Spelling suggestions: "subject:"carbonhydrogen"" "subject:"carbon:hydrogen""
1 |
Carbon nanotube/microwave interactions and applications to hydrogen fuel cellsImholt, Timothy James. Roberts, James Andrew, January 2004 (has links)
Thesis (Ph. D.)--University of North Texas, May, 2004. / Title from title page display. Includes bibliographical references.
|
2 |
The autoxidation of methyl glycopyranosidesChurch, John A. 01 January 1964 (has links)
No description available.
|
3 |
A Computational Study of C-H Binding, C-H Activation and Fluxional Processes of d6 Half- Sandwich ComplexesThenraj, M January 2014 (has links) (PDF)
Significant developments have been made in the field of C–H activation. However, various disadvantages, mainly low reactivity and selectivity, limit their usage in large-scale synthesis. It is crucial to understand the mechanisms and the nature of the transient species involved in the C–H activation paths to develop effective catalytic routes for homogeneous C–H functionalization reactions. Computational techniques are employed in this study to throw light on these processes.
Chapter 1 briefly introduces C–H activation and functionalization reactions. After classifying the reactions on the basis of mechanisms, computational studies on the mechanisms of C–H activation reactions are described. The challenges involved in the discovery of efficient homogeneous C–H functionalization catalysts and progress made in the field are discussed. The insights provided to overcome the problems associated with the catalytic C–H functionalization reactions in a few examples are highlighted.
In Chapter 2, DFT model studies are carried out to estimate the affinity and selectivity of 16-electron half-sandwich d6-metal fragments (η5–C5H5)Re(CO)2 and (η6–C6H6)W(CO)2 for binding with alkane C–H bonds. Different C–H binding sites of pentane, at the M06 level of theory have been evaluated. The effects of ancillary ligand variations on the metal–pentane binding strength are studied by substituting different ligands such as N-heterocyclic carbene (NHC), PF3 and NO+ for one of the carbonyl ligands. Isomers of the metal-pentane C–H σ-complexes studied in this chapter are shown in Scheme 1.
Binding energies of the terminal methyl C–H bonds (C1 and C5) are significantly lower than those of the methylene C–H bonds (C2, C3 and C4) in all the cases. The metal–pentane binding interactions of the rhenium complexes are significantly stronger than those of the corresponding tungsten analogs. The PF3 complexes have slightly greater binding energies compared to the CO complexes, in both Re(I) and W(0) analogs. These results are in conformity with the experimental results. The electron-deficient nitrosyl complexes have the highest binding energies. These results illustrate that by proper tuning of the electronic factors of the transition-metal fragments with different ancillary ligands, the alkane C–H binding affinity can be controlled. Energy decomposition analyses (EDA) are carried out to determine the nature of the interaction between the metal fragments and pentane C–H bonds.
Scheme 1. Formation of pentane C–H σ-complexes
Chapter 3 addresses the energetics of various intramolecular site-exchange (chain walking) processes and C–H oxidative addition reactions (Scheme 2) of the pentane C–H σ-complexes studied in Chapter 2. Four possible site-exchange processes such as 1,2-, 1,3-, 1,4- and 1,5-migration processes are studied using DFT/M06 level of theory. η2-(H,H)···M type transition states are located for these migrations (Scheme 2). The 1,3-migration is the most favorable process. Two different pentyl hydride isomers, as shown in Scheme 2, are obtained for oxidative addition of methyl and methylene C–H bonds of pentane for all systems, at same level of theory. Oxidative insertion of metal into the methyl C–H bonds is more favorable than insertion into the methylene C–H bonds for all complexes.
The activation energies of all site-exchange and C–H oxidative addition processes of the Re(I) complexes are significantly greater than those of the corresponding W(0) complexes. For all these processes, the activation barriers of the electron-deficient NO+ complexes are the greatest among all ligand systems studied, in both Re(I) and W(0) systems. These results are consistent with the experimental results and suggest that the experimentally observed pentyl hydride isomer [(η5–C5H5)Re(CO)(PF3)H(C5H11)] might be Isomer B and not Isomer A (Scheme 2). The C–H oxidative addition reactions are less favorable than dynamic site-exchange processes in all complexes. These results imply that the metal fragments migrate along the pentane chain more easily than insert into the pentane C–H bonds.
