• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inclusion de données indirectes dans la simulation de réseaux de fractures discrets / Add indirect data into stochastic simulation of Discrete Fracture Networks

Bonneau, François 22 September 2014 (has links)
Les méthodes stochastiques de modélisation discrète de réseaux de fractures reposent principalement sur la reproduction de la géométrie du réseau de fractures naturelles décrit par des lois de distributions statistiques. Classiquement, la géométrie de chaque objet est simulée en déterminant la position, l'orientation et la géométrie d'objets planaires représentant une fracture. Cependant, l'organisation générale du réseau est émergente d'un processus stochastique et stationnaire. Cette thèse explore une approche stochastique pseudo-génétique définissant des règles d'implantation et de propagation d'objets non planaires qui permet de contraindre l'émergence d'une organisation fractale particulière. La simulation mime le processus de fracturation naturelle en contraignant le positionnement et la géométrie de chaque fracture par la zone d'accumulation des contraintes et la zone d'ombre définie autour de chaque fracture déjà simulée. Nous étudierons l'impact de la méthode proposée sur la dimension fractale du réseau de fractures discret. De même, nous mènerons une étude quantifiant l'impact de notre méthode de simulation sur la connectivité des modèles et leur seuil de percolation. La validation des approches stochastiques se base sur le réalisme de la géométrie et du comportement des modèles produits. L'approche précédemment décrite contraint les géométries locale et globale des réseaux de fractures discrets par des lois statistiques et des concepts issus de la mécanique de la fracturation. L'imagerie des discontinuités mécaniques peut aussi passer par l'interprétation de données indirectes évaluant le comportement physique et/ou dynamique du volume de roche fracturé. Nous proposons une approche efficace pour intégrer à la simulation stochastique des considérations relatives à des tests de traceurs et à la microsismicité. Nous intégrerons ces considérations à la simulation directe des objets sans passer par une optimisation qui pourrait être couteuse en temps de calcul et corrompre l'organisation fractale du réseau de fracture discret / The stochastic simulation of discrete fracture network is based on the sampling of distribution law that describes the geometry of natural fracture networks. It generally simulates each fracture by selecting the position, the geometry and the dimensions of a planar object. The general organization of the discrete fracture network emerges from this stationary and stochastic process. This thesis explores a pseudo genetic and stochastic approach using rules that drive the seeding and the propagation of non planar objects, and allow the emergence of a fractal organization. The simulation mimics the natural fracturing process by considering the constraint accumulation zone and the shadow zone associated to each fracture already simulated in the fracture seeding, growth and linkage. We explore the impact of the method on the fractal dimension of discrete fracture network models, and we quantify its impact on both the connectivity and the percolation threshold. The validation of the stochastic approach is based on the realism of models both in terms of geometry and impact on its physical behavior. Our approach constrains the geometry of discrete fracture networks at fracture and at fracture network scales using statistic distribution laws and mechanical concepts. Mechanical discontinuities can also be described by indirect data that quantify the response of the fractured rock volume to dynamic or mechanical stimulation. We propose an efficient way to take into account flow information recorded from tracer tests and microseismic events that trigger after a hydraulic stimulation. The method is integrated during the stochastic simulation in order to remove the need of an optimization process that may be time consuming or may impact the fractal organization of the network
2

Modélisation, analyse et réduction des systèmes biologiques / Modeling, analysis and reduction of biological systems

Casagranda, Stefano 30 June 2017 (has links)
Cette thèse porte sur la modélisation, l'analyse et la réduction de modèles biologiques, notamment de réseaux de régulation génique chez la bactérie E. coli. Différentes approches mathématiques sont utilisées. Dans la 1ère partie de la thèse, on modélise, analyse et réduit avec des outils classiques un modèle de transcription-traduction de grande dimension de l'ARN polymérase (RNAP) chez E. coli. Dans la 2de partie, l'introduction d'une nouvelle méthode appelée Analyse de Processus Principaux (PPA) nous permet d'analyser des modèles de haute dimension, en les décomposant en processus biologiques dont l'activité est évaluée pendant l'évolution du système. L'exclusion des processus inactifs réduit la dynamique du modèle à ses principaux mécanismes. La méthode est appliquée à des modèles d'horloge circadienne, de toxicologie endocrine et de voie de signalisation ; on teste également sa robustesse aux variations des conditions initiales et des paramètres. Dans la 3ème partie, on présente un modèle ODE de la machinerie d'expression génique de cellules d'E. coli dont la croissance est contrôlée par un inducteur de la synthèse de RNAP. On décrit notre contribution au développement du modèle et analyse par PPA les mécanismes essentiels du réseau de régulation. Dans une dernière partie, on modélise spécifiquement la réponse de RNAP à l'ajout d'inducteur et estime les paramètres du modèle à partir de données de cellules individuelles. On discute l'importance de considérer la variabilité entre cellules pour modéliser ce processus : ainsi, la moyenne des calibrations sur chaque cellule apparaît mieux représenter les données moyennes observées que la calibration de la cellule moyenne. / This thesis deals with modeling, analysis and reduction of various biological models, with a focus on gene regulatory networks in the bacterium E. coli. Different mathematical approaches are used. In the first part of the thesis, we model, analyze and reduce, using classical tools, a high-dimensional transcription-translation model of RNA polymerase in E. coli. In the second part, we introduce a novel method called Principal Process Analysis (PPA) that allows the analysis of high-dimensional models, by decomposing them into biologically meaningful processes, whose activity or inactivity is evaluated during the time evolution of the system. Exclusion of processes that are always inactive, and inactive in one or several time windows, allows to reduce the complex dynamics of the model to its core mechanisms. The method is applied to models of circadian clock, endocrine toxicology and signaling pathway; its robustness with respect to variations of the initial conditions and parameter values is also tested. In the third part, we present an ODE model of the gene expression machinery of E. coli cells, whose growth is controlled by an external inducer acting on the synthesis of RNA polymerase. We describe our contribution to the design of the model and analyze with PPA the core mechanisms of the regulatory network. In the last part, we specifically model the response of RNA polymerase to the addition of external inducer and estimate model parameters from single-cell data. We discuss the importance of considering cell-to-cell variability for modeling this process: we show that the mean of single-cell fits represents the observed average data better than an average-cell fit.
3

