• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 5
  • Tagged with
  • 28
  • 28
  • 10
  • 9
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification de partenaires potentiels de la protéine ALG-1 : découverte de nouveau joueurs dans la voie des microARNs

Giguère, Nellie 17 April 2018 (has links)
Les miARNs, de courts ARNs non codant de 19 à 22 nucleotides, responsablent de la répression traductionnelle, d'approximativement 30 % des ARNm codant. Ils agissent par appariement de base sur des régions situées en 3'UTR des ARNm ciblés. Pour ce faire, les protéines argonautes s'associent aux miARNs et forment le complexe effecteur miRISC (microRNA-Induced Silencing Complex). Les mécanismes d'action de ce complexe ne sont pas bien compris et certains autres facteurs inconnus pourraient avoir un rôle important. Nous avons identifié, par criblage double hybride, plusieurs interacteurs de la protéine ALG-1, une argonaute impliquée dans la voie des miARNs chez C. elegans. Nous avons aussi mis en évidence un groupe de proteases homologues aux cathepsines humaines. Pour évaluer l'implication des cathepsines dans la voie des miARNs, nous avons utilisé un essai luciférase nous permettant d'apprécier l'effet de l'inhibition de ces proteases sur la traduction d'un ARNm réprimé par un miARN.
2

Identification d'un complexe de dégradation des microARNs chez le nématode Caenorhabditis elegans

Bossé, Gabriel 23 April 2018 (has links)
Présents chez tous les métazoaires, les microARNs jouent un rôle critique dans la régulation de gènes impliqués dans la prolifération et la différenciation cellulaire. Ces courtes molécules d'ARN altèrent la production protéique en liant spécifiquement les régions non codantes des ARNm. Les microARNs sont transcrits par l'ARN polymérase II (Pol II) sous forme d'un long transcrit primaire et vont passer par deux étapes de clivage successives pour former le microARN mature. Le microARN mature est pris en charge par une protéine Argonaute pour former le complexe effecteur de la voie, le miRISC. Chacune des étapes de la biogenèse des microARNs peut être régulée pour modifier la production globale ou spécifique des microARNs. Des études récentes ont démontré que la maturation et la stabilité des microARNs sont des facteurs importants pour conserver l'homéostasie cellulaire. De nombreuses évidences supportent qu'une altération du niveau cellulaire de ces petites molécules régulatrices contribue au développement et au maintien de diverses maladies, dont le cancer. À ce jour, il existe peu de connaissance sur le contrôle de la maturation et de la stabilité de ces courts ARNs non codants. Les deux Argonautes, alg-1 et alg-2 impliqués dans la voie des microARNs chez le nématode C. elegans sont synthétiques létaux. Un criblage génétique chez C. elegans visant à identifier de nouveaux gènes synthétiques létaux avec alg-2, a permis d'identifier la protéine DCS-1 comme étant impliqué dans la voie des microARNs. Chez C. elegans, la perte de dcs-1 affecte le niveau de plusieurs microARNs, affectant l'expression génique chez ces animaux. Des analyses biochimiques supportent que DCS-1 affecte l'activité d'une enzyme responsable de la dégradation des microARNs chez le nématode, et ce, de façon indépendante de son activité de dégradation de la coiffe des ARNm. De plus, dans l'optique d'identifier les membres du complexe de dégradation, une analyse par spectrométrie de masse a permis d'identifier plusieurs candidats potentiels. Une analyse préliminaire de l'un de ces candidats a permis de démontrer que sa perte de fonction entraîne l'apparition de phénotype associé à une diminution de l'activité de la voie des microARNs et affecte le niveau de certains microARNs. Cette protéine, PPM-2, est une phosphatase et pourrait affecter le statut de phosphorylation d'une protéine importante pour la stabilité ou la dégradation des microARNs. En conclusion, DCS-1 fait partie d'un complexe de dégradation des microARNs avec la protéine XRN-1. L'identification de ce nouveau complexe de dégradation permet de mieux comprendre les mécanismes responsables du contrôle de ces ARNs. Une meilleure connaissance des mécanismes régulant la production et la stabilité des microARNs pourrait mener au développement de nouvelles avenues thérapeutiques. / In all metazoans, microRNAs play a critical role in the regulation of genes implicated in cell proliferation and differentiation. These small non-coding RNAs form a silencing complex called miRISC and alter protein synthesis upon binding mRNA untranslated regions (UTRs). miRNAs are transcribed by RNA Pol II as a long transcript call the pri-miRNA. The pri-miRNA will go through two steps of cleavage to form the mature miRNA. This mature miRNA is then loaded onto an Argonaute protein to form the effector complex; the miRISC. Each step of miRNA biogenesis is tightly regulated. Recently, miRNA production and stability have been shown to be an important step in this pathway. Several proteins, such as p53, can modulate microRNA biogenesis and many other proteins are implicated in miRNA stabilization and degradation. A tight control of these regulatory RNA is essential since miRNA misregulation is associated with several diseases. Here we identified the ortholog of human decapping enzyme DcpS (DCS-1) as an important regulator of miRNA level in C. elegans by forming a degradation complex with XRN-1, idependantly of its catalytic activity. In C. elegans, the loss of dcs-1 affects the level of several microRNAs leading to a misregulation of their mRNA targets. Biochemical analysis, support that DCS-1 contributes to degradation of unbound microRNA, which is dependent on the 5' to 3' exonuclease XRN-1. In order to better understand the regulation of miRNAs, we sought to identify other members of this complex. An initial study of proteins identified by mass spectrometry revealed that the loss of ppm-2 induces several developmental defects associated with the loss of miRNAs. As PPM-2 is a phosphatase, our results suggest that it could affect the stability of the degradation complex by targeting one of its components or the miRNA loading on the Argonaute protein. In conclusion, our data support that DCS-1 is part of a degradation complex. Importantly, this study identified the first modulators of microRNA degradation in animals and proteins forming this complex are conserved in human suggesting that they could also be implicated in microRNA degradation in higher organisms. Since microRNA are misregulated in many human diseases, identification of factors modulating their stability could lead to new therapeutic approaches.
3