Scheme 2. Alkane chain walking and C–H oxidative addition reactions
Chapter 4 deals with the mechanisms and energetics of a unique metal migration process of an olefin complex that proceeds via olefinic (C–H)···Metal interaction. Migration of the Re(I) fragment from one π face of the olefin to the opposite π face in [(η5–C5H5)Re(NO)(PPh3)(PhCH═CH2)]+ has been documented experimentally by Gladysz and coworkers. The experimental results provide evidences for an intramolecular mechanism for this process (i.e., without styrene dissociation from Re(I)) and based on kinetic isotope effects (KIE), the involvement of a trans C–H bond is indicated. Either oxidative addition or a vinylic (C–H)···Re interaction could account for the experimentally observed kinetic isotope effect.
In this study, the free energy of activation for the migration of Re from one enantioface of the olefin to the other through various pathways is computed using DFT calculations at the B3LYP and M06 levels. Two pathways, one that involves migration of Re
through a trans (C–H)···Re interaction and another that involves oxidative addition of Re into the trans C–H bond, are identified as possible paths (Scheme 3) at the B3LYP level. Surprisingly, at the M06 level, DFT computes a lower energy path for the conducted tour mechanism that is not consistent with the experimental KIE. But the computed energy profiles for the reaction are consistent with the experiment when computations are carried out at the B3LYP level.
Scheme 3. Mechanisms of olefin π face exchange reaction
In Chapter 5, the mechanistic studies of C–H metathesis of d6 half-sandwich complex [(η5–C5Me5)Ru(CH3)(CO)(C6H6)] are discussed. A 1-step mechanism that proceeds via a four-center transition state and a 2-step Oxidative Addition and Reductive Coupling mechanism (OA/RC) are identified as possible mechanisms (Scheme 4) using DFT/M06 level of theory. The 1-step mechanism is more favorable than the 2-step mechanism. As in the oxidative addition intermediate, metal–hydrogen bond is observed in the four-center transition state of the 1-step mechanism. This mechanism is referred to as Oxidative Hydrogen Migration (OHM) rather than σ-Bond Metathesis (σ-BM) which proceeds via a transition state without M−H bonding. The effects of metal (M = Fe(II), Ru(II) or Os(II)) and ancillary ligand (L = H–, NHC, CO or NO+) variations on the mechanisms and energetics of the model Cp complex [(η5–C5H5)M(CH3)(L)(C6H6)] are also studied (Scheme 4).
Scheme 4. Oxidative hydrogen migration vs Oxidative addition/reductive coupling
Increase in the electron-density on the metal center, using electron-donating ligands such as H−, favors the formation of the oxidative species (intermediate or transition state) and reduces the activation barriers of the C–H metathesis reaction. Similarly, the electron-withdrawing NO+ ligand, which reduces the electron density on the metal center, increases the activation energies of the C–H metathesis reaction or disfavors the formation of the oxidative species. Factor affecting the choice of the mechanism of the C–H metathesis reaction is found to be the net charge transfer between the two fragments [(η5–C5H5)M(CH3)(L)] and benzene in [(η5–C5H5)M(CH3)(L)(C6H6)].
The computational studies reported in this thesis provide valuable insight into the mechanisms and energetics of C–H binding, activation and fluxional processes of the (C–H)···Metal σ alkane and alkene complexes. These studies will be helpful in solving problems associated with the C–H activation reactions.
Reference
Thenraj, M.; Samuelson, A. G. Organometallics 2013, 32, 7141.
