Spelling suggestions: "subject:"care following""
31 |
Statistické vlastnosti mikrostruktury dopravního proudu / Statistical characteristics of the traffic flow microstructureApeltauer, Jiří Unknown Date (has links)
The actual traffic flow theory assumes interactions only between neighbouring vehicles within the traffic. This assumption is reasonable, but it is based on the possibilities of science and technology available decades ago, which are currently overcome. Obviously, in general, there is an interaction between vehicles at greater distances (or between multiple vehicles), but at the time, no procedure has been put forward to quantify the distance of this interaction. This work introdukce a method, which use mathematical statistics and precise measurement of time distances of individual vehicles, which allows to determine these interacting distances (between several vehicles) and its validation for narrow densities of traffic flow. It has been revealed that at high traffic flow densities there is an interaction between at least three consecutive vehicles and four and five vehicles at lower densities. Results could be applied in the development of new traffic flow models and its verification.
|
32 |
Analyzing fluctuations in car-followingWagner, Peter 13 May 2019 (has links)
Many car-following models predict a stable car-following behavior with a very small fluctuation around an equilibrium value g* of the net headway g with zero speed-difference Δv between the following and the lead vehicle. However, it is well-known and additionally demonstrated by data in this paper, that the fluctuations are much larger than these models predict. Typically, the fluctuation in speed difference is around ±2m/s, while the fluctuation in the net time headway T=g/v can be as big as one or even two seconds, which is as large as the mean time headway itself. By analyzing data from loop detectors as well as data from vehicle trajectories, evidence is provided that this randomness is not due to driver heterogeneity, but can be attributed to an internal stochasticity of the driver itself. A final model-based analysis supports the hypothesis, that the preferred headway of the driver is the parameter that is not kept constant but fluctuates strongly, thus causing the even macroscopically observable randomness in traffic flow.
|
33 |
Calibration of IDM Car Following Model with Evolutionary AlgorithmYang, Zhimin 11 January 2024 (has links)
Car following (CF) behaviour modelling has made significant progress in both traffic engi-neering and traffic psychology during recent decades. Autonomous vehicles (AVs) have been demonstrated to optimise traffic flow and increase traffic stability. Consequently, sever-al car-following models have been proposed based on various car following criteria, leading to a range of model parameter sets. In traffic engineering, Intelligent Driving Model (IDM) are commonly used as microscopic traffic flow models to simulate a single vehicle's behav-iour on a road. Observational data can be employed to parameter calibrate IDM models, which enhances their practicality for real-world applications. As a result, the calibration of model parameters is crucial in traffic simulation research and typically involves solving an optimization problem. Within the given context, the Nelder-Mead(NM)algorithm, particle swarm optimization (PSO) algorithm and genetic algorithm (GA) are utilized in this study for parameterizing the IDM model, using abundant trajectory data from five different road conditions. The study further examines the effects of various algorithms on the IDM model in different road sections, providing useful insights for traffic simulation and optimization.:Table of Contents
CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND AND MOTIVATION 1
1.2 STRUCTURE OF THE WORK 3
CHAPTER 2 BACKGROUND AND RELATED WORK 4
2.1 CAR-FOLLOWING MODELS 4
2.1.1 General Motors model and Gazis-Herman-Rothery model 5
2.1.2 Optimal velocity model and extended models 6
2.1.3 Safety distance or collision avoidance models 7
2.1.4 Physiology-psychology models 8
2.1.5 Intelligent Driver model 10
2.2 CALIBRATION OF CAR-FOLLOWING MODEL 12
2.2.1 Statistical Methods 13
2.2.2 Optimization Algorithms 14
2.3 TRAJECTORY DATA 21
2.3.1 Requirements of Experimental Data 22
2.3.2 Data Collection Techniques 22
2.3.3 Collected Experimental Data 24
CHAPTER 3 EXPERIMENTS AND RESULTS 28
3.1 CALIBRATION PROCESS 28
3.1.1 Objective Function 29
3.1.2 Errors Analysis 30
3.2 SOFTWARE AND METHODOLOGY 30
3.3 NM RESULTS 30
3.4 PSO RESULTS 37
3.4.1 PSO Calibrator 37
3.4.2 PSO Results 44
3.5 GA RESULTS 51
3.6 OPTIMIZATION PERFORMANCE ANALYSIS 58
CHAPTER 4 CONCLUSION 60
REFERENCES 62
|
34 |
Utilisation de la conduite coopérative pour la régulation de trafic dans une intersection / Using the technology of cooperative driving for the traffic control at isolated intersectionWu, Jia 20 July 2011 (has links)