Caractérisation fonctionnelle de la voie des microARNs chez le nématode caenorhabditis elegans

Jannot, Guillaume 19 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2012-2013. / Les microARNs sont des petites molécules d'ARN non-codant conservées à travers les espèces qui régulent négativement l'expression génique au niveau post-transcriptionel. Ils figurent parmi les acteurs majeurs du maintien de l'homéostasie cellulaire et leur dérégulation est à l'origine de nombreuses pathologies humaines. Leur biogenèse consiste en deux étapes de maturation successives effectuées par les enzymes Drosha et Dicer, pour générer une molécule effectrice d'ARN d'une longueur de 21-23 nucleotides. La courte molécule produite s'assemble avec une protéine de la famille Argonaute pour former un complexe ribonucléoprotéique capable de cibler spécifiquement un ARNm et d'éteindre son expression. Pour mieux comprendre comment les microARNs régulent l'expression génique, l'objectif principal de mon doctorat a été d'étudier le rôle de la protéine Argonaute ALG-1, en utilisant le nematode Caenorhabditis elegans comme modèle animal. Nous avons dans un premier temps recherché quelles caractéristiques moléculaires étaient importantes pour déterminer la sélection spécifique des protéines Argonautes essentielles à la voie des microARNs parmi les nombreuses Argonautes retrouvées chez le nematode C. elegans. Par une approche génétique, nous avons découvert que la sélection des protéines Argonautes est affectée à la fois par la structure du duplex d'ARN double brins et par les caractéristiques spécifiques de chacune d'elles. Pour étudier plus précisément la fonction de la protéine Argonaute ALG-1, nous avons entrepris un criblage double-hybride pour identifier de nouveaux partenaires protéiques. Parmi eux, nous avons identifié puis prouvé l'importance de la protéine ribosomale RACK1 dans la voie de régulation des microARNs chez le nematode et l'humain. Nous avons démontré que la perte de fonction de RACK1 affecte l'association des microARNs et des protéines Argonaute avec les ribosomes actifs suggérant une contribution de cette protéine dans le recrutement de ces complexes aux sites actifs de traduction. Finalement, nous avons développé une approche génétique systématique permettant d'adresser génétiquement l'implication des partenaires d'ALG-1 dans la voie des microARNs. Collectivement, mes travaux de doctorat nous ont permis de contribuer à l'élargissement des connaissances associées à cette mécanistique complexe de régulation des gènes par les microARNs chez l'animal.
4

Étude de la fonction des Rho GAP au cours du développement embryonnaire du nématode caenorhabditis elegans

Boulier, Élodie 07 1900 (has links) (PDF)
Ce projet vise à cartographier la machinerie de régulation des Rho GTPases chez C. elegans afin de mieux comprendre les mécanismes d'intégration des voies de signalisation au cours du développement des organismes multicellulaires. La première partie du projet consistait à caractériser la spécificité catalytique des Rho GAP envers les Rho GTPases in silico et in vitro. En adaptant un programme de prédiction de structures tridimensionnelles, Combinatorial Extension (CE), nous avons pu faire corréler une similitude structurelle avec la spécificité catalytique des GAP. Ce prédicteur amélioré a validé des interactions GAP-GTPase connues: cinq chez les mammifères et quatre avec des GAP homologues chez C. elegans. Les résultats de conservation des interactions que nous avons obtenus, permettent de justifier l'utilisation de ce nématode comme modèle d'étude pour l'humain. Par la suite, nous avons optimisé les essais expérimentaux pour tester la spécificité catalytique des Rho GAP de C. elegans en vue de valider le prédicteur. Dans la deuxième partie nous avons étudié les interactions fonctionnelles des Rho GAP au cours du développement embryonnaire du C. elegans in vivo. Les résultats obtenus nous ont aidés à mieux comprendre le réseau de régulation de la GTPase rho-1 par les GAP rga-5, gei-1 et rga-13 au cours de l'élongation embryonnaire. De plus, nous savons désormais qu'ocrl-1 est dans une voie antagoniste à rga-5. Enfin, dans la troisième partie de notre travail, nous avons mis au point une méthode d'analyse haut débit des interactions génétiques des Rho GAP sur le cytomètre en flux pour vers (le COPAS Biosort) avec des transgéniques histone::GFP. Puis cette méthode a été adaptée pour permettre d'utiliser des souches non fluorescentes, en colorant les noyaux des cellules des embryons fixés. Ce travail a apporté un nouvel outil de prédictions et a permis de simplifier les méthodes de travail pour l'étude des machineries de régulation de GTPases Rho. La technique haut-débit que nous avons développée pourrait aussi s'adapter à l'étude d'autres régulateurs (GEF, etc). ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Caenorhabditis elegans, Rho GAP, prédicteur, développement embryonnaire, haut débit
5

