Spelling suggestions: "subject:"bioluminescence.""
51 |
Electronic and Optical Properties of Defects at Metal-ZnO Nanowire ContactsCox, Jonathan Wesley 25 May 2017 (has links)
No description available.
|
52 |
Réalisation et caractérisation opto-électrique d'un nanopixel à base de nanocristaux de siliciumEugene, Lino January 2009 (has links)
Actuellement, plusieurs types de photodétecteurs sont disponibles sur le marché. Leurs performances se caractérisent notamment par la réponse spectrale, le courant d'obscurité, le rapport signal sur bruit, le rendement quantique et le temps de réponse. L'émergence de nouvelles applications nécessite des photodétecteurs de plus en plus sensibles, afin de pouvoir détecter de très faibles niveaux de radiation, voire de pouvoir compter des photons un par un. Ce travail de thèse s'intéresse aux moyens de réalisation de nanopixels pour la détection de faibles niveaux de lumière visible, en utilisant l'absorption dans des nanocristaux de silicium. Après avoir discuté de l'influence de la réduction des dimensions sur les propriétés électroniques et optiques du silicium, ainsi que de l'utilisation du blocage de Coulomb pour la photodétection, nous présentons un procédé de fabrication et d'isolation de nanopiliers contenant des nanocristaux de silicium dans une matrice d'oxyde de silicium. Les caractéristiques électriques des nanopixels intégrant ces nanocristaux ont permis de mettre en évidence les phénomènes de piégeage de charges dans les îlots, ainsi que leur contribution aux mécanismes de transport. Nous présentons finalement une première étude des propriétés électro-optiques des nanopixels qui ont été caractérisés par des mesures de photocourant.
|
53 |
Cathodoluminescence studies of defects and piezoelectric fields in GaNHenley, S. J. January 2002 (has links)
No description available.
|
54 |
Cathodoluminescence characterization study of point defects in silica-based materials : optical fibers and nanoparticles / Caractérisation par cathodoluminescence des défauts ponctuels dans les matériaux à base de silice : fibres optiques et nanoparticulesReghioua, Imene 12 March 2018 (has links)
L'utilisation récente des fibres optiques (FOs) à base de silice dans des environnements extrêmes, a incité les chercheurs à accélérer leurs études de vulnérabilité. De tels défis sont fortement liés à la bonne compréhension des effets à la fois macroscopiques et microscopiques des différents types de radiations sur la réponse des FOs. Cette thèse de doctorat présente une étude complémentaire aux études précédemment menées sur les différents défauts ponctuels dans les FOs à base de silice par Cathodoluminescence (CL). Cette technique offre la possibilité de détecter les centres luminescents mais aussi de suivre leurs distributions spatiales, leurs cinétiques de création et de guérison en fonction de l'irradiation électronique. Dans ce manuscrit, nous introduisons tout d'abord un résumé des connaissances actuelles sur les défauts liés à la silice pure et différemment dopée.Les détails de notre procédure expérimentale sont discutés dans le 2ème chapitre où nous montrons que les doses déposées lors des mesures CL sont très importantes. Dans le 3ème chapitre nous présentons une étude systématique de la réponse en CL des différentes classes de FOs, dans lesquelles différentes bandes d'émission sont discutées. Le 4ème chapitre traite l'impact d'une variation des conditions d'irradiation électronique sur les centres GLPC, l'un des défauts liés au Ge les plus importants. Enfin, dans le 5ème chapitre, nous avons montré la possibilité de produire des nanoparticules à base de silice par ablation laser, et la capacité de la technique CL de caractériser ce type de matériaux, ce qui ouvre la porte à d'autres utilisations de cette technique pour la caractérisation de nanoparticules. / The recent use of silica-based optical fibers (OFs) in harsh environments pushed the researchers to accelerate their vulnerability and hardening studies. Such challenges are strongly linked to the good understanding of the macroscopic as well as the microscopic effects of different types of radiations on the silica-based OF's response. This PhD thesis presents a complementary study to previous researches on the properties of different point defects in silica-based OFs by Cathodoluminescence (CL). Such technique offers the ability to both detect the luminescent centers and to follow their spatial distribution, their growth and decay kinetic as a function of the electron beam characteristics. ln the present manuscript we first summarize the current knowledge regarding point defects in pure silica or silica glass doped with Ge, P, Ce, N or Al. Details of the experimental procedure are discussed in the 2nd chapter in which we highlight that the equivalent dose deposited during the various configuration of CL measurements are very large. ln the 3rd chapter, we perform an overview study of the CL responses of different classes of OFs, in which many emission bands related to the different dopants were discussed. The 4th chapter focuses on the study of the effects of varying beam conditions on the signature of Germanium Lone Pair Center (GLPC), one of the most important Ge-related point defects. Finally, in chapter V, we demonstrate the possibility to produce silica-based nanoparticles by laser ablation process, and the ability of the CL technique to characterize such materials, which opens the door to other employments of this technique for future studies on nanoparticles.