(For structural formula and figures pl see the abstract pdf file.)
|
4 |
The oxidation of glucose in aqueous solution by oxygenOlson, Richard E. 01 January 1967 (has links)
No description available.
|
5 |
Carbon-Carbon Bond Formation and Unexpected Carbon-Hydrogen Bond Activation at Adjacent Metal CentresMacDougall, Tiffany J Unknown Date
No description available.
|
6 |
Carbon-Hydrogen and Carbon-Fluorine Bond Activation Promoted by Adjacent Metal CentresSlaney, Michael E Unknown Date
No description available.
|
7 |
Možnosti určení geografického původu živočišných a rostlinných produktů pomocí stabilních izotopů kyslíku, vodíku a uhlíku. Izotopový signál keratinu krunýře želv / The possibilities of determining the geographic origin of plant and animal products by means of stable isotopes of oxygen, hydrogen and carbon. Isotope signature in keratin of tortoise´s shellDRTINOVÁ, Martina January 2011 (has links)
This biological study is focused on the possibility of using stable isotope analyses to determine the geographic origin of plants and mainly animals especially tortoises. In the experiment nineteen tortoises were divided into two groups which were fed by isotopically different food and water for one year. The samples of keratin from their shells were collected before and after the experiment. Then the samples were analysed for the ratio of particular isotopes using isotope ratio mass spectrometry.
|
8 |
Oxidation and reduction of carbon monoxide and methane carbon-hydrogen bond activation: Molecular orbital theoryJen, Shu-Fen January 1991 (has links)
No description available.
|
9 |
Electrical characterization of carbon-hydrogen complexes in silicon and silicon-germanium alloysStübner, Ronald 07 March 2018 (has links) (PDF)
In this thesis, a comprehensive study of the electrical properties of carbon-hydrogen (CH) complexes in silicon (Si) and silicon-germanium (SiGe) alloys is presented. These complexes form by the reaction of residual carbon impurities with hydrogen that is introduced either by wet chemical etching or a dc hydrogen plasma. The complexes were detected and characterized by the deep level transient spectroscopy (DLTS), Laplace DLTS, and minority carrier transient spectroscopy (MCTS) technique. With this approach, properties like the activation enthalpy for carrier emission, the capture cross section, the charge state, and the thermal stability of the complexes were determined. The composition of the complexes was derived from the analysis of their depth profiles in samples with different impurity concentrations. Using these methods, eight carbon-hydrogen related defect levels (E42, E65, E75, E90, E90', E262, H50, H180) and one hydrogen related level (E150) were detected in Si, SiGe alloys and Ge.
Hydrogen plasma treatment at temperatures around 373 K introduces four dominant traps in Si at about Ec-0.06 eV (E42), Ec-0.52 eV (E262), Ev+0.33 eV (H180), and Ev+0.08 eV (H50). E42 and E262 are shown to be two charge states of the same defect. The characteristic field dependence of their emission rate links E42 with the double acceptor level and E262 with the single acceptor level of a CH complex. By comparison of their properties with calculations they are assigned to the anti-bonding configuration of the CH complex (CH_1AB). H180 was previously suggested to be the donor state of the CH_1AB configuration. This hypothesis could not be confirmed. Instead, it is shown that H180 exhibits a barrier for hole capture of about 53 meV, which hinders the reliable determination of its charge state from the field dependence of the emission rate. However, its activation enthalpy is in reasonable agreement with the predicted level position of the acceptor state of the CH_T configuration of CH, where H sits on the tetrahedral interstitial (T) position next to carbon. Therefore, H180 is tentatively assigned to CH_T. H50 is reported for the first time and it appears with concentrations close to the detection limit of the DLTS technique (~1E11 cm^-3). This complicates the determination of its charge state. Nevertheless, theory predicts the acceptor level of the CH_2AB configuration at about Ev+0.07 eV, which is remarkably close to the experimental value of H50. Therefore, H50 is tentatively assigned to the acceptor level of CH_2AB.