Caractérisation fonctionnelle de GIT-1, PIX-1 et PAK-1 chez C.elegans

Harel, Sharon 08 1900 (has links) (PDF)
Le nématode Caenorhabditis elegans est un organisme polyvalent et unique pour l'étude de la biologie du développement, de la neurologie et des mécanismes complexes de signalisation des GTPases. Ce modèle animal offre une opportunité unique pour l'étude du rôle des protéines dans le développement neurologique et les maladies. Les recherches portaient sur trois gènes : pix-1, git-1 et pak-1. Chez les mammifères, GIT / PIX / PAK agissent comme une plateforme d'intégration de la signalisation des GTPases Rho et Arf dans les processus biologiques tels que : la polarité cellulaire, la migration, le trafic vésiculaire, la formation des synapses et la morphologie des épines dendritiques. Ces recherches ont amené l'utilisation des approches génétiques et microscopiques pour établir que pix-1, git-1 et pak-1 contrôlent les phases précoces et tardives de l'élongation de l'embryon par la régulation de l'activité des chaînes légères de myosine (CLM). Les résultats de recherche suggèrent un positionnement de pix-1 et pak-1 dans l'une des voies de signalisation contrôlant la phosphorylation de ces CLMs en parallèle de la voie mel-11 / let-502. MEL-11 est une phosphatase des CLMs agissant de façon antagoniste à LET-502 (une kinase effectrice des Rhos) dans l'une des deux voies de signalisation redondantes qui assurent l'étape précoce d'élongation embryonnaire. Les résultats suggèrent, de plus, l'implication de mel-11 et let-502 au cours de la phase tardive de l'allongement. Un certain nombre de résultats suggèrent aussi une implication des intégrines ina-1 dans ces processus. La caractérisation fonctionnelle de pix-1, git-1 et pak-1 chez les nématodes adultes démontre leur implication dans le contrôle du comportement de recherche de nourriture (comportement de forage). Ce comportement dépend de la neutotransmission glutamatergique et dopaminergique et implique des mécanismes cellulaires similaires à la plasticité synaptique chez les mammifères. Un lien a été établi entre l'expression des récepteurs au glutamate AMPA homologue de GLR-l et PIX-l en utilisant la microscopie quantitative, la cytométrie de flux et des tests de comportement dans des labyrinthes micro-fluidiques secs. Les résultats suggèrent que les animaux mutants pour pix-1 contrôleraient la neurotransmission glutamatergique de façon indirecte. La conservation fonctionnelle du complexe GIT / PIX / PAK chez les invertébrés permettrait d'utiliser notre modèle dans l'identification de cibles thérapeutiques et de composés actifs contre les pathologies associées à des mutations dans aPIX et PAK3. Il aidera en outre à fournir des éclaircissements sur la fonction et les mécanismes de régulation des GTPases. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : GTPases monomériques, GIT/PIX/PAK., C. elegans, signalisation cellulaire, développement embryonnaire, neuro-transmission glutamatergique.
6

Caractérisation moléculaire de la tankyrase chez le nématode caenorhabditis elegans /

Gravel, Catherine. January 2003 (has links)
Thèse (M.Sc.)--Université Laval, 2003. / Bibliogr.: f. 72-87. Publié aussi en version électronique.
7

Étude de la régulation rétroactive des cellules souches germinales chez C. elegans