L’objectif de ce travail est d’exploiter les potentialités offertes par la conduite coopérative afin de fluidifier le trafic au niveau des intersections isolées. Pour ce faire, nous avons proposé un nouveau système de régulation au sein des intersections en s’inspirant du principe de l’intersection autonome. Nous avons appelé notre système : SVAC (système du véhicule-actionneur coopératif). Il repose sur la possibilité des échanges d’information entre le véhicule et son environnement de conduite.Le SVAC permet une régulation plus précise du trafic puisqu’il se base sur les requêtes de droit de passage envoyées par les véhicules réellement présents dans l’intersection. En outre, grâce à la signalisation à bord, la régulation consiste à définir les séquences de passage des véhicules, ce qui permet de personnaliser la signalisation. Le gain de précision soulève plusieurs obstacles. D’une part, nous nous heurtons systématiquement à l’absence de modèles mathématiques permettant d’aborder le problème. D’autre part, la simple énumération des séquences implique une explosion combinatoire, ce qui ne convient pas à l’application temps-réelle de la régulation des intersections. Pour s’affranchir des deux problématiques nous avons utilisé les réseaux de Petri P-temporisés. Le modèle nous a permis de décrire sous la forme d’équations mathématiques les compteurs des différents évènements observés par les véhicules. Deux objectifs de régulation ont été dégagés après avoir déduit le temps moyen d’attente basé sur la formule de Little. Le premier consiste à vider les intersections au plus tôt. Nous avons proposé un algorithme de programmation dynamique et deux heuristiques. La première heuristique est directement issue de l’analyse des propriétés du problème posé. La deuxième est basée sur l’algorithme de colonies de fourmis. En effet, le problème défini est un cas particulier du problème du voyageur de commerce. Le deuxième objectif de régulation consiste à minimiser instantanément la longueur de la file d’attente. Dans ce cadre, nous avons supposé le fonctionnement à vitesse maximale du réseau de Petri. L’utilisation des contraintes sur les ressources nous a permis de définir des règles simples de régulation en utilisant le mapping.Dans ce mémoire, nous avons utilisé la simulation microscopique basée sur les lois de poursuite pour s’approcher du comportement de conduite. La simulation a servi pour la comparaison des différentes approches proposées dans ce mémoire avec les régulateurs adaptatifs et les intersections autonomes. Dans tous les cas notre approche se distingue par un gain de capacité, ce qui nous a encouragé de reproduire le SVAC à travers un prototype de robots. Cette maquette montre la faisabilité du système au moins pour des applications industrielles. / The aim of this work is to benefit from the potential of the cooperative driving in order to optimize the traffic throughput at isolated intersections. To achieve this objective, we have proposed a new traffic control system for isolated intersections: Cooperative Vehicle-Actuation Signalization (CVAS). The concept of this new system is based on the assumption of the ability of exchanging information between each vehicle and the surrounding vehicles or the nearby infrastructure.The system allows more precise control of the traffic since it determines the right-of-way of each vehicle according to its corresponding data sent by the embedded wireless device. The right-of-way is displayed to the driver by means of the onboard signalization. The control system determines the sequence of the vehicles to be directed through the intersection. For the sake of benefiting the improvement brought by the new system, we face several challenges. On the one hand, we are confronted with the absence of a mathematical model to address the control problem. On the other hand, despite the fact that the optimal passing sequence of vehicles can be found by the simple enumeration of all feasible sequences, the exhaustive search does not fulfill the requirements of the real-time application. To overcome these two problems, we seek help from the P-timed Petri nets. This mathematical modeling tool is able to describe the events observed by the position markers in the form of mathematical equations. Two different objectives of the control have been derived from the Little's formula. The first one aims to minimize the maximum exit time of vehicles present in the intersection. An algorithm of dynamic programming and two heuristics have been proposed to achieve this objective. The first heuristic is based on the analysis of the properties of the control problem. The second heuristic is based on the analogy between the dealt problem and the problem of Traveling Salesman Problem, which can be solved successfully by the algorithm of ant colony system. The second objective of the control is to instantly minimize the queue length. A protocol of relaying the right of way has been determined from the assumption of a Petri net that operates at its maximum speed. This simple protocol of control can be extended to all possible layouts of the isolated intersections by using the technique of “mapping”.In this work, a microscopic model (car-following model) is used to simulate the driving behavior. The simulations show that the CVAS system outperforms the other systems which are popularly used at present. It is even better than some innovative systems based on the technology of the cooperative driving. The good results encouraged us to replicate the system under real conditions through a prototype of NXT robots. The tests of this prototype prove the feasibility of the system at least for industrial applications.