In contrast, hydrogenation of silicon by wet chemical etching introduces three dominant levels at Ec-0.11 eV (E65), Ec-0.13 eV (E75), and Ec-0.16 eV (E90). Previously, E90 was contradictorily assigned by different authors to the donor and to the acceptor state of the bond-centered configuration of the CH complex (CH_1BC). In this work, this contradiction is resolved. It is shown that two different defect levels (E90 and E90') appear in the DLTS spectra at about 90 K in samples with a low oxygen concentration (< 1E17 cm^-3). The acceptor state of the CH_1BC configuration (E90) can be observed directly after hydrogenation by wet chemical etching or a dc hydrogen plasma treatment at temperatures below 373 K. In contrast, the donor state of a CH_n complex (E90', Ec-0.14 eV), that involves more than one hydrogen atom, is formed by a reverse bias annealing of samples with a net donor concentration of Nd > 1E15 cm^-3. By comparison with theory it is concluded that n > 2. In samples with a high oxygen concentration (> 1E17 cm^-3) E65 and E75 are dominant. Both levels belong to the CH_1BC configuration disturbed by a nearby oxygen atom. The appearance of two levels is the result of two inequivalent positions of the oxygen atom in respect to the CH bond.
E42, E90, E262, and H180 are also investigated in diluted SiGe alloys to analyze the influence of alloying on their electrical properties. The presence of Ge atoms in the closest environment of the defects leads to the appearance of additional defect levels close to those observed in pure Si. The relative concentration of these additional defects is in agreement with models of the proposed defect structure of E42, E90, E262, and H180. An increase of the Ge content in SiGe alloys leads to a shift of the defect levels in the band gap of SiGe. An extrapolation of this shift predicts the appearance of E90 and E262 also in pure Ge.
A hydrogen related level E150 (Ec-0.31 eV) is indeed observed in hydrogenated n-type Ge. Its concentration is significantly higher after hydrogen plasma treatment than after wet chemical etching. It is shown that E150 contains a single hydrogen atom and involves an unknown impurity, most likely carbon, oxygen, or silicon. E150 represents a reasonable candidate for a CH complex in Ge. / In dieser Arbeit werden die elektrischen Eigenschaften von Kohlenstoff-Wasserstoff-Komplexen in Silizium (Si) und Silizium-Germanium-Legierungen (SiGe) studiert. Diese Komplexe bilden sich durch Reaktion von Kohlenstoff-Verunreinigungen mit Wasserstoff, welcher durch nasschemisches Ätzen oder eine Wasserstoffplasma-Behandlung eingebracht wird. Der Nachweis und die Charakterisierung der Defekte erfolgte mit den Methoden der Kapazitätstransientenspektroskopie (DLTS), Laplace DLTS und der Minoritätsladungsträgertransientenspektroskopie (MCTS). Damit wurden Eigenschaften wie die Aktivierungsenergie der Ladungsträgeremission, die Einfangquerschnitte, der Ladungszustand und die thermische Stabilität der Komplexe bestimmt. Die Zusammensetzung der Komplexe wurde durch eine Analyse der Tiefenprofile ermittelt, welche in Proben mit verschiedenen Verunreinigungskonzentrationen gemessen wurden. Mit diesen Methoden wurde acht Kohlenstoff-Wasserstoff-korrelierte Defektniveaus (E42, E65, E75, E90', E90, E262, H50, H180) in Si und SiGe und ein Wasserstoff-korreliertes Niveau in Ge nachgewiesen.