Roy, Vincent 09 November 2022 (has links)
Les cellules souches portent de grandes promesses envers la médecine régénératrice, tandis que leur perturbation peut mener au cancer. Ainsi, il est fondamental de définir les interactions qui prennent place au sein d'un organisme entre les cellules souches et leur micro- et macro-environnement. Chez le nématode Caenorhabditis elegans, les niveaux de prolifération des cellules souches germinales (CSG) sont régis par l'abondance de leur progéniture différenciée à travers une interaction entre la voie de signalisation ERK/MAPK et la kinase activée par l'AMP (AMPK). Cependant, l'intersection moléculaire entre AMPK et la voie MAPK demeure toujours inconnue. En regard aux déterminants embryonnaires précoces et PAR-4/LKB1, principale kinase activant AMPK, nos travaux ont démontré l'expression ubiquitaire de par-4 et l'enrichissement cytoplasmique et cortical de PAR-4 dans la lignée germinale et les embryons précoces, en plus d'une décroissance transitoire de l'enrichissement cortical de PAR-4 dans la zone pachytène. De plus, nos travaux suggèrent que par-4b est suffisant pour établir la polarité embryonnaire et maintenir la fonction essentielle de par-4. Par ailleurs, quant aux déterminants régissant la prolifération des CSG, nous avons constaté que chez les adultes porteurs d'ovocytes, LIN-3/EGF et LET-23/EGFR sont nécessaires pour promouvoir la prolifération des CSG. De surcroit, nous avons démontré que DAF-18/PTEN prévient l'ovulation d'ovocytes non-fécondés et contribue au mécanisme de rétroaction de la prolifération des CSG. Nos résultats indiquent aussi que l'état de prolifération des CSG est corrélé, de manière inversement proportionnelle, à la quantité d'ovocytes anovulés, et ne forme donc pas une régulation binaire, mais plutôt progressive. Finalement, nous avons démontré que DAF-18/PTEN prévient la prolifération des CSG en l'absence de sperme de façon strictement zygotique, potentiellement à travers son rôle dans la gonade somatique, car sa perte de fonction altère légèrement les contractions des cellules de la gaine. Ainsi, ces travaux approfondissent globalement les principales voies de signalisation physiologiquement impliquées dans la régulation homéostatique de la prolifération des cellules souches germinales chez le nématode C. elegans, et pourraient avoir des retombées envers la médecine humaine. / Stem cells hold great promises for regenerative medicine, whilst their disruption may lead to cancer. Therefore, it is fundamental to define the interactions between stem cells and their micro- and macro-environment. In the nematode Caenorhabditis elegans, retroactive control of germline stem cells (GSC) proliferation levels is governed by the abundance of their differentiated progeny through an interaction between ERK/MAPK signaling pathway and AMP-activated kinase (AMPK). However, the molecular intersection between AMPK and the MAPK pathway still remains unknown. With regard to early embryonic determinants and PAR-4/LKB1, the main kinase activating AMPK, our work has demonstrated the ubiquitous expression of par-4 and the cytoplasmic and cortical enrichment of PAR-4 in the germline and early embryos, in addition to a transient decrease in cortical PAR-4 enrichment in the pachytene zone. Furthermore, our work suggests that par-4b is sufficient to establish embryonic polarity and maintain essential par-4 function. Moreover, regarding the determinants governing GSC proliferation, we found that in oocyte-bearing adults, LIN-3/EGF and LET-23/EGFR are required to promote GSC proliferation. Additionally, we demonstrated that DAF-18/PTEN is involved in ovulation of fertilized oocytes and contributes to germline stem cell proliferation feedback mechanism. Our results also indicate that GSC proliferation status correlates, in a inversely proportional manner, to the amount of anovulated oocytes, and consequently does not form a binary regulation, but rather a progressive one. Finally, we demonstrated that the strictly zygotic effect of DAF-18/PTEN promotes GSC proliferation, potentially through its role in the somatic germline, since its loss of function slightly alters sheath cells contractions. Thus, this work broadly deepens the main signaling pathways physiologically involved in the homeostatic regulation of stem cell in the nematode C. elegans, but could have implications for human medicine.
8

Étude sur la fonction de la phosphorylation de la protéine Argonaute ALG-1 chez C. elegans