|
55 |
Ion-beam processes in group-III nitridesKucheyev, Sergei Olegovich, kucheyev1@llnl.gov January 2002 (has links)
Group-III-nitride semiconductors (GaN, InGaN, and AlGaN) are important for the fabrication of a range of optoelectronic devices (such as blue-green light emitting diodes, laser diodes, and UV detectors) as well as devices for high-temperature/high-power electronics. In the fabrication of these devices, ion bombardment represents a very attractive technological tool. However, a successful application of ion implantation depends on an understanding of the effects of radiation damage. Hence, this thesis explores a number of fundamental aspects of radiation effects in wurtzite III-nitrides. Emphasis is given to an understanding of (i) the evolution of defect structures in III-nitrides during ion irradiation and (ii) the influence of ion bombardment on structural, mechanical, optical, and electrical properties of these materials.
¶
Structural characteristics of GaN bombarded with keV ions are studied by Rutherford backscattering/channeling (RBS/C) spectrometry and transmission electron microscopy (TEM). Results show that strong dynamic annealing leads to a complex dependence of the damage buildup on ion species with preferential surface disordering. Such preferential surface disordering is due to the formation of surface amorphous layers, attributed to the trapping of mobile point defects by the GaN surface. Planar defects are formed for a wide range of implant conditions during bombardment. For some irradiation regimes, bulk disorder saturates below the amorphization level, and, with increasing ion dose, amorphization proceeds layer-by-layer only from the GaN surface. In the case of light ions, chemical effects of implanted species can strongly affect damage buildup. For heavier ions, an increase in the density of collision cascades strongly increases the level of stable implantation-produced lattice disorder. Physical mechanisms of surface and bulk amorphization and various defect interaction processes in GaN are discussed.
¶
Structural studies by RBS/C, TEM, and atomic force microscopy (AFM) reveal anomalous swelling of implanted regions as a result of the formation of a porous structure of amorphous GaN. Results suggest that such a porous structure consists of N$_{2}$ gas bubbles embedded into a highly N-deficient amorphous GaN matrix. The evolution of the porous structure appears to be a result of stoichiometric imbalance, where N- and Ga-rich regions are produced by ion bombardment. Prior to amorphization, ion bombardment does not produce a porous structure due to efficient dynamic annealing in the crystalline phase.
¶
The influence of In and Al content on the accumulation of structural damage in InGaN and AlGaN under heavy-ion bombardment is studied by RBS/C and TEM. Results show that an increase in In concentration strongly suppresses dynamic annealing processes, while an increase in Al content dramatically enhances dynamic annealing. Lattice amorphization in AlN is not observed even for very large doses of keV heavy ions at -196 C. In contrast to the case of GaN, no preferential surface disordering is observed in InGaN, AlGaN, and AlN. Similar implantation-produced defect structures are revealed by TEM in GaN, InGaN, AlGaN, and AlN.
¶
The deformation behavior of GaN modified by ion bombardment is studied by spherical nanoindentation. Results show that implantation disorder significantly changes the mechanical properties of GaN. In particular, amorphous GaN exhibits plastic deformation even for very low loads with dramatically reduced values of hardness and Young's modulus compared to the values of as-grown GaN. Moreover, implantation-produced defects in crystalline GaN suppress the plastic component of deformation.