Eine Wasserstoffplasma-Behandlung bei Temperaturen um 373 K erzeugt vier dominante Defektniveaus in Si bei Ec-0.06 eV (E42), Ec-0.52 eV (E262), Ev+0.33 eV (H180) und Ev+0.08 eV. Es wird gezeigt, dass E42 und E262 zwei Ladungszustände desselben Defektes sind. Die charakteristische Feldabhängigkeit der Emissionsrate zeigt, dass E42 der Doppel-Akzeptor- und E262 der Einfach-Akzeptor-Zustand eines CH-Komplexes ist. Durch Vergleich der beobachteten Eigenschaften mit theoretischen Berechnungen werden beide Niveaus der antibindenden Konfiguration des CH-Komplexes (CH_1AB) zugeordnet. Das Niveau H180 wurde in der Literatur bisher mit dem Donator-Zustand der CH_1AB-Konfiguration in Verbindung gebracht. Diese Hypothese konnte nicht bestätigt werden. Es wird gezeigt, dass H180 eine Barriere für den Löchereinfang von etwa 53 meV besitzt, was die Bestimmung des Ladungszustandes aus der Feldabhängigkeit der Emissionsrate erschwert. Die Aktivierungsenergie von H180 stimmt jedoch befriedigend mit der berechneten Aktivierungsenergie des Akzeptorzustandes der CH_T-Konfiguration überein, bei der H auf der T-Zwischengitterposition sitzt. Daher wird H180 vorläufig dem CH_T-Komplex zugeordnet. Das Niveau H50, welches zum ersten Mal hier beschrieben wird, wird nur mit sehr geringen Konzentrationen nachgewiesen. Dies erschwert die Bestimmung des Ladungszustandes. Die Aktivierungsenergie von H50 stimmt jedoch auffallend gut mit dem von der Theorie vorhergesagten Akzeptorniveau von CH_2AB (Ev+0.07 eV) überein. Daher wird H50 vorrübergehend CH_2AB zugeordnet.
Das Einbringen von Wasserstoff in Silizium durch nasschemisches Ätzen führt zu drei dominanten Defektniveaus bei Ec-0.11 eV (E65), Ec-0.13 eV (E75) und Ec-0.16 eV (E90). E90 wurde bisher widersprüchlich von verschiedenen Autoren dem Donatorzustand und dem Akzeptorzustand der bindungszentrierten Konfiguration (CH_1BC) des CH-Komplexes zugeordnet. Dieser Widerspruch konnte aufgelöst werden. Es wird gezeigt, dass in Silizium mit niedrigem Sauerstoffanteil (< 1E17 cm^-3) zwei verschiedene Defektniveaus (E90 und E90') bei etwa 90 K in den DLTS-Spektren erscheinen, welche nur mit der Laplace DLTS-Technik aufgelöst werden können. Der Akzeptorzustand der CH_1BC-Konfiguration kann direkt nach nasschemischem Ätzen oder einer Wasserstoffplasma-Behandlung bei 373 K beobachtet werden. Im Gegensatz dazu wird durch eine Sperrspannungs-Temperung in Proben mit einer Donatorkonzentration von Nd > 1E15 cm^-3 der Donatorzustand eines CH_n-Komplexes (E90', Ec-0.14 eV), welcher mehr als ein Wasserstoffatom enthält, gebildet. Durch Vergleich mit theoretischen Berechnungen wird n > 2 geschlussfolgert. Die Niveaus E65 und E75 sind in Proben mit einem hohen Sauerstoffanteil (> 1E17 cm^-3) dominant. Beide Niveaus gehören zu einer durch ein O-Atom verzerrten CH_1BC-Konfiguration. Das Auftreten von zwei Niveaus wird durch zwei nicht-äquivalente Positionen des O-Atoms bezüglich der CH-Bindung erklärt.
Die Eigenschaften von E42, E90, E262 und H180 wurden ebenfalls in verdünnten SiGe-Legierungen untersucht. Es wird gezeigt, dass Ge-Atome in der direkten Umgebung der Defekte zusätzliche Defektniveaus erzeugen, die in der Bandlücke nahe zu den Si-Defektniveaus liegen und von durch Ge-Atomen verzerrten Defekten stammen. Die beobachteten relativen Konzentrationen dieser Ge-korrelierten Niveaus kann mit Modellen der atomaren Struktur der Defekte erklärt werden. Eine Verschiebung der Defektniveaus proportional zum Ge-Anteil in der Legierung wurde beobachtet. Eine Extrapolation dieser Verschiebung legt den Schluss nahe, dass E90 und E262 auch in reinem Ge beobachtbar sein sollten.