Quévillon-Huberdeau, Miguel 26 March 2024 (has links)
NOTICE EN COURS DE TRAITEMENT / Les microARN (miARN) sont des courts ARN non codants qui régulent l'expression des gènes, au niveau post-transcriptionnel. Ces molécules d'environ 22 nucléotides de long s'associent aux protéines Argonautes (AGO) pour former un complexe appelé microRNA induced silencing complex (miRISC). Ensuite, les miARN recrutent le miRISC à des séquences partiellement complémentaires, dans les régions 3' non traduites d'ARN messagers (ARNm). Le miRISC peut ainsi réprimer la traduction d'ARNm spécifiques et souvent induire leur dégradation. Ce mécanisme est notamment important pour le développement animal et des défauts dans cette voie moléculaire sont liés à diverses pathologies chez l'humain. Des évidences récentes montrent que les interacteurs du miRISC et son mode d'action sur les ARNm peuvent diverger à différents moments du développement du nématode Caenorhabditis elegans. Nous avons donc posé l'hypothèse que des modifications post-traductionnelles pourraient expliquer certaines de ces différences moléculaires et fonctionnelles. Les objectifs de ce projet de recherche étaient donc d'identifier les événements de phosphorylation sur la protéine Argonaute ALG-1 de C. elegans et de déterminer leur fonction biologique au cours du développement animal. À cette fin, nous avons purifié la protéine Argonaute ALG-1 chez C. elegans avec un anticorps spécifique, ainsi que ses orthologues humains AGO 1-4, à partir de cellules humaines en culture. Nous avons déterminé par spectrométrie de masse les modifications post-traductionnelles sur ces protéines. En utilisant des méthodes de mutagenèse par édition du génome chez C. elegans, nous avons criblé l'importance de nombreux sites de phosphorylation en s'attardant aux phénotypes associés à la perte de fonction des miARN. Ceci nous a permis de mettre en évidence l'importance d'une région phosphorylable conservée de cinq résidus sérines/thréonine sur le domaine PIWI des Argonautes. La perte de phosphorylation de ALG-1, lorsque ces acides aminés sont mutés en alanines, produit des phénotypes développementaux beaucoup plus sévères que chez des animaux déplétés du gène alg-1. Au niveau moléculaire, nous avons montré, à partir de cellules humaines en culture, que l'hyperphosphorylation de ces acides aminés réduit l'association aux ARNm. De plus, nous avons montré que des mutants AGO2 qui ne sont pas en mesure de lier les miARN, ne sont pas hyperphosphorylés sur ces résidus dans les cellules humaines en culture. Ces résultats mettent en évidence un nouveau mécanisme de régulation de la voie de miARN, dans lequel l'hyperphosphorylation du domaine PIWI de l'Argonaute permet la dissociation du miRISC de sa cible. Nous proposons donc que la phosphorylation de cette région permettrait au miRISC d'être recyclé et de réprimer l'expression d'autres ARNm après sa déphosphorylation. En second lieu, notre crible a permis d'identifier une sérine phosphorylable sur le domaine MID de ALG-1 qui régule l'association de la protéine aux miARN, lors du développement du nématode. Nous avons montré que lorsque cette sérine est mutée en glutamate (phospho-mimétique) ALG-1 perd son association aux miARN. Par ailleurs, les animaux qui portent cette mutation présentent des niveaux de miARN moins élevés que chez les animaux sauvages, ainsi qu'une accumulation de brins passagers qui sont issus des duplex de miARN et normalement dissociés par AGO. Nous avons ensuite identifié l'enzyme qui produit la phosphorylation de cette sérine. Avec des expériences de phosphorylation in vitro, nous avons montré que cette phosphorylation pourrait être induite par la protéine kinase A (PKA). De surcroît, nos expériences soutiennent que alg-1 et PKA interagissent génétiquement. Précisément, le mutant non phosphorylable alg-1(S642A) supprime des phénotypes développementaux observés lors de la perte de fonction de la sous-unité régulatrice de PKA, kin-2. En somme, ce projet de recherche a permis de mettre en évidence un mécanisme conservé au cours de l'évolution qui régule l'association du miRISC aux ARNm par la phosphorylation des Argonautes, ainsi qu'un mécanisme qui régule l'association de ALG-1 aux miARN chez C. elegans. Notre étude indique d'ailleurs que le miRISC serait possiblement inhibé à des moments précis lors du développement animal, par exemple lors de la phosphorylation par PKA. Les études futures des voies signalétiques qui activent PKA chez le nématode nous permettra de mieux comprendre la fonction biologique et le contexte cellulaire qui requerrait l'inactivation du miRISC. / MicroRNAs (miRNAs) are a class of short non-coding RNAs that regulate gene expression in eukaryotes. These molecules are ~22 nucleotides in length and associate with Argonaute proteins (AGO) to guide them to mRNAs that contain sequences with partial complementarity, commonly found in the 3' untranslated region (UTR). The interaction between the miRISC (miRNA induced silencing complex) and the mRNA inhibits protein synthesis and often leads to degradation of the transcripts. While the function and importance of this gene regulation pathway has been studied in plant and animal models, mechanisms that modulate the miRISC gene silencing efficiency in different biological settings are still poorly understood. The hypothesis of my research project conveys the idea that post-translational modifications of Argonaute proteins modulate gene silencing during animal development. To test this hypothesis, we aimed to identify phosphorylation events on the Argonaute ALG-1 in the nematode C. elegans and uncover how these modifications affect its function during animal development. We purified ALG-1 protein from C. elegans extracts with a specific antibody and human Argonautes AGO1-4 from human cell cultures. We identified phosphorylated Argonaute peptides using mass spectrometry analysis and then we screened which modification affected ALG-1 function using gene editing. This led to the discovery of a highly conserved serine/threonine phosphorylation cluster on the PIWI domain of the Argonaute that when mutated into non-phosphorylatable amino-acids (alanine) caused phenotypes that were more severe than the loss of alg-1 in C. elegans. Molecular analysis of these phosphorylation sites showed that they modulate association to miRNA targets. Specifically, when using phospho-mimicking mutations on human AGO2, we showed that the hyperphosphorylation of this cluster causes the Argonaute to lose interaction with mRNAs. Furthermore, we showed that AGO mutants that are deficient for miRNA binding do not undergo hyperphosporylation. These results revealed a new mechanism that regulate miRNA-mediated gene silencing by which unphosphorylated AGO binds miRNA targets and following hyperphosporylation the miRISC is released from mRNAs. We proposed that this mechanism could be used by cells to recycle the complex and permit multiple rounds of silencing by the miRISC after dephosphorylation. Our forward genetic screen of ALG-1 phosphorylation sites identified a serine on the MID domain that modulates association to miRNAs. We showed that phospho-mimicking mutation of ALG-1 at this position impaired the ability of ALG-1 to bind most miRNAs. Furthermore, we found that this mutation led to accumulation of passenger strands miRNAs in the total RNA. Since the passenger strands are not bound by the phospho-mimicking mutant, we suggested that they accumulate as duplexes which would render them refractory to degradation by single stranded nucleases. Last we showed that the protein kinase A (PKA) phosphorylates this residue in vitro and interacts genetically with alg-1. Altogether, this research project uncovered new mechanisms that regulate the miRNA pathway through the phosphorylation of the Argonaute proteins. Our study also suggests that ALG-1 is inhibited at specific timing by PKA during C. elegans development, and further study of the biological settings that require this inactivation will be crucial to understand its function.
9

