• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 162
  • 17
  • 4
  • Tagged with
  • 379
  • 379
  • 113
  • 64
  • 46
  • 44
  • 35
  • 33
  • 29
  • 28
  • 28
  • 23
  • 23
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Deterministic Culturing of Single Cells in 3D

Rohil Jain (10214468) 01 March 2021 (has links)
Models using 3D cell culture techniques are increasingly accepted as the most biofidelic in vitro representations of tissues for research. These models are generated using biomatrices and bulk populations of cells derived from tissues or cell lines. This thesis study focuses on an alternate method to culture individually selected cells in relative isolation from the rest of the population under physiologically relevant matrix conditions. Matrix gel islands are spotted on a cell culture dish to act as support for receiving and culturing individual single cells; a glass capillary-based microfluidic setup is used to extract each desired single cell from a population and seed it on top of an island. Using examples of breast and colorectal cancers, we show that individual cells evolve into tumors or aspects of tumors displaying different characteristics of the initial cancer type and aggressiveness. By implementing a morphometry assay with luminal A breast cancer, we demonstrate the potential of the proposed approach to studying phenotypic heterogeneity. Results reveal that intertumor heterogeneity increases with time in culture and that varying degrees of intratumor heterogeneity may originate from individually seeded cells. Moreover, we observe a positive correlation between fast-growing tumors and the size and heterogeneity of their nuclei.
362

Mdm2-p53 Signaling in Tissue Homeostasis and the DNA Damage Response: A Dissertation

Gannon, Hugh S. 28 June 2012 (has links)
The p53 transcription factor responds to various cellular stressors by regulating the expression of numerous target genes involved in cellular processes such as cell cycle arrest, apoptosis, and senescence. As these downstream pathways are harmful to the growth and development of normal cells when prolonged or deregulated, p53 activity needs to be under tight regulatory control. The Mdm2 oncoprotein is the chief negative regulator of p53, and many mouse models have demonstrated that absence of Mdm2 expression leads to constitutive p53 activation in a variety of cell types. While unregulated p53 can be deleterious to cells, functional p53 is essential for tumor suppression, as many human cancers harbor p53 mutations and p53 knockout mice rapidly develop spontaneous tumors. Therefore, the mechanisms that control p53 regulation by Mdm2 are critical to ensure p53 activity in the appropriate cellular context. Many genetically engineered mouse models have been created to analyze p53 and Mdm2 functions and these studies have yielded valuable insights into their physiological roles. This dissertation will describe the generation and characterization of novel mutant Mdm2 mouse models and their use to interrogate the roles of p53-Mdm2 signaling in tissue homeostasis and cell stress responses. Deletion of Mdm2 in epidermal progenitor cells of the skin and hair follicles resulted in progressive hair loss and decreased skin integrity, phenotypes that are characteristic of premature aging. Furthermore, p53 protein levels, p53 target gene expression, and cellular senescence were all upregulated in the skins of these mice, and epidermal stem cell numbers and function were diminished. These results indicate that Mdm2 is necessary to limit p53 activity in adult tissues to ensure normal stem cell function. Additional mouse models used to determine the role of Mdm2 phosphorylation will also be presented. DNA damage triggers an extensive cellular response, including activation of the ATM kinase. ATM activity is necessary for p53 protein stabilization and, therefore, p53 activation, but in vivo evidence suggests that phosphorylation of p53 itself had little effect on p53 stability. ATM was previously shown to phosphorylate MDM2 at serine residue 395 (394 in mice), and we generated knock-in mutant mouse models to study the role of this posttranslational modification in vivo. Absence of this phosphorylation site led to greatly diminished p53 stability and function in response to γ-irradiation and increased spontaneous tumorigenesis in mice. Conversely, a phosphomimic model demonstrated prolonged p53 activation in cells treated with γ-irradiation, which revealed that phosphorylation of this Mdm2 residue controls the duration of the DNA damage response. Therefore, these mouse models have uncovered new roles for the p53-Mdm2 regulatory axis in vivo and will be useful reagents in future studies of posttranslational modifications in oncogene and DNA damage-induced tumorigenesis.
363