¶
The influence of ion-beam-produced lattice defects as well as a range of implanted species on the luminescence properties of GaN is studied by cathodoluminescence (CL). Results indicate that intrinsic lattice defects mainly act as nonradiative recombination centers and do not give rise to yellow luminescence (YL). Even relatively low dose keV light-ion bombardment results in a dramatic quenching of visible CL emission. Postimplantation annealing at temperatures up to 1050 C generally causes a partial recovery of measured CL intensities. However, CL depth profiles indicate that, in most cases, such a recovery results from CL emission from virgin GaN, beyond the implanted layer, due to a reduction in the extent of light absorption within the implanted layer. Experimental data also shows that H, C, and O are involved in the formation of YL. The chemical origin of YL is discussed based on experimental data.
¶
Finally, the evolution of sheet resistance of GaN epilayers irradiated with MeV light ions is studied {\it in-situ}. Results show that the threshold dose of electrical isolation linearly depends on the original free electron concentration and is inversely proportional to the number of atomic displacements produced by the ion beam. Furthermore, such isolation is stable to rapid thermal annealing at temperatures up to 900 C. Results also show that both implantation temperature and ion beam flux can affect the process of electrical isolation. This behavior is consistent with significant dynamic annealing, which suggests a scenario where the centers responsible for electrical isolation are defect clusters and/or antisite-related defects. A qualitative model is proposed to explain temperature and flux effects.
¶
The work presented in this thesis has resulted in the identification and understanding of a number of both fundamental and technologically important ion-beam processes in III-nitrides. Most of the phenomena investigated are related to the nature and effects of implantation damage, such as lattice amorphization, formation of planar defects, preferential surface disordering, porosity, decomposition, and quenching of CL. These effects are often technologically undesirable, and the work of this thesis has indicated, in some cases, how such effects can be minimized or controlled. However, the thesis has also investigated one example where irradiation-produced defects can be successfully applied for a technological benefit, namely for electrical isolation of GaN-based devices. Finally, results of this thesis will clearly stimulate further research both to probe some of the mechanisms for unusual ion-induced effects and also to develop processes to avoid or repair unwanted lattice damage produced by ion bombardment.
|
56 |
Etude des hétérostructures semi-conductrices III-nitrures et application au laser UV pompé par cathode à micropointesENJALBERT, Fabrice 17 December 2004 (has links) (PDF)
Le travail présenté dans ce rapport a pour objectif d'étudier la faisabilité d'un laser à semi-conducteurs III-nitrures pompé par cathode à micropointes émettant dans l'UV lointain (250–350 nm). La structure laser, élaborée en EJM, est une hétérostructure à confinement séparé dont la zone active est constituée de puits (ou boîtes) quantiques de GaN dans une barrière d'AlxGa1-xN. Elle est pompée par un faisceau d'électrons énergétiques (~10 keV) générés par une cathode à micropointes. Le faisceau électronique converge sur la structure laser grâce à des aimants permanents qui impriment aux électrons un mouvement cyclotron. Cette étude a mis en évidence deux verrous technologiques dans la réalisation de ce laser. Premièrement, le seuil laser est très élevé (~10 MW/cm 2 en pompage optique). En effet, la qualité des alliages AlxGa1-xN constituant la barrière est insuffisante, ce qui se traduit par un faible transfert des porteurs vers les puits quantiques. Des mesures de cathodoluminescence ont été couplées à des simulations pour étudier la diffusion ambipolaire dans les hétérostructures. La longueur de diffusion varie sur trois ordres de grandeur (~nm–μ m) selon la couche étudiée. Elle est la plus faible dans la barrière d'Al0.1Ga0.9N. L'utilisation de substrats de SiC face carbone a permis d'améliorer la qualité des échantillons. Deuxièmement, le courant émis par les micropointes (~A/cm 2 ) est insuffisant pour atteindre le seuil laser. Un dispositif de dépôt de césium sur les micropointes a été mis au point afin de réduire le travail de sortie des électrons. On a ainsi pu multiplier le courant émis par un facteur 50 pour une tension grille–cathode de 70 V mais le dépôt de césium est inhomogène et instable.