Role of the microrna pathway in Caenorhabditis elegans germline maintenance

Bukhari, Syed Irfan Ahmad 18 April 2018 (has links)
Les voies de régulation dépendant des courts ARN non-codants contrôlent plusieurs processus biologiques. Ces courts ARNs sont important dans le développement des cellules germinales de plusieurs espèces ainsi que dans la régulation génique et la résistance virale. Néanmoins, la contribution de la voie de régulation dépendant des microARNs dans la biogénèse des cellules germinales demeure peu comprise. Étant donné que les protéines Argonautes ALG-1 et ALG-2 sont exclusivement impliquées et indispensables à la voie des microARNs, nous avons décidé de manipuler génétiquement ces gènes afin de déterminer si la voie des microARNs est importante dans la prolifération et différentiation des cellules germinales des animaux en utilisant le nématode Caenorhabditis elegans comme modèle d’étude. La perte de fonction des gènes alg-1 et alg-2 rend les animaux stériles, ce qui est similaire aux phénotypes observés chez les nématodes mutant pour Drosha et Dicer (deux enzymes essentielles à la production des microARNs). Ainsi, ceci supporte que la voie de régulation des microARNs joue un rôle essentiel pour le maintien des cellules germinales. Pour définir le rôle précis de ALG-1 et ALG-2 dans les processus complexes de régulation des cellules germinales, nous avons tout d’abord établi la descendance des souches mutantes alg-1(gk214) et alg-2(ok304). Ces deux souches de nématodes ont un faible nombre de descendant qui peut s’expliquer par un problème dans la prolifération des cellules germinales, de méiose ou dans la formation de gamètes. Une analyse précise des gonades de ces animaux indique une plus petite région mitotique avec un nombre de cellules germinales en prolifération inférieur à celui retrouvé chez les animaux de type sauvage. Nous avons aussi observé que les cellules entrent en méiose de manière plus précoce dans les animaux alg-1 et alg-2 mutants, que ces mutants ont des défaut dans la formation de gamètes et qu’ils ont un nombre plus élevé de cellules germinales apoptotiques. En utilisant l’immunofluorescence et des rapporteurs d’expression, nous avons confirmé que ALG-1 et ALG-2 sont exprimées dans la DTC, une cellule spécialisée situé à l’extrémité distale des gonades de C. elegans qui est au cœur de la régulation de la transition mitose-méiose des cellules germinales. En utilisant une lignée transgénique qui exprime ALG-1 exclusivement dans la DTC, nous pouvons partiellement rétablir le nombre de descendants ainsi que rétablir totalement le nombre de cellules retrouvé dans la région mitotique. De façon intéressante, nous observons que la perte de cinq microARNs exprimés dans la DTC mène à des phénotypes similaires à ceux observés dans les mutants alg-1 et alg-2. Finalement, l’analyse de l’expression génique par micropuces des gonades de vers alg-1 mutant indique que la voie des microARNs contribue à la régulation de différentes voies moléculaires importantes pour la prolifération et la différentiation des cellules germinales. L’ensemble de ces études supporte l’implication de la voie des microARNs dans le contrôle de la biogénèse des cellules germinales chez C. elegans. / Small non-coding RNA pathways assume pleiotropic roles in the regulation of multitude of biological processes. These non-coding RNAs have been shown to be involved in germline development in diverse species, in addition to their well-known participation in gene regulation and viral resistance pathways. However, the contribution of the miRNA, one of the small non-coding RNA pathways in germline biogenesis has remained elusive. Since ALG-1 and ALG-2 are exclusively involved in the miRNA pathway and indispensible for miRNA mediated gene silencing, we decided to genetically manipulate these genes to address whether miRNA pathway plays an important role in germline proliferation and differentiation using C. elegans as animal model. As double knockout of alg-1 and alg-2 leads to sterility, which mirrors the phenotypes of Drosha and Dicer mutants, we reasoned that the miRNA pathway proteins are crucial in germline maintenance. To delineate the role of ALG-1 and ALG-2 in the complex processes of germline regulation, we first investigated the brood size of alg-1(gk214) and alg-2(ok304) animals. Both mutants had significantly decreased brood size, which could result from defects in germline proliferation, meiosis or gamete formation. An extensive analysis of the germline of these mutants revealed a smaller mitotic region with less number of proliferating germ cells compared to the wild type. We also observed early entry into meiosis in alg-1(gk214) and alg-2(ok304). Using immunofluorescence and transgenic reporters, we confirmed ALG-1 and ALG-2 expression in DTC, a specialized cell located at the tip of both C. elegans gonadal arms that regulates mitosis-meiosis transition. Using transgenic line with alg-1 expressed exclusively in the DTC, we were able to partially rescue the brood size defect and completely restored the number of cells in the mitotic region. These mutants also presented defects in gamete formation and an increase in germ cell apoptosis. Interestingly, we observed that the disruption of five miRNAs expressed in the DTC display similar phenotypes as observed in alg-1 and alg-2 mutants. Finally, gene expression analysis by microarray of alg-1 mutant gonads indicates that the miRNA pathway is involved in the regulation of different pathways important for germline proliferation and differentiation. Together, our data supports the role of miRNA pathway in controlling germline biogenesis in C. elegans.
10