|
35 |
Consideration of dynamic traffic conditions in the estimation of industrial vehicules energy consumption while integrating driving assistance strategies / Prise en compte des conditions de trafic dynamique dans l'évaluation des consommations énergétiques des véhicules industriels en intégrant les stratégies d'aide à la conduiteCattin, Johana 18 April 2019 (has links)
Le monde industriel, et en particulier l’industrie automobile, cherche à représenter au mieux le réel pour concevoir des outils et produits les plus adaptés aux enjeux et marchés actuels. Dans cette optique, le groupe Volvo a développé de puissants outils pour la simulation de la dynamique des véhicules industriels. Ces outils permettent notamment l’optimisation de composants véhicules ou de stratégies de contrôle. De nombreuses activités de recherche portent sur des technologies innovantes permettant de réduire la consommation des véhicules industriels et d’accroitre la sécurité de leurs usages dans différents environnements. En particulier, le développement des systèmes d’aide à la conduite automobile ITS et ADAS. Afin de pouvoir développer ces systèmes, un environnement de simulation permettant de prendre en compte les différents facteurs pouvant influencer la conduite d’un véhicule doit être mis en place. L’étude se concentre sur la simulation de l’environnement du véhicule et des interactions entre le véhicule et son environnement direct, i.e. le véhicule qui le précède. Les interactions entre le véhicule étudié et le véhicule qui le précède sont modélisées à l’aide de modèles mathématiques, nommés lois de poursuites. De nombreux modèles existent dans la littérature mais peu concernent le comportement des véhicules industriels. Une étude détaillée de ces modèles et des méthodes de calage est réalisée. L’environnement du véhicule peut être représenté par deux catégories de paramètres : statiques (intersections, nombre de voies…) et dynamiques (état du réseau). A partir d’une base de données de trajets usuels, ces paramètres sont calculés, puis utilisés pour générer de manière automatisée des scénarios de simulation réalistes. / The industrial world, and in particular the automotive industry, is seeking to best represent the real world in order to design tools and products that are best adapted to current challenges and markets, by reducing development times and prototyping costs. With this in mind, the Volvo Group has developed powerful tools to simulate the dynamics of industrial vehicles. These tools allow the optimization of vehicle components or control strategies. Many research activities focus on innovative technologies to reduce the consumption of industrial vehicles and increase the safety of their use in different environments. Particularly, the development of ITS and ADAS is booming. In order to be able to develop these systems, a simulation environment must be set up to take into account the various factors that can influence the driving of a vehicle. The work focuses on simulating the vehicle environment and the interactions between the vehicle and its direct environment, i.e. the vehicle in front of it. The interactions between the vehicle under study and the vehicle in front of it are modelled using mathematical models, called car-following models. Many models exist in the literature, but few of them deals specifically with heavy duty vehicles. A specific focus on these models and their calibration is realized. The vehicle environment can be represented by two categories of parameters: static (intersections, number of lanes) and dynamic parameters (state of the network). From a database of usuals roads, these parameters are computed, then, they are used to automatically generate realist traffic simulation scenarios.