Tatsächlich wurde ein Wasserstoff-korrelierter Defekt E150 (Ec-0.31 eV) in n-Typ Germanium beobachtet. Die Konzentration von E150 ist nach einer Wasserstoffplasma-Behandlung wesentlich höher als nach nasschemischen Ätzen. Es wird gezeigt, dass E150 ein einzelnes Wasserstoffatom und ein noch unbekanntes Verunreinigungsatom enthält, höchstwahrscheinlich Kohlenstoff, Sauerstoff oder Silizium. Damit ist E150 ein sehr wahrscheinlicher Kandidat für einen CH-Komplex in Germanium.
|
10 |
Electrical characterization of carbon-hydrogen complexes in silicon and silicon-germanium alloysStübner, Ronald 30 November 2017 (has links)
In this thesis, a comprehensive study of the electrical properties of carbon-hydrogen (CH) complexes in silicon (Si) and silicon-germanium (SiGe) alloys is presented. These complexes form by the reaction of residual carbon impurities with hydrogen that is introduced either by wet chemical etching or a dc hydrogen plasma. The complexes were detected and characterized by the deep level transient spectroscopy (DLTS), Laplace DLTS, and minority carrier transient spectroscopy (MCTS) technique. With this approach, properties like the activation enthalpy for carrier emission, the capture cross section, the charge state, and the thermal stability of the complexes were determined. The composition of the complexes was derived from the analysis of their depth profiles in samples with different impurity concentrations. Using these methods, eight carbon-hydrogen related defect levels (E42, E65, E75, E90, E90', E262, H50, H180) and one hydrogen related level (E150) were detected in Si, SiGe alloys and Ge.
Hydrogen plasma treatment at temperatures around 373 K introduces four dominant traps in Si at about Ec-0.06 eV (E42), Ec-0.52 eV (E262), Ev+0.33 eV (H180), and Ev+0.08 eV (H50). E42 and E262 are shown to be two charge states of the same defect. The characteristic field dependence of their emission rate links E42 with the double acceptor level and E262 with the single acceptor level of a CH complex. By comparison of their properties with calculations they are assigned to the anti-bonding configuration of the CH complex (CH_1AB). H180 was previously suggested to be the donor state of the CH_1AB configuration. This hypothesis could not be confirmed. Instead, it is shown that H180 exhibits a barrier for hole capture of about 53 meV, which hinders the reliable determination of its charge state from the field dependence of the emission rate. However, its activation enthalpy is in reasonable agreement with the predicted level position of the acceptor state of the CH_T configuration of CH, where H sits on the tetrahedral interstitial (T) position next to carbon. Therefore, H180 is tentatively assigned to CH_T. H50 is reported for the first time and it appears with concentrations close to the detection limit of the DLTS technique (~1E11 cm^-3). This complicates the determination of its charge state. Nevertheless, theory predicts the acceptor level of the CH_2AB configuration at about Ev+0.07 eV, which is remarkably close to the experimental value of H50. Therefore, H50 is tentatively assigned to the acceptor level of CH_2AB.
In contrast, hydrogenation of silicon by wet chemical etching introduces three dominant levels at Ec-0.11 eV (E65), Ec-0.13 eV (E75), and Ec-0.16 eV (E90). Previously, E90 was contradictorily assigned by different authors to the donor and to the acceptor state of the bond-centered configuration of the CH complex (CH_1BC). In this work, this contradiction is resolved. It is shown that two different defect levels (E90 and E90') appear in the DLTS spectra at about 90 K in samples with a low oxygen concentration (< 1E17 cm^-3). The acceptor state of the CH_1BC configuration (E90) can be observed directly after hydrogenation by wet chemical etching or a dc hydrogen plasma treatment at temperatures below 373 K. In contrast, the donor state of a CH_n complex (E90', Ec-0.14 eV), that involves more than one hydrogen atom, is formed by a reverse bias annealing of samples with a net donor concentration of Nd > 1E15 cm^-3. By comparison with theory it is concluded that n > 2. In samples with a high oxygen concentration (> 1E17 cm^-3) E65 and E75 are dominant. Both levels belong to the CH_1BC configuration disturbed by a nearby oxygen atom. The appearance of two levels is the result of two inequivalent positions of the oxygen atom in respect to the CH bond.