Cooperating Events in Core Binding Factor Leukemia Development: A Dissertation

Madera, Dmitri 10 March 2011 (has links)
Leukemia is a hematopoietic cancer that is characterized by the abnormal differentiation and proliferation of hematopoietic cells. It is ranked 7th by death rate among cancer types in USA, even though it is not one of the top 10 cancers by incidence (USCS, 2010). This indicates an urgent need for more effective treatment strategies. In order to design the new ways of prevention and treatment of leukemia, it is important to understand the molecular mechanisms involved in development of the disease. In this study, we investigated mechanisms involved in the development of acute myeloid leukemia (AML) that is associated with CBF fusion genes. The RUNX1 and CBFB genes that encode subunits of a transcriptional regulator complex CBF, are mutated in a subset (20 – 25%) of AML cases. As a result of these mutations, fusion genes called CBFB-MYH11 and RUNX1-ETO arise. The chimeric proteins encoded by the fusion genes provide block in proliferation for myeloid progenitors, but are not sufficient for AML development. Genetic studies have indicated that activation of cytokine receptor signaling is a major oncogenic pathway that cooperates in leukemia development. The main goal of my work was to determine a role of two factors that regulate cytokine signaling activity, the microRNA cluster miR-17-92 and the thrombopoietin receptor MPL, in their potential cooperation with the CBF fusions in AML development. We determined that the miR-17-92 miRNA cluster cooperates with Cbfb-MYH11 in AML development in a mouse model of human CBFB-MYH11 AML. We found that the miR-17-92 cluster downregulates Pten and activates the PI3K/Akt pathway in the leukemic blasts. We also demonstrated that miR-17-92 provides an anti-apoptotic effect in the leukemic cells, but does not seem to affect proliferation. The anti-apoptotic effect was mainly due to activity of miR-17 and miR-20a, but not miR-19a and miR-19b. Our second study demonstrated that wild type Mpl cooperated with RUNX1-ETO fusion in development of AML in mice. Mpl induced PI3K/Akt, Ras/Raf/Erk and Jak2/Stat5 signaling pathways in the AML cells. We showed that PIK3/Akt pathway plays a role in AML development both in vitro and in vivo by increasing survival of leukemic cells. The levels of MPL transcript in the AML samples correlated with their response to thrombopoietin (THPO). Moreover, we demonstrated that MPL provides pro-proliferative effect for the leukemic cells, and that the effect can be abrogated with inhibitors of PI3K/AKT and MEK/ERK pathways. Taken together, these data confirm important roles for the PI3K/AKT and RAS/RAF/MEK pathways in the pathogenesis of AML, identifies two novel genes that can serve as secondary mutations in CBF fusions-associated AML, and in general expands our knowledge of mechanisms of leukemogenesis.
364

Dissection of α6β4 Integrin-Dependent Signaling and Breast Carcinoma Invasion: A Dissertation

Yang, Xiaoqing 15 July 2011 (has links)
Breast cancer is one of the most prevalent cancers in the world. Each year, over 400,000 women die from breast cancer world wide and metastasis is the main cause of their mortality. Tumor cell invasion into the adjacent tissue is the first step in the multistep process of cancer metastasis and it involves multiple protein changes. The α6β4 integrin, a transmembrane heterodimeric laminin receptor is associated with poor prognosis in many tumor types, including breast cancer. Src family kinase (SFK) activity is elevated in many cancers and this activity also correlates with invasive tumor behavior. The α6β4 integrin can stimulate SFK activation and promote cancer invasion, however the mechanism by which it does so is not known. In the current study, I provide novel mechanistic insight into how the α6β4 integrin selectively activates the Src family kinase member Fyn in response to receptor engagement. Specifically, the tyrosine phosphatase SHP2 is recruited to α6β4 and its catalytic activity is stimulated through a specific interaction of its N-terminal SH2 domain with pY1494 in the β4 subunit. Importantly, both catalytic and non-catalytic functions of SHP2 are required for Fyn activation by α6β4. Fyn is recruited to the α6β4/SHP2 complex through an interaction with phospho-Y580 in the C-terminus of SHP2. In addition to activating Fyn, this interaction with Y580-SHP2 localizes Fyn to sites of receptor engagement, which is required for α6β4-dependent invasion. Moreover, the selective activation of Fyn, but not Src, requires the palmitoylation modification of Fyn on its N-terminus. Of clinical relevance, phospho-Y580-SHP2 and phospho-Y418-SFK could be used as potential biomarkers of invasive breast cancer because their expression are elevated in high-grade breast tumors.
365