|
57 |
Complex Plasmonic Nanostructures: Symmetry Breaking and Coupled SystemsJanuary 2012 (has links)
Metallic nanostructures support resonant oscillations of their conduction band electrons called localized surface plasmon resonances. Plasmons couple efficiently to light and have enabled a new class of technology for the manipulation of light at the nanoscale. Nanostructures that support plasmon resonances have the potential for a wide range of applications such as enhanced optical spectroscopy techniques for chemical- and bio-sensing, cancer diagnosis and therapy, metamaterials, and energy harvesting. As the field of plasmonics has progressed, these applications have become more sophisticated, requiring increasingly complex nanostructures. For example, coupled nanostructures of two or more nanoparticles are used extensively in plasmon-enhanced spectroscopy techniques because they exhibit extremely large optical field enhancements. Asymmetric nanostructures, such as nanocups (metallic semishells), have been shown to support magnetic modes that could be used in metamaterials applications. This class of complex plasmonic nanostructures holds great potential for both the observation of new physical phenomena and practical applications. This thesis will focus on the fabrication and characterization of several examples of these complex nanostructures using darkfield spectroscopy. The plasmon modes of a dimer consisting of two nanoshells are investigated in both the separated and conductively overlapping regimes and are interpreted using the plasmon hybridization model. Next, coupled nanoclusters of seven particles arranged in a hexagonal pattern are studied. It is found that these nanoclusters support Fano resonances due to the coupling and interference of degenerate subradiant and superradiant plasmon modes. These structures are found to have an extremely high sensitivity to the local dielectric environment, making them attractive for biosensing applications. Variations on the nanocluster geometry are then explored, and it is observed that by adding more particles and varying their sizes, the lineshape of the Fano resonance can be precisely engineered. The underlying subradiant and superradiant modes are then analyzed using cathodoluminescence imaging and spectroscopy. Finally the plasmon modes of asymmetric nanostructures are measured. Nanoeggs (nanoshells with an offset core) and nanocups (metallic semishells) are fabricated by electron beam induced ablation, and their plasmon modes are measured. The plasmon modes of nanocups are studied in detail, and nanocups are found to support both electric and magnetic plasmons.
|
58 |
A fluid inclusion and cathodoluminescence approach to reconstruct fracture growth in the Triassic-Jurassic La Boca Formation, Northeastern MexicoKaylor, Autumn Leigh 17 February 2012 (has links)
Opening-mode fracture shapes are typically the result of brittle deformation and proportional growth in fracture height, length, and width. Based on the typical fracture shape, it is assumed that fracture tips are free to propagate in all directions. Some natural rock fractures have been shown to form as a result of slow non-elastic deformation processes. Such fractures may propagate to a finite length or height and accommodate further growth by aperture widening only. To determine the growth conditions of a fracture in the Triassic-Jurassic La Boca Formation of northeastern Mexico and to test fracture growth models, I combined fluid inclusion microthermometry and SEM-based cathodoluminescence cement texture analysis to determine the relative timing of fracture cement precipitation and related fracture opening for five samples collected along its trace.
Fracture growth initiated at a minimum age of 70 Ma as two separate fractures with branching fracture tips that coalesced to a single continuous fracture under prograde burial conditions at a minimum age of 54 Ma. At this stage, fracture growth was accommodated by both propagation (i.e. increase in trace length) and by an increase in aperture during maximum burial and early exhumation. Samples collected at the fracture tips recorded temperatures reflecting fracture opening starting with maximum burial at a minimum age of 48 Ma at one tip and of 38 Ma at the other tip. Synkinematic fluid inclusions in crack-seal cement track continued fracture opening close to the fracture tips without a concurrent increase in trace length after 38 Ma until about 21 Ma.