|
36 |
Developing a methodology to account for commercial motor vehicles using microscopic traffic simulation modelsSchultz, Grant George 30 September 2004 (has links)
The collection and interpretation of data is a critical component of traffic and transportation engineering used to establish baseline performance measures and to forecast future conditions. One important source of traffic data is commercial motor vehicle (CMV) weight and classification data used as input to critical tasks in transportation design, operations, and planning. The evolution of Intelligent Transportation System (ITS) technologies has been providing transportation engineers and planners with an increased availability of CMV data. The primary sources of these data are automatic vehicle classification (AVC) and weigh-in-motion (WIM). Microscopic traffic simulation models have been used extensively to model the dynamic and stochastic nature of transportation systems including vehicle composition. One aspect of effective microscopic traffic simulation models that has received increased attention in recent years is the calibration of these models, which has traditionally been concerned with identifying the "best" parameter set from a range of acceptable values. Recent research has begun the process of automating the calibration process in an effort to accurately reflect the components of the transportation system being analyzed. The objective of this research is to develop a methodology in which the effects of CMVs can be included in the calibration of microscopic traffic simulation models. The research examines the ITS data available on weight and operating characteristics of CMVs and incorporates this data in the calibration of microscopic traffic simulation models. The research develops a methodology to model CMVs using microscopic traffic simulation models and then utilizes the output of these models to generate the data necessary to quantify the impacts of CMVs on infrastructure, travel time, and emissions. The research uses advanced statistical tools including principal component analysis (PCA) and recursive partitioning to identify relationships between data collection sites (i.e., WIM, AVC) such that the data collected at WIM sites can be utilized to estimate weight and length distributions at AVC sites. The research also examines methodologies to include the distribution or measures of central tendency and dispersion (i.e., mean, variance) into the calibration process. The approach is applied using the CORSIM model and calibrated utilizing an automated genetic algorithm methodology.
|
37 |
Developing a methodology to account for commercial motor vehicles using microscopic traffic simulation modelsSchultz, Grant George 30 September 2004 (has links)
The collection and interpretation of data is a critical component of traffic and transportation engineering used to establish baseline performance measures and to forecast future conditions. One important source of traffic data is commercial motor vehicle (CMV) weight and classification data used as input to critical tasks in transportation design, operations, and planning. The evolution of Intelligent Transportation System (ITS) technologies has been providing transportation engineers and planners with an increased availability of CMV data. The primary sources of these data are automatic vehicle classification (AVC) and weigh-in-motion (WIM). Microscopic traffic simulation models have been used extensively to model the dynamic and stochastic nature of transportation systems including vehicle composition. One aspect of effective microscopic traffic simulation models that has received increased attention in recent years is the calibration of these models, which has traditionally been concerned with identifying the "best" parameter set from a range of acceptable values. Recent research has begun the process of automating the calibration process in an effort to accurately reflect the components of the transportation system being analyzed. The objective of this research is to develop a methodology in which the effects of CMVs can be included in the calibration of microscopic traffic simulation models. The research examines the ITS data available on weight and operating characteristics of CMVs and incorporates this data in the calibration of microscopic traffic simulation models. The research develops a methodology to model CMVs using microscopic traffic simulation models and then utilizes the output of these models to generate the data necessary to quantify the impacts of CMVs on infrastructure, travel time, and emissions. The research uses advanced statistical tools including principal component analysis (PCA) and recursive partitioning to identify relationships between data collection sites (i.e., WIM, AVC) such that the data collected at WIM sites can be utilized to estimate weight and length distributions at AVC sites. The research also examines methodologies to include the distribution or measures of central tendency and dispersion (i.e., mean, variance) into the calibration process. The approach is applied using the CORSIM model and calibrated utilizing an automated genetic algorithm methodology.
|
Page generated in 0.0503 seconds