Pathogenesis of the <em>Helicobacter</em> Induced Mucosal Disease: A Dissertation

Stoicov, Calin 17 June 2010 (has links)
Helicobacter pylori causes chronic gastritis, peptic ulceration and gastric cancer. This bacterium is one of the most prevalent in the world, but affects mostly the populations with a lower socioeconomical status. While it causes gastric and duodenal ulcers in only 20% of infected patients, less then 1% will develop gastric adenocarcinoma. In fact, H. pylori is the most important risk factor in developing gastric cancer. Epidemiological studies have shown that 80% of gastric cancer patients are H. pylori positive. The outcome of the infection with this bacterium depends on bacterial factors, diet, genetic background of the host, and coinfection with other microorganisms. The most important cofactor in H. pylori induced disease is the host immune response, even though the exact mechanism of how the bacterium is causing disease is unknown. The structural complexity of Helicobacter bacteria makes us believe that different bacterial factors interact with different components of the innate immunity. However, as a whole bacterium it may need mainly the TLR2 receptor to trigger an immune response. The type of adaptive immunity developed in response to Helicobacter is crucial in determining the consequences of infection. It is now known for decades that a susceptible host will follow the infection with a strong Th1 immune response. IFNγ, IL-12, IL-1β and TNF-α are the key components of a strong adaptive Th1 response. This is further supported by our work, where deficient T-bet (a master regulator for Th1 response) mice were protected against gastric cancer, despite maintaining an infection at similar levels to wild type mice. On the other hand, a host that is resistant to Helicobacter develops an infection that is followed by a Th2 response sparing the mucosa from severe inflammation. Human studies looking at single nucleotide polymorphism of cytokines, like IL-1β, IL-10 and TNF-α have clearly demonstrated how genotypes that result in high levels of IL-1β and TNF-α, but low IL-10 expression may confer a 50-fold higher risk in developing gastric cancer. The outcome of Helicobacter infection clearly relies on the immune response and genetic background, however the coinfection of the host with other pathogens should not be ignored as this may result in modulation of the adaptive immunity. In studying this, we took advantage of the Balb/C mice that are known to be protected against Helicobacter induced inflammation by mounting a strong Th2 polarization. We were able to switch their adaptive immunity to Th1 by coinfected them with a T. gondii infection (a well known Th1 infection in mice). The dual infected mice developed severe gastritis, parietal cell loss and metaplastic changes. These experiments have clearly shown how unrelated pathogens may interact and result in different clinical outcomes of the infected host. A strong immune response that results in severe inflammation will also cause a cascade of apoptotic changes in the mucosa. A strict balance between proliferation and apoptosis is needed, as its disruption may result in uncontrolled proliferation, transformation and metaplasia. The Fas Ag pathway is the leading cause of apoptosis in the Helicobacter-induced inflammation. One mechanism for escaping Fas mediating apoptosis is upregulation of MHCII receptor. Fas Ag and MHCII receptor interaction inhibits Fas mediated apoptosis by an impairment of the Fas Ag receptor aggregation when stimulated by Fas ligand. Because H. pylori infection is associated with an upregulation of the MHCII levels on gastric epithelial cells, this indeed may be one mechanism by which cells escape apoptosis. The link between chronic inflammation and cancer is well known since the past century. Helicobacter infection is a prime example how a chronic inflammatory state is causing uncontrolled cell proliferation that results in cancer. The cell biology of “cancer” is regarded not as an accumulation of cells that divide without any control, but rather as an organ formed of cancer stem cells, tumor stromal support cells, myofibroblasts and endothelial cells, which function as a group. The properties of the cancer stem cells are to self-renew and differentiate into tumor cells thus maintaining the tumor grow, emphasizing that a striking similarity exists between cancer stem cells and tissue stem cells. We looked into what role would BMDCs play in chronic inflammation that causes cancer. Using the mouse model of Helicobacter induced adenocarcinoma we discovered that gastric cancer originates from a mesenchymal stem cell coming from bone marrow. We believe that chronic inflammation, in our case of the stomach, sets up the perfect stage for bone marrow stem cells to migrate to the stomach where they are exposed to inflammatory stimuli and transform into cancer stem cells. One of the mechanism by which the MSC migrate to the inflammation site is the CXCR4/SDF-1 axis. Our work sheds new light on Helicobacter induced gastric cancer pathogenesis. I hope that our findings will promote the development of new therapies in the fight against this deadly disease.
366

