481 |
Low - Cost Carriers ✈ A Revised Business Model For Future SuccessKarakan, Taha Mehmet, Elison, Joachim, hellqvist, Daniel January 2012 (has links)
No description available.
|
482 |
Perylene-Based Materials: Potential Components in Organic Electronics and OptoelectronicsAn, Zesheng 17 August 2005 (has links)
Perylene-based materials, including charge-transport discotic liquid crystals and charge-transfer long-wavelength absorbing chromophores, for potential organic electronic and optoelectronic applications, were designed, synthesized and characterized. Two types of discotic liquid crystals, perylene diimides and coronene diimides, can form columnar liquid crystalline phases over a wide temperature range; many of them can have room-temperature liquid crystalline phases after cooling from isotropic liquid. Their charge transport properties were studied by space-charge limited current method; high charge carrier mobilities, with the highest being up to 6.6 cm2/Vs, were found in liquid crystalline phases of these materials under ambient conditions. Structural variables, including aromatic cores and side groups, were examined to get a certain degree of understanding of charge transport properties in these discotic liquid crystals. It was found that mesophase order can have an important effect on charge carrier mobilities. The discotic liquid crystals with high charge carrier mobilities are serious candidates for use in large-area low-cost applications such as solar cells. Long-wavelength, highly absorbing chromophores, featuring donor-substituted perylene diimides, were generated by a combination of charge-transfer process and conjugation extension. The charge-transfer chromophores are expected to lead to further investigation on their potentials as sensitizers in Grtzel solar cells.
|
483 |
Monte Carlo Modeling of Carrier Dynamics in Photoconductive Terahertz SourcesKim, Dae Sin 23 June 2006 (has links)
Carrier dynamics in GaAs-based photoconductive terahertz (THz) sources is investigated using Monte Carlo techniques to optimize the emitted THz transients. A self-consistent Monte Carlo-Poisson solver is developed for the spatio-temporal carrier transport properties. The screening contributions to the THz radiation associated with the Coulomb and radiation fields are obtained self-consistently by incorporating the three-dimensional Maxwell equations into the solver. In addition, the enhancement of THz emission by a large trap-enhance field (TEF) near the anode in semi-insulating (SI) photoconductors is investigated.
The transport properties of the photoexcited carriers in photoconductive THz sources depend markedly on the initial spatial distribution of those carriers. Thus, considerable control of the emitted THz spectrum can be attained by judiciously choosing the optical excitation spot shape on the photoconductor, since the carrier dynamics that provide the source of the THz radiation are strongly affected by the ensuing screenings. The screening contributions due to the Coulomb and radiation parts of the electromagnetic field acting back on the carrier dynamics are distinguished. The dominant component of the screening field crosses over at an excitation aperture size with full width at half maximum (FWHM) of ~100 um for a range of reasonable excitation levels. In addition, the key mechanisms responsible for the TEF near the anode of SI photoconductors are elucidated in detail. For a given optical excitation power, an enhancement of THz radiation power can be obtained using a maximally broadened excitation aperture in the TEF area elongated along the anode due to the reduction in the Coulomb and radiation screening of the TEF.
|
484 |
ICI Self-Cancellation in MISO-OFDM with Distributed AntennaChou, Yi-chuan 25 August 2010 (has links)
In this thesis, we investigate a wireless communications system with distributed transmit antennas. Under such system scenario, the received signal has multiple carrier frequency offsets (CFOs) since each transmitter has its own oscillator, leading to serious inter-carrier interference (ICI) at the receiver end. Therefore, an ICI self-cancellation scheme is proposed in this thesis, where two different relay nodes use different sub-carriers. When the signals from different relay nodes are combined at the destination node, the ICI self-cancellation can be achieved.
In addition, the quality of the received signal can be further improved if the residual CFO can be properly compensated. Traditionally, the medium value of the various CFOs is taken for compensation because of its simplicity. However, a medium value does not result in the optimal performance. In this thesis, a close form expression of optimal CFO is derived to maximize the average signal to interference power ratio. It is shown that the optimal CFO compensation is a function of channel state and individual CFOs.
Simulation experiments are conducted to investigate the performance of the proposed scheme. It is shown that the system bit error rate can be substantially improved when the CFO is less than 0.3 subcarrier spacing.
|
485 |
Study of Resistance Switching Physical Mechanism in Hafnium Oxide Thin Film for Resistive Random Access MemoryLou, Jyun-Hao 14 July 2012 (has links)
This study is focuses on the resistance switching physical mechanism in hafnium oxide (HfO2) of resistive random access memory (RRAM). HfO2 was taken as the resistance switching layer because HfO2 is extremely compatible with the prevalent complementary metal oxide semiconductor (CMOS) process. The detail physical mechanism is studied by the stable RRAM device (Ti/HfO2/TiN), which is offered from Industrial Technology Research Institute (ITRI). In this study, the resistance switching property of two different forming conductions are compared, including DC sweeping forming and AC pulse forming. In general, forming is a pivotal process in resistance
random access memory (RRAM) to activate the resistance switching behavior. However, over forming would lead to device damage. The overshoot current has been considered as a degradation reason during the forming process. The circuit design is used to obtain the overshoot effect of DC sweeping forming by oscilloscope and semiconductor parameter analyzer system. The quantity of charge through the switching layer has been proven as the key element in the formation of the conduction path. Ultra-fast pulse
forming can form a discontinuous conduction path to reduce the operation power.