Calibration de modèles financiers par minimisation d'entropie relative et modèles avec sauts

Nguyen, Laurent 18 December 2003 (has links) (PDF)
Le smile de volatilité implicite observé sur les marchés d'options traduit l'insuffisance du modèle de Black et Scholes. Avec la nécessité d'élaborer un modèle d'actif financier plus satisfaisant, vient celle de sa calibration, objet de cette thèse. <br />La calibration de modèles financiers par minimisation de lentropie relative a été proposée récemment dans le cadre de la méthode de Monte Carlo. On a étudié la convergence et la stabilité de cette méthode et on a étendu les résultats à des critères plus généraux que lentropie relative. La prise en compte des contraintes sur le sous-jacent assurant labsence dopportunité darbitrage a été abordée sous langle dun problème de moments.<br />Dans la seconde partie, on a considéré un modèle simple du phénomène de krach en introduisant en particulier des sauts dans la volatilité du sous-jacent. On a calculé le risque quadratique et effectué un développement approché du smile utile pour la calibration.<br />Finalement, dans la troisième partie, on utilise lentropie relative pour calibrer lintensité des sauts dun modèle de diffusion avec sauts et volatilité locale. La stabilité de la méthode a été prouvée grâce à des techniques de contrôle optimal ainsi quau théorème des fonctions implicites.
4

Synchronisation d'oscillateurs biologiques : modélisation, analyse et couplage du cycle cellulaire et de l’horloge circadienne / Synchronization of biological oscillators : modeling, analysis and coupling of the mammalian cell cycle and circadian clock

Figueiredo Almeida, Sofia José 17 December 2018 (has links)
Le cycle de division cellulaire et l'horloge circadienne sont deux processus fondamentaux de la régulation cellulaire qui génèrent une expression rythmique des gènes et des protéines. Dans les cellules mammifères, les mécanismes qui sous-tendent les interactions entre le cycle cellulaire et l'horloge restent très mal connus. Dans cette thèse, nous étudions ces deux oscillateurs biologiques, à la fois individuellement et en tant que système couplé, pour comprendre et reproduire leurs principales propriétés dynamiques, détecter les composants essentiels du cycle cellulaire et de l'horloge, et identifier les mécanismes de couplage. Chaque oscillateur biologique est modélisé par un système d'équations différentielles ordinaires non linéaires et ses paramètres sont calibrés par rapport à des données expérimentales: le modèle du cycle cellulaire se base sur les modifications post-traductionnelles du complexe Cdk1-CycB et mène à un oscillateur de relaxation dont la dynamique et la période sont contrôlés par les facteurs de croissance; le modèle de l'horloge circadienne reproduit l'oscillation antiphasique BMAL1/PER:CRY et l'adaptation de la durée des états d'activation et répression par rapport à deux signaux d’entrée hormonaux déphasés. Pour analyser les interactions entre les deux oscillateurs nous étudions la synchronisation des deux rythmes pour des régimes de couplage uni- ou bi-directionnels. Les simulations numériques reproduisent les ratios entre les périodes de l'horloge et du cycle cellulaire, tels que 1:1, 3:2 et 5:4. Notre étude suggère des mécanismes pour le ralentissement du cycle cellulaire avec des implications pour la conception de nouvelles chronothérapies. / The cell division cycle and the circadian clock are two fundamental processes of cellular control that generate cyclic patterns of gene activation and protein expression, which tend to be synchronous in healthy cells. In mammalian cells, the mechanisms that govern the interactions between cell cycle and clock are still not well identified. In this thesis we analyze these two biological oscillators, both separately and as a coupled system, to understand and reproduce their main dynamical properties, uncover essential cell cycle and clock components, and identify coupling mechanisms. Each biological oscillator is first modeled by a system of non-linear ordinary differential equations and its parameters calibrated against experimental data: the cell cycle model is based on post-translational modifications of the mitosis promoting factor and results in a relaxation oscillator whose dynamics and period are controlled by growth factor; the circadian clock model is transcription-based, recovers antiphasic BMAL1/PER:CRY oscillation and relates clock phases to metabolic states. This model shows how the relative duration of activating and repressing molecular clock states is adjusted in response to two out-of-phase hormonal inputs. Finally, we explore the interactions between the two oscillators by investigating the control of synchronization under uni- or bi-directional coupling schemes. Simulations of experimental protocols replicate the oscillators’ period-lock response and recover observed clock to cell cycle period ratios such as 1:1, 3:2 and 5:4. Our analysis suggests mechanisms for slowing down the cell cycle with implications for the design of new chronotherapies.

Page generated in 0.1488 seconds