The SMURF2-YY1-C-MYC Axis in the Germinal Center Reaction and Diffuse Large B Cell Lymphoma: A Dissertation

Trabucco, Sally E. 27 June 2016 (has links)
Diffuse large B cell lymphoma (DLBCL) is the most common non-Hodgkin’s lymphoma. Patients who fail conventional therapy (~50%) have a poor prognosis and few treatment options. It is essential to understand the underlying biological processes, the progression of the disease, and utilize this information to develop new therapeutics. DLBCL patients with high C-MYC expression have a poor prognosis and new therapeutics for these patients are needed. This thesis describes work testing the hypothesis that JQ1, which can indirectly inhibit C-MYC in some tumors, can be used as an effective treatment for DLBCL. Some tumors have an unknown mechanism causing high C-MYC expression, leading me to investigate the underlying mechanisms. YY1 is a transcriptional regulator of c- Myc and has been implicated in DLBCL and as a potential regulator of the germinal center (GC) reaction. DLBCL arises from GC cells or post-GC cells. I tested the hypothesis that YY1 regulates the GC reaction. SMURF2 is an E3-ubiquitin ligase for YY1 and a tumor suppressor for DLBCL. I was interested in examining the mechanism underlying the suppression of DLBCL by SMURF2 leading to the hypothesis that SMURF2 regulates the GC. This thesis shows JQ1 leads to cell death and cellular senescence in human DLBCL cells. I conclude that BRD4 inhibition by JQ1 or derivatives could provide a new therapeutic avenue for DLBCL patients. I also show loss of YY1 perturbs the GC by decreasing the dark zone and increasing apoptosis. Finally I show modulation of SMURF2 does not affect the GC, suggesting SMURF2 utilizes a different mechanism to act as a tumor suppressor and may not modulate YY1 in the context of the GC.
367

Identification and Characteristics of Factors Regulating Hepatocellular Carcinoma Progression and Metastasis: A Dissertation

Ahronian, Leanne G. 28 March 2014 (has links)
Hepatocellular carcinoma (HCC) is a common malignancy of the liver that is one of the most frequent causes of cancer-related death in the world. Surgical resection and liver transplantation are the only curative options for HCC, and tumor invasion and metastasis render many patients ineligible for these treatments. Identification of the mechanisms that contribute to invasive and metastatic disease may enlighten therapeutic strategies for those not eligible for surgical treatments. In this dissertation, I describe two sets of experiments to elucidate mechanisms underlying HCC dissemination, involving the activities of Krüppel-like factor 6 and a particular p53 point mutation, R172H. Gene expression profiling of migratory HCC subpopulations demonstrated reduced expression of Krüppel-like factor 6 (KLF6) in invasive HCC cells. Knockdown of KLF6 in HCC cells increased cell transformation and migration. Single-copy deletion of Klf6 in a HCC mouse model results in increased tumor formation, increased metastasis to the lungs, and decreased survival, indicating that KLF6 suppresses both tumor formation and metastasis in HCC. To elucidate the mechanism of KLF6-mediated tumor and metastasis suppression, we performed gene expression profiling and ChIP-sequencing to identify direct transcriptional targets of KLF6 in HCC cells. This analysis revealed novel transcriptional targets of KLF6 in HCC including CDC42EP3 and VAV3, both of which are positive regulators of Rho family GTPases. Concordantly, KLF6 knockdown cells demonstrate increased activity of the Rho family GTPases RAC1 and CDC42, and RAC1 is required for migration induced following KLF6 knockdown. Moreover, VAV3 and CDC42EP3 are also required for enhanced cell migration in HCC cells with KLF6 knockdown. Together, this work describes a novel signaling axis through which KLF6-mediated repression of VAV3 and CDC42EP3 inhibits RAC1Gmediated HCC cell migration in culture, and potentially HCC metastasis in vivo. TP53 gene mutations are commonly found in HCC and are associated with poor prognosis. Prior studies have suggested that p53 mutants can display gain-of- function properties in other tumor types. Therefore, I sought to determine if a particular hotspot p53 mutation, p53R172H, provided enhanced, gain-of-function properties compared to p53 loss in HCC. In vitro, soft agar colony formation and cell migration is reduced upon knockdown of p53R172H, indicating that this mutation is required for transformation-associated phenotypes in these cells. However, p53R172H-expressing mice did not have enhanced tumor formation or metastasis compared to p53-null mice. These data suggest that p53R172H and p53 deletion are functionally equivalent in vivo, and that p53R172H is not a gain-of-function mutant in HCC. Inhibition of the related transcription factors p63 and p73 has been suggested as a potential mechanism by which mutant p53 exerts its gain-of-function effects. Analysis of p63 and p73 target genes demonstrated that they are similarly suppressed in p53-null and p53R172H-expressing HCC cell lines, suggesting a potential explanation for the phenotypes I observed in vivo and in vitro. Together, the studies described in this dissertation increase our understanding of the mechanisms underlying HCC progression and metastasis. Specifically, we find and characterize KLF6 as a novel suppressor of HCC metastasis, and determine the contribution of a common p53 point mutation in HCC. This work contributes to ongoing efforts to improve treatment options for HCC patients.
368