|
486 |
Investigation of carrier transport in organic optoelectronic devices and iridium complex based phosphorescent light emitting devicesJhan, Yi-Pin 13 August 2012 (has links)
In this research, the contents are divided into two sections. In the first section, we investigated carrier transport behavior of organic optoelectronic devices by using space charge limited current(SCLC) method. Firstly, we fabricated a hole-only device (ITO/Spiro-MeOTAD/Al) for Sprio-MeOTAD and the current density¡V voltage(J-V) characteristics of the device was measured. The J-V characteristics of the device do not match with SCLCs very well at high voltage since the number of hole injection was not enough to achieve SCLCs condition. To enhance the injection of hole carrier into the organic layer, a MoO3 buffer layer was inserted between ITO electrode and organic layer. The current density in device with MoO3 buffer layer achieved 5 times enhancement, indicating that the concentration of hole in MoO3 device is increment. Hence, we succeeded in making the J-V characteristics of the hole-only device to match with SCLCs well at high voltage, and the hole mobility of Sprio-MeOTAD estimated by SCLCs was 1.44¡Ñ10-4cm2/Vs. Li salt was also doped into Sprio-MeOTAD as an n-type dopant. We found that Li salt could form hole-traps in Sprio-MeOTAD, which reduced hole carriers in Spiro-MeOTAD. The current density of the device was decreased, and the device could not achieve SCLCs condition at high voltage.
In the second section, we use two novel iridium(Ir) complexes to fabricate blue-green emitting devices by solution process. First, we obtained optimum concentration of phosphorescent emitters by controlling of the dopants concentration. Then, we adjusted the thickness of the electron injection layer, hole injection layer, and emission layer to design more suitable device structure. Finally, we succeeded in fabricating blue-green light emitting devices. The maxima luminescence was 37.7cd/m2 and maxima current efficiency was 1.68 cd/A in the Ir complex based devices.
|
487 |
A Research on Liability of the Carrier in the Cross¡Ðstrait Passengers and Cargo Air TransportationLiu, Chun-chang 08 February 2006 (has links)
none
|
488 |
Database Maintenance and Applications of Outage Management SystemsTsai, Ping-chang 08 July 2007 (has links)
The objective of this thesis is to update the outage management system (OMS) in Taipower by verifying the phasing of distribution transformers and the connectivity of customers served by each distribution transformer. The GPS based phase measurement unit (PMU) is used to measure the voltage phasing of the transformer. The power line carrier (PLC) based identifier has been developed to support the identification of distribution transformer and all the customers served.
In the thesis, four practical distribution feeders in Fengshan District of Taipower are selected for the update of distribution transformer phasing of OMS system for the update of distribution transformer phasing of OMS system. After correcting the phasing of distribution transformer in the OMS database, the attributes of distribution components are retrieved for the OMS system. The network configuration of distribution feeders is identified by exacting the topology process and node reduction to prepare the input data for load flow analysis. With the monthly energy consumption of customer from the customer information system (CIS) and the typical load patterns of various customer classes, the hourly loading of each transformer can be derived. By retrieving the actual power data of test feeders from the distribution dispatch control center (DDCC), the three phase load flow analysis is executed to solve the three phase currents of trunk line sections, laterals and distribution transformers. The three phase currents solved can therefore be applied to derive the strategy of three phase balancing of distribution feeders.
|
489 |
The Study of Carrier Relaxation in InN Thin FilmsLin, Guan-Ting 14 February 2008 (has links)
This theses investigates the carrier dynamics in Indium Nitride thin films grown on Si(111) substrates by means of ultrafast time-resolved photoluminescence (TRPL) apparatus. The study of energy relaxation shows hot phonon effective is prominent at photogenerated carrier concentration above 4¡Ñ10^18cm^-3 and become insignificant at carrier concentration below 7¡Ñ10^17cm^-3. Effective phonon emission times in the range of 116 to 23 femtoseoncds are obtained from the time evolution of carrier temperature assuming that the carrier-LO-phonon interaction is the dominant energy relaxation process. In the study of carrier recombination, the TRPL¡¦s are studied at the peak energies of the time-integrated PL at various lattice temperatures and are converted to decay rates with a rate equation, which includes the nonradiative and radiative coefficients, and a nonlinear dependence of PL intensity on the photogenerated carrier concentration. The increase with temperatures of the Shockley-Read-Hall rates implies that, in addition to the mid-gap defect states, a thermally activated trapping may become prominent at high lattice temperatures due to the increased kinetic energy gained by the carriers. The radiative recombination is the dominated recombination mechanism at low temperature but become trivial at high temperature. The fitted radiative coefficient at a temperature of 35K is consistent to the theoretical prediction. The Auger recombination exhibits a quadratic dependence on carrier concentration and becomes effective at high carrier concentration and at high temperature. The fitted Auger recombination coefficients are comparable to those of InGaAs and InGaAsP materials with band gap energies in the range of 0.6-0.8eV.
|
490 |
Pilot Design in Uplink OFDMA SystemsHo, Hsin-Che 06 August 2008 (has links)
In this thesis, One of the difficulties in the orthogonal frequency division multiple access (OFDMA) systems is the multi-user interference (MUI) induced by the carrier frequency offset (CFO). In sub-band OFDMA systems, each user occupies a consecutive and non-overlapping frequency sub-band. The pilots are usually placed at the edges of a sub-band for frequency synchronization and channel estimation. However, the both frequency synchronization and channel estimation performance are influenced seriously by the multi-user interference (MUI) induced by CFO of other users. The MUI can be reduced by inserting the guard sub-carrier between adjacent users. In this paper, a novel pilot architecture is investigated, which has the same bandwidth efficiency as the conventional guard sub-carrier insertion scheme. In addition, the proposed pilot architecture provides better carrier frequency synchronization and channel estimation performance than conventional pilot assignment. Moreover, this new pilot architecture also has MUI reduction utility.
|
Page generated in 0.0526 seconds