I attribute the observed change in fracture growth mechanism to a change in material response. The stage in aperture increase without propagation corresponds to an increase in elastic compliance or in non-elastic flow properties. Non-elastic flow can be attributed to solution-precipitation creep of the host rock. Dissolution of host quartz grains and subsequent quartz precipitation is consistent with the abundance of quartz fracture cement formed during exhumation. Cement textures from fractures in the La Boca Formation mimic those found in subsurface core, which allows application of the results to a variety of geologic environments. / text
|
59 |
Fracture scaling and diagenesisHooker, John Noel 25 February 2013 (has links)
Sets of natural opening-mode fractures in sedimentary rocks may show a variety of types of aperture-size distributions. A frequently documented size distribution type, in the literature and in data presented here, is the power law. The emergence of power-law distributions of fracture aperture and length sizes has been simulated using various quasi-mechanical fracture-growth routines but models based on linear-elastic fracture mechanics rarely produce such patterns. I collected a fracture-size dataset of unprecedented size and resolution using core and field methods and scanning electron microscope-based cathodoluminescence (SEM-CL) images. This dataset confirms the prevalence of power laws with a narrow range of power-law exponents among fractures that contain synkinematic cement. Organized microfractures are ubiquitous in sandstones. A fracture-growth simulation I devised reproduces observed size-scaling patterns by distributing fracture-opening increments among actively growing fractures. The simulated opening increments have a uniform size, which can be specified; uniform opening size is consistent with observations of narrow ranges of micron-scale widths of opening increments within crack-seal texture in natural fractures. Thus power-law size scaling of natural fractures can be explained using non-power-law (uniform-sized) opening increments, arranged using rules designed to simulate the effects of cement precipitation during fracture opening. A fundamental shortcoming of previous models of fracture-set evolution is the absence of a test because only natural fracture end states, not growth histories, could be measured. Using a technique to constrain fracture timing based on fluid inclusion microthermometry and thermal history modeling, I tested growth models by reconstructing the opening history of a set of natural fractures in the Triassic El Alamar Formation in northeast Mexico. The natural-fracture data show that, consistent with simulations, new microscopic fractures are continually introduced during natural fracture pattern evolution. As well, larger fractures represent sites of concentrated reactivation, although smaller fractures may be reactivated after long periods of quiescence. The pattern likely arises through feedback between fracture growth and the mechanically adhesive effects of contemporaneous fracture cement deposition. The narrow range in power-law exponents documented among fractures can help improve estimates of meter-scale large-fracture spacing where limited fracture samples are available. / text
|
60 |
Optische Eigenschaften von Versetzungen in SiliziumAllardt, Matthias 24 August 2015 (has links) (PDF)
Versetzungen sind linienhafte Störungen in Kristallen und beeinflussen die mechanischen, elektrischen und optischen Eigenschaften des Halbleitermaterials. In dieser Arbeit werden die optischen Eigenschaften von Versetzungen in Silizium anhand des Studiums ihrer charakteristischen Lumineszenz, der sogenannten D-Linien, untersucht. Dabei wurden die Versetzungen in einkristallinen Siliziumproben verschiedener Orientierung in einem einstufigen Prozess mittels plastischer Verformung bei hohen Temperaturen erzeugt und ggf. in einem zweiten Schritt durch Hochlastverformung bei tieferen Temperaturen modifiziert. Als Methoden zur Untersuchung der optischen Eigenschaften der Versetzungen werden Photolumineszenz (PL)- und Kathodolumineszenz (KL)-Spektroskopie verwendet. Gleitstufen an der Probenoberfläche werden mittels Rasterelektronenmikroskopie (REM), die Versetzungsanordnungen im Probenvolumen mittels Transmissionselektronenmikroskopie (TEM) abgebildet.
Die Versetzungsstruktur der auf Einfachgleitung orientierten Proben ist durch relaxierte Versetzungen (einstufige Verformung) bzw. gerade Versetzungen (zweistufige Verformung) gekennzeichnet. In der auf Vielfachgleitung orientierten Probe werden mehrere Gleitsysteme gleichartig aktiviert. Es bildet sich ein Zellmuster aus, wobei das Innere der ca. 1 µm großen Zellen im Wesentlichen versetzungsfrei ist und die Zellwände eine hohe Versetzungsdichte aufweisen. Generell sind die mittleren Versetzungsdichten aller Proben hoch. Sie betragen zwischen 5 x 10^7 und 1 x 10^9 cm-2.