Subtle Controllers: MicroRNAs Drive Pancreatic Tumorigenesis and Progression: A Dissertation

Quattrochi, Brian J. 13 April 2015 (has links)
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal malignancies in the United States, with an average five-year survival rate of just 6.7%. One unifying aspect of PDAC is mutational activation of the KRAS oncogene, which occurs in over 90% of PDAC. Therefore, inhibiting KRAS function is likely an effective therapeutic strategy for this disease, and current research in our lab and others is focused on identifying downstream effectors of KRAS signaling that may be therapeutic targets. miRNAs are powerful regulators of gene expression that can behave as oncogenes or tumor suppressors. Dysregulation of miRNA expression is commonly observed in human tumors, including PDAC. The mir-17~92 cluster of miRNAs is an established oncogene in a variety of tumor contexts, and members of the mir-17~92 cluster are upregulated in PDAC, but their role has not been explored in vivo. This dissertation encompasses two studies exploring the role of miRNAs in pancreatic tumorigenesis. In Chapter II, I demonstrate that deletion of the mir-17~92 cluster impairs PDAC precursor lesion formation and maintenance, and correlates with reduced ERK signaling in these lesions. mir-17~92 deficient tumors and cell lines are also less invasive, which I attribute to the loss of the miR-19 family of miRNAs. In Chapter III, I find that Dicer heterozygosity inhibits PDAC metastasis, and that this phenotype is attributable to an increased sensitivity to anoikis. Ongoing experiments will determine whether shifts in particular miRNA signatures between cell lines can be attributed to this phenotype. Together these findings illustrate the importance of miRNA biogenesis, and the mir-17~92 cluster in particular, in supporting PDAC development and progression.
369

A Tale of Two ARFs: Tumor Suppressor and Anti-viral Functions of p14ARF: A Dissertation