Understanding the contribution of miRNA-specific endogenous slicer-Argonautes in Caenorhabditis elegans

Pal, Anisha 21 October 2024 (has links)
L'expression génique régule essentiellement la fonction d'une cellule. La régulation précise de l'expression génique par différents régulateurs, tels que les miARN, est importante pour les processus biologiques dans différents organismes, notamment le modèle de nématode Caenorhabditis elegans. Les miARN sont des courts ARN non-codants d'environ 21 nucléotides impliqués dans la régulation posttranscriptionnelles des gènes en se liant à la région 3'UTR des ARN. Le pri-miARN, transcrit par l'ARN polymérase II, est traité par le complexe microprocesseur (Drosha-DGCR8) dans le noyau, puis le pré-miARN est transporté vers le cytoplasme. Le pré-miARN, clivé par Dicer, produit un petit duplex d'ARN, composé d'une paire de miARN matures (brin guide), qui forme le miRISC lorsque chargé à l'Argonaute avec GW-182/TNRC6, et de miARN passagers (brin étoile), qui est éliminé. Le facteur clé fonctionnel dans la régulation post-transcriptionnelle des gènes est l'Argonaute, composé de quatre domaines majeurs : N-terminal, PAZ, MID et PIWI. En fonction de certains acides aminés du domaine PIWI, ressemblant à RNase H, l'Argonaute peut agir comme une endonucléase en coupant les liens phosphodiesters des ARN, ce qu'on appelle activité de découpe, activité activée par la tétrade catalytique DEDH en présence de cations divalents (Mg+2, Mn+2) et d'une complémentarité presque parfaite ou parfaite entre le court ARN et la cible. Bien que l'activité de découpe de l'Argonaute se soit révélée particulièrement essentielle dans d'autres voies de courts ARN non codants (piARN, siARN) chez différents organismes ainsi que dans la voie des miARN chez les plantes, la contribution de l'Argonaute-slicer dans la voie des miARN chez les systèmes animaux reste peu étudiée puisque, notamment, il n'y a pas de complémentarité parfaite entre les miARN et les cibles chez les animaux, et donc, les Argonautes slicers chez les animaux ne participent pas au clivage de la cible. Néanmoins, les Argonautes chez les animaux portent toujours la tétrade catalytique, responsable de l'activité de découpe. Des chercheurs ont montré que les Argonautes sont essentielles dans la production de miARN spécifiques (miR-451, miR-486) chez les vertébrés et certains groupes ont également montré le rôle de l'Argonaute dans la voie des miARN dans les cellules. Malgré ces études, à ce jour, aucune publication n'a montré la contribution plus large et la pertinence des Argonautes endogènes possédant une activité de découpe spécifiques des miARN chez les animaux. Dans ce travail de thèse, nous abordons l'objectif de « l'Argonaute-slicer » dans la voie des miARN. En prolongement du travail publié, réalisé en utilisant le système transgénique dans notre laboratoire par Bouasker et Simard, il était impératif pour nous de comprendre la contribution des Argonautes portant le motif DEDH endogènes. L'objectif de ma thèse était d'investiguer la contribution globale des Argonautes qui possède la tétrade catalytique dans la voie des miARN. En utilisant le système CRSPR-Cas9, nous avons généré des mutants d'Argonautes, en modifiant leur résidus catalytiques. Ensuite, nous avons utilisé des techniques de génétique et de biologie moléculaire pour aborder notre objectif dans le système modèle de C. elegans, portant des Argonautes exclusivement impliqués dans la voie des miARN. Au cours de l'étude, nous avons découvert que la contribution physiologique et moléculaire de l'activité de découpe des Argonautes endogènes dans la voie des miARN n'est pas essentielle pour la viabilité, contrairement à l'étude transgénique. Bien que dans des contextes spécifiques et des conditions stressantes, les mutants aient montré des changements significatifs dans les phénotypes physiologiques et moléculaires, notre analyse confirme un rôle modéré de l'Argonaute slicer dans les voies canoniques des miARN en conditions de laboratoire. De plus, ce travail montre également de façon évidente l'importance de l'analyse de la fonction moléculaire d'un gène endogène dans un organisme modèle par rapport à l'utilisation d'un système de surexpression transgénique in cellulo ainsi que dans un organisme modèle. Dans l'ensemble, cette étude systémique délimite la pertinence des résidus catalytiques des Argonautes endogènes dans