. It describes the complete solution of power circuit. Next step is a analysis of problems concerning the digital control with help of signal processor which is used for solution of regulator structure. Check of the design and checkout of control algorithm is made in the form of simulation in the MATLAB Simulink. Debugged program algorithm is subsequently implemented into the signal microprocessor. The work results rate estimation functionality of inverter and solution of control algorithm.

Page generated in 0.0824 seconds