Die Lumineszenz der einstufig verformten Proben ist durch das Auftreten von vier Linien (D1 bis D4) im Spektrum gekennzeichnet. In den zweistufig verformten Proben dominieren die Linien D5 und D6 die Lumineszenz. Die spektralen Positionen aller D-Linien entsprechen den aus der Literatur bekannten Daten. Die integrale Lumineszenzintensität im Bereich der D-Linien nimmt mit wachsender mittlerer Versetzungsdichte zu. Zusätzlich kann in den zweistufig verformten Proben eine bisher nicht identifizierte Lumineszenzlinie bei einer Energie von 1,090 eV festgestellt werden. Für diese Linie wird in dieser Arbeit die Bezeichnung P^2SD verwendet.
In den KL-Abbildungen wird für alle D-Linien und die P^2SD-Linie im Wesentlichen eine örtlich homogene Lumineszenzverteilung festgestellt. Dies wird auf eine im Maßstab des KL-Wechselwirkungsvolumens homogene Versetzungsverteilung zurückgeführt. Die lokalen Schwankungen der KL um die mittlere Intensität betragen maximal 15 %. Diese Schwankungen äußern sich in hellen und dunklen Lumineszenzstreifen, deren Breite deutlich größer als der mittlere Versetzungsabstand ist. Aus dem Vergleich von KL-Bildern mit Rückstreuelektronenbildern der Oberflächengleitstufen ergeben sich folgende Aussagen: Die KL-Intensität der D3- und D4-Linie ist auf markanten Gleitbändern im Vergleich zur Umgebung verringert, wogegen die Intensität der Linien D1 und D2 auf markanten Gleitbändern erhöht ist. Für die D5-Bande, die D6-, und die P^2SD-Linie kann kein allgemeiner Zusammenhang zwischen der Lokalisierung der Lumineszenz und der Gleitaktivität festgestellt werden.
Anhand der experimentellen Ergebnisse kann die D3-Linie als TO-Phononenreplik der D4-Linie identifiziert werden. Für die D4-Lumineszenz werden zwei Rekombinationsmodelle diskutiert. Zum einen kann sie durch die exzitonische Rekombination an eindimensionalen Energiebändern erklärt werden, die durch das Verzerrungsfeld der Versetzungen von den jeweiligen Volumenenergiewerten abgespalten sind. Zum anderen kann auch die Rekombination eines tief gebundenen Elektrons mit einem schwach gebundenen Loch für die D4-Lumineszenz verantwortlich sein. In jedem Fall ist das Auftreten der D4-Linie an die Existenz von relaxierten 60 °- und Schraubenversetzungen gebunden.
Die D1-Linie wird als OGamma-Phononenreplik der D2-Linie vorgeschlagen. Die D2-Linie selbst kann als ein strahlender Übergang zwischen zwei gebundenen Zuständen eines zweidimensionalen Potentialtopfs endlicher Tiefe modelliert werden. Die Abmessungen dieses Potentialtopfs sind dabei durch die Ausdehnung von Kinken und Jogs auf der Versetzungslinie gegeben. Allerdings könnte auch ein interner Übergang zwischen den Niveaus eines tiefen Defekts innerhalb der Bandlücke als Erklärung herangezogen werden. Wegen der Zunahme der Lumineszenzintensiät der D2-Linie durch thermische Behandlungen sollten Kinken, Jogs, und Punktdefekte im Verzerrungsfeld der Versetzungen als Ursache der D2-Lumineszenz in Frage kommen.
Auch die P^2SD-Linie kann mithilfe von zwei unterschiedlichen Rekombinationsmodellen erklärt werden (free-to-bound-Übergang oder exzitonische Rekombination an zweidimensionalen Energiebändern). Punktdefekte, die während des zweistufigen Verformungsprozesses entstehen, könnten die P^2SD -Linie hervorrufen.
|
Page generated in 0.092 seconds