la voie des miARN dans un système modèle de nématode établi et largement reconnu. / The gene expression essentially regulates the function of a cell. The precise regulation of gene expression using different regulators, such as miRNA, is essential for the biological processes in different organisms, including the nematode model organism Caenorhabditis elegans. The miRNAs are about 21 nt long short noncoding RNAs involved in PTGS. The production of miRNAs involves multiple sequential steps in the nucleus and cytoplasm, and then the mature miRNA binds to the complementary 3'UTR to regulate gene expression. The pri-miRNA, transcribed by RNA polymerase II, is processed by the microprocessor complex (Drosha-DGCR8) in the nucleus, and thereafter pre-miRNA is transported to the cytoplasm. Pre-miRNA, cleaved by Dicer in the cytoplasm, produces a small RNA duplex, which consists of a pair of mature miRNA (guide strand) and passenger miRNA (star strand). The passenger strand is discarded, and mature miRNA-loaded Argonaute, along with GW-182/ TNRC6, forms miRISC, binds to the target, and brings upon various factors to trigger PTGS. The functional key factor in PTGS is Argonaute, which is made up of four major domains: N-terminal, PAZ, MID, and PIWI. Depending on the amino acids at particular positions in the PIWI domain, resembling RNase H, Agoanute can act as an endonuclease to cleave phosphodiester bonds in the RNA backbone. This catalytic function of Argonaute is called slicer activity. In the presence of divalent cations (Mg+2, Mn+2), a specific catalytic tetrad (DEDH) carrying Argonaute can cleave target mRNA due to near-perfect or perfect complementarity between small RNA and target. Even though the slicing activity of Argonaute has been found particularly essential in other small RNA pathways (pi-RNA, si-RNA) in different organisms as well as in miRNA pathway in plants, the contribution of slicer-Argonaute in miRNA pathway in animal systems remains understudied due to varying limiting factors. Notably, there is the absence of perfect complementarity between miRNAs and targets in animals, compared to plants, and therefore, the slicer Argonautes in animals do not take part in target cleavage during PTGS. Nonetheless, Argonautes, involved in the miRNA pathway in animals, still carry the catalytic tetrad, which is responsible for the slicer activity. Researchers have shown that slicer Argonaute is essential in the production of specific miRNAs (miR-451, miR-486) in vertebrates, and some groups also showed the role of slicer Argonaute in miRNA pathway in cellulo. Despite these studies, to date no reports showed the broader contribution and relevance of the function of miRNA-specific endogenous slicer-Argoanutes in animals. In this doctoral work, we set out to address the purpose of the slicer-Argoanutes in the miRNA pathway. In continuation of the published work done previously using the transgenic system in our lab by Bouasker and Simard, it was imperative for us to understand the contribution of endogenous slicer Argonautes. The aim of my Ph.D was to investigate the comprehensive contribution of endogenous Argonautes, carrying catalytic tetrad, in the miRNA pathway. Using current gene editing technology, CRSPR-Cas9 system, we generated Argonaute mutants by altering catalytic residue. Then, we employed genetics and molecular biology techniques to address our aim in the C. elegans model system, carrying Argonautes exclusively implicated in the miRNA pathway. During this study, we found out that the physiological and molecular contribution of endogenous slicer-Argonautes in the miRNA pathway is not essential for viability, contradictory to the transgenic research. Even though in specific backgrounds and stressful conditions, mutants showed significant changes in physiological and molecular phenotypes, our analysis confirms a moderate role of slicer-Argonaute in canonical miRNA pathways in laboratory condition. Moreover, this work also glaringly shows the importance of analysis of the molecular function of an endogenous gene in a model organism compared to the usage of a transgenic overexpression system in cellulo as well as in a model organism. Overall, this systemic study delineates the relevance of slicing residues of endogenous Argonautes in the miRNA pathway in an established and widely recognized nematode model system.

Page generated in 0.0379 seconds