E42, E90, E262, and H180 are also investigated in diluted SiGe alloys to analyze the influence of alloying on their electrical properties. The presence of Ge atoms in the closest environment of the defects leads to the appearance of additional defect levels close to those observed in pure Si. The relative concentration of these additional defects is in agreement with models of the proposed defect structure of E42, E90, E262, and H180. An increase of the Ge content in SiGe alloys leads to a shift of the defect levels in the band gap of SiGe. An extrapolation of this shift predicts the appearance of E90 and E262 also in pure Ge.
A hydrogen related level E150 (Ec-0.31 eV) is indeed observed in hydrogenated n-type Ge. Its concentration is significantly higher after hydrogen plasma treatment than after wet chemical etching. It is shown that E150 contains a single hydrogen atom and involves an unknown impurity, most likely carbon, oxygen, or silicon. E150 represents a reasonable candidate for a CH complex in Ge. / In dieser Arbeit werden die elektrischen Eigenschaften von Kohlenstoff-Wasserstoff-Komplexen in Silizium (Si) und Silizium-Germanium-Legierungen (SiGe) studiert. Diese Komplexe bilden sich durch Reaktion von Kohlenstoff-Verunreinigungen mit Wasserstoff, welcher durch nasschemisches Ätzen oder eine Wasserstoffplasma-Behandlung eingebracht wird. Der Nachweis und die Charakterisierung der Defekte erfolgte mit den Methoden der Kapazitätstransientenspektroskopie (DLTS), Laplace DLTS und der Minoritätsladungsträgertransientenspektroskopie (MCTS). Damit wurden Eigenschaften wie die Aktivierungsenergie der Ladungsträgeremission, die Einfangquerschnitte, der Ladungszustand und die thermische Stabilität der Komplexe bestimmt. Die Zusammensetzung der Komplexe wurde durch eine Analyse der Tiefenprofile ermittelt, welche in Proben mit verschiedenen Verunreinigungskonzentrationen gemessen wurden. Mit diesen Methoden wurde acht Kohlenstoff-Wasserstoff-korrelierte Defektniveaus (E42, E65, E75, E90', E90, E262, H50, H180) in Si und SiGe und ein Wasserstoff-korreliertes Niveau in Ge nachgewiesen.
Eine Wasserstoffplasma-Behandlung bei Temperaturen um 373 K erzeugt vier dominante Defektniveaus in Si bei Ec-0.06 eV (E42), Ec-0.52 eV (E262), Ev+0.33 eV (H180) und Ev+0.08 eV. Es wird gezeigt, dass E42 und E262 zwei Ladungszustände desselben Defektes sind. Die charakteristische Feldabhängigkeit der Emissionsrate zeigt, dass E42 der Doppel-Akzeptor- und E262 der Einfach-Akzeptor-Zustand eines CH-Komplexes ist. Durch Vergleich der beobachteten Eigenschaften mit theoretischen Berechnungen werden beide Niveaus der antibindenden Konfiguration des CH-Komplexes (CH_1AB) zugeordnet. Das Niveau H180 wurde in der Literatur bisher mit dem Donator-Zustand der CH_1AB-Konfiguration in Verbindung gebracht. Diese Hypothese konnte nicht bestätigt werden. Es wird gezeigt, dass H180 eine Barriere für den Löchereinfang von etwa 53 meV besitzt, was die Bestimmung des Ladungszustandes aus der Feldabhängigkeit der Emissionsrate erschwert. Die Aktivierungsenergie von H180 stimmt jedoch befriedigend mit der berechneten Aktivierungsenergie des Akzeptorzustandes der CH_T-Konfiguration überein, bei der H auf der T-Zwischengitterposition sitzt. Daher wird H180 vorläufig dem CH_T-Komplex zugeordnet. Das Niveau H50, welches zum ersten Mal hier beschrieben wird, wird nur mit sehr geringen Konzentrationen nachgewiesen. Dies erschwert die Bestimmung des Ladungszustandes. Die Aktivierungsenergie von H50 stimmt jedoch auffallend gut mit dem von der Theorie vorhergesagten Akzeptorniveau von CH_2AB (Ev+0.07 eV) überein. Daher wird H50 vorrübergehend CH_2AB zugeordnet.