Straza, Michael W. 21 May 2010 (has links)
Animals have evolved complicated and overlapping mechanisms to guard against the development of cancer and infection by pathogenic organisms. ARF, a potent tumor suppressor, positively regulates p53 by antagonizing p53’s negative regulator, MDM2, which in turn results in either apoptosis or cell cycle arrest. ARF also has p53-independent tumor suppressor activity. The CtBP transcriptional co-repressors promote cancer cell survival and migration/invasion. CtBP senses cellular metabolism via a regulatory dehydrogenase domain, and is a target for negative regulation by ARF. ARF targets CtBP to the proteasome for degradation, which results in the up regulation of proapoptotic BH3-only proteins, and p53-independent apoptosis. CtBP inhibition by ARF also up regulates PTEN, reducing cancer cell motility, making CtBP a potential therapeutic target in human cancer. The CtBP dehydrogenase substrate 4-methylthio-2-oxobutyric acid (MTOB) can act as a CtBP inhibitor at high concentrations, and is cytotoxic to cancer cells from a wide variety of tissues. MTOB induced apoptosis was independent of p53, and correlated with the de-repression of the pro-apoptotic CtBP repression target Bik. CtBP over-expression, or Bik silencing, rescued MTOB-induced cell death. MTOB did not induce apoptosis in mouse embryonic fibroblasts (MEFs), but was increasingly cytotoxic to immortalized and transformed MEFs, suggesting that CtBP inhibition may provide a suitable therapeutic index for cancer therapy. In human colon cancer cell peritoneal xenografts, MTOB treatment decreased tumor burden, and induced tumor cell apoptosis. To verify the potential utility of CtBP as a therapeutic target in human cancer the expression of CtBP and its negative regulator ARF was studied in a series of resected human colon adenocarcinomas. CtBP and ARF levels were inversely-correlated, with elevated CtBP levels (compared with adjacent normal tissue) observed in greater than 60% of specimens, with ARF absent in nearly all specimens exhibiting elevated CtBP levels. Targeting CtBP with a small molecule like MTOB may thus represent a useful and widely applicable therapeutic strategy in human malignancies. ARF has long been known to respond to virally encoded oncogenes. Recently, p14ARF was linked to the innate immune response to non-transforming viruses in mice. Therefore a wider role for the ARF pathway in viral infection was considered. Previous studies linking p53 to multiple points of the Human Immunodeficiency Virus-1 (HIV-1) life cycle suggested that ARF may also play a role in the HIV life cycle. In this study the interdependency of ARF and HIV infection was investigated. ARF expression was determined for a variety of cell types upon HIV infection. In every case, ARF levels exhibited dynamic changes upon HIV infection-in most cases ARF levels were reduced in infected cells. The impact of ARF over-expression or silencing by RNAi on HIV infection was also examined. Consistently, p24 levels were increased with ARF overexpression, and decreased when ARF was silenced. Thus ARF and HIV modulate each other, and ARF may paradoxically play a positive role in the HIV life cycle.
370

Insulin Receptor Substrate-2 (IRS-2): A Novel Hypoxia-Responsive Gene in Breast Cancer: A Dissertation

Mardilovich, Katerina 11 May 2011 (has links)
Breast cancer is the most common malignancy among women in the U.S. While many successful treatments exist for primary breast cancer, very few are available for patients with metastatic disease. The purpose of this study was to understand the role of Insulin Receptor Subtrate-2 (IRS-2) in breast cancer metastasis. IRS-2 belongs to the IRS family of cytoplasmic adaptor proteins that mediate signaling from cell surface receptors, many of which have been implicated in cancer. Although the IRS proteins are highly homologous in structure and have some complementary functions, growing evidence supports that the IRS proteins have unique roles in cancer. IRS-1 has been shown to promote tumor cell proliferation, while IRS-2 has been positively associated with cancer cell invasion, glycolysis and tumor metastasis. In the current work, we identified IRS-2 as a novel hypoxia-responsive gene in breast carcinoma cells. In contrast, IRS-1 expression does not increase in response to hypoxia, supporting the notion of their non-overlapping functions. Hypoxia promotes the adaptation and resistance of cancer cells to chemo- and radiation therapy, and also promotes tumor cell survival, invasion and metastasis by selecting for aggressive tumor cells that can survive under stressful low oxygen conditions. We have shown that IRS-2 upregulation in response to hypoxia promotes Akt signaling and tumor cell viability and invasion. We identified a cell context-dependent role for Hypoxia Inducible Factor (HIF) in the regulation of IRS-2 expression in hypoxia, with HIF-2 playing a more dominant role than HIF-1. We also demonstrate that binding of Snail, a regulator of the EMT, to the IRS-2 promoter keeps the chromatin in an open conformation that is permissive for HIF-dependent transcription of IRS-2 in hypoxia. IRS-2 is not upregulated by hypoxia in well-differentiated epithelial-like carcinoma cells that do not express Snail, implicating IRS-2 gene expression as part of the EMT programming. In summary, we have identified an endogenous mechanism by which cancer cells can shift the balance of IRS-1 and IRS-2 to favor IRS-2 expression and function, which promotes survival, invasion, and ultimately metastasis. Understanding the mechanism of IRS-2 regulation by hypoxia may reveal new therapeutic targets for metastatic breast cancer.

Page generated in 0.045 seconds