Das Einbringen von Wasserstoff in Silizium durch nasschemisches Ätzen führt zu drei dominanten Defektniveaus bei Ec-0.11 eV (E65), Ec-0.13 eV (E75) und Ec-0.16 eV (E90). E90 wurde bisher widersprüchlich von verschiedenen Autoren dem Donatorzustand und dem Akzeptorzustand der bindungszentrierten Konfiguration (CH_1BC) des CH-Komplexes zugeordnet. Dieser Widerspruch konnte aufgelöst werden. Es wird gezeigt, dass in Silizium mit niedrigem Sauerstoffanteil (< 1E17 cm^-3) zwei verschiedene Defektniveaus (E90 und E90') bei etwa 90 K in den DLTS-Spektren erscheinen, welche nur mit der Laplace DLTS-Technik aufgelöst werden können. Der Akzeptorzustand der CH_1BC-Konfiguration kann direkt nach nasschemischem Ätzen oder einer Wasserstoffplasma-Behandlung bei 373 K beobachtet werden. Im Gegensatz dazu wird durch eine Sperrspannungs-Temperung in Proben mit einer Donatorkonzentration von Nd > 1E15 cm^-3 der Donatorzustand eines CH_n-Komplexes (E90', Ec-0.14 eV), welcher mehr als ein Wasserstoffatom enthält, gebildet. Durch Vergleich mit theoretischen Berechnungen wird n > 2 geschlussfolgert. Die Niveaus E65 und E75 sind in Proben mit einem hohen Sauerstoffanteil (> 1E17 cm^-3) dominant. Beide Niveaus gehören zu einer durch ein O-Atom verzerrten CH_1BC-Konfiguration. Das Auftreten von zwei Niveaus wird durch zwei nicht-äquivalente Positionen des O-Atoms bezüglich der CH-Bindung erklärt.
Die Eigenschaften von E42, E90, E262 und H180 wurden ebenfalls in verdünnten SiGe-Legierungen untersucht. Es wird gezeigt, dass Ge-Atome in der direkten Umgebung der Defekte zusätzliche Defektniveaus erzeugen, die in der Bandlücke nahe zu den Si-Defektniveaus liegen und von durch Ge-Atomen verzerrten Defekten stammen. Die beobachteten relativen Konzentrationen dieser Ge-korrelierten Niveaus kann mit Modellen der atomaren Struktur der Defekte erklärt werden. Eine Verschiebung der Defektniveaus proportional zum Ge-Anteil in der Legierung wurde beobachtet. Eine Extrapolation dieser Verschiebung legt den Schluss nahe, dass E90 und E262 auch in reinem Ge beobachtbar sein sollten.
Tatsächlich wurde ein Wasserstoff-korrelierter Defekt E150 (Ec-0.31 eV) in n-Typ Germanium beobachtet. Die Konzentration von E150 ist nach einer Wasserstoffplasma-Behandlung wesentlich höher als nach nasschemischen Ätzen. Es wird gezeigt, dass E150 ein einzelnes Wasserstoffatom und ein noch unbekanntes Verunreinigungsatom enthält, höchstwahrscheinlich Kohlenstoff, Sauerstoff oder Silizium. Damit ist E150 ein sehr wahrscheinlicher Kandidat für einen CH-Komplex in Germanium.
|
Page generated in 0.0513 seconds