161 |
Variation in the Properties of Ionomers Synthesized by Ionic Functionalization Pre- and Post-PolymerizationGuo, Yuewei 14 November 2021 (has links)
No description available.
|
162 |
Optimisation du procédé de photopolymérisation pour l'élaboration de matériaux composites épais à matrice époxyde. / Optimization of the photopolymerization process for the elaboration of thick epoxy composite materialsIbanez, Cyrielle 22 November 2019 (has links)
Le procédé de photopolymérisation a été optimisé en vue de l’élaboration de matériaux composites à matrice époxyde épais (> 1 mm) via un mécanisme cationique. L’étude des cinétiques de photopolymérisation de deux résines époxydes (glycidyl éther et cycloaliphatique) a montré que l’ajout d’un renfort de microsphères de silice induit un gradient de conversion dans l’épaisseur du matériau en raison d’un phénomène d’absorption et/ou de diffusion de la lumière, ce dernier étant d’autant plus important que l’écart d’indice de réfraction entre la charge et la matrice est élevé. Cependant, cette hétérogénéité de conversion a pu être compensée par une réaction de postpolymérisation à température ambiante. Une analyse des propriétés mécaniques a ensuite montré qu’il est possible d’obtenir par photopolymérisation des matériaux composites épais réticulés de façon homogène et dont la rigidité est augmentée par la présence du renfort. Enfin, la stratégie d’égalisation des indices de réfraction de la charge et de la matrice, couplée à une photopolymérisation cationique frontale induite par voie radicalaire (RICFP), ouvre des perspectives intéressantes en vue de l’élaboration de photocomposites de plusieurs centimètres d’épaisseur en appliquant uniquement un stimulus lumineux. / The photopolymerization process has been optimized for the elaboration of thick epoxy composite materials (> 1 mm) through a cationic mechanism. The study of the photopolymerization kinetics of two epoxy resins (glycidyl ether and cycloaliphatic) has shown that the addition of a silica microsphere reinforcement induced conversion gradient in the material thickness, resulting from a light absorption and/or scattering phenomenon. The light scattering is all the more important as the refractive index gap between filler and matrix is high. However, this conversion heterogeneity has been compensated by a postpolymerization reaction at room temperature. Then, the analysis of the mechanical properties has shown that it was possible to obtain thick composite materials homogeneously crosslinked and whose rigidity was increased by the presence of the filler. In addition, the strategy of equalizing the filler and matrix refractive indices, coupled with the radical induced cationic frontal polymerization (RICFP) opens interesting perspectives for the development of photocomposites several centimeters thick using only a light stimulus.
|
163 |
Polymérisation cationique photo-thermique de résines époxydes / Photo- and thermal cationic polymerization of epoxidesMarechal, David 22 October 2013 (has links)
Le groupe Mäder s’est lancé depuis quelques années dans une nouvelle thématique, la polymérisation « dual-cure ». Il s’agit d’un processus photo-thermique couplant réactivité photochimique et thermique. Cette thématique vise des applications pour lesquelles le produit est épais et/ou fortement chargé. La photopolymérisation étant limitée en profondeur, le processus thermique permet de compléter la polymérisation au coeur de l’échantillon ou encore dans les zones non accessibles par la technologie UV/LED. Cette thématique a fait l’œuvre d’une première thèse (2007-2010) menée par le doctorant Adrien Criqui au sein du Département de Photochimie Général (DPG). Au cours de cette thèse, la polymérisation radicalaire photo-thermique à partir d’aldéhydes a été étudiée. Des résultats concluant ont été obtenus donnant naissance à une technologie innovante notamment avec des applications sous air. Dès lors, il s’est posé la question de savoir si les aldéhydes pouvaient être utilisés dans la polymérisation cationique photo-thermique. La première année de thèse a donc commencé par l’étude du potentiel des aldéhydes dans la polymérisation cationique photo-thermique de résine époxydes. Les aldéhydes ont montrés qu’ils sont de bons photosensibilisateurs de la photopolymérisation cationique amorcée par un sel d’iodonium. Certaines structures aldéhydes couplées à un sel d’iodonium ont conduit à une polymérisation thermique. Les vitesses de polymérisation sont néanmoins trop lentes pour pouvoir être exploitées. La voie des aldéhydes a donc été abandonnée suite à ces résultats. Malgré ceci, ce sujet a fait l’œuvre d’une étude mécanistique qui a permit de conclure que le couple sel d’iodonium/aldéhyde réagit selon un mécanisme redox au courant duquel l’auto-oxydation de l’aldéhyde est indispensable. La réduction du photoamorceur par le radical issu de l’auto-oxydation de l’aldéhyde permet d’amorcer la polymérisation cationique. Par la suite, une importante bibliographie sur la polymérisation cationique des époxydes a été réalisée, le but étant de rechercher de nouveaux systèmes amorceurs. Plusieurs systèmes ont alors été retenus à savoir, les acides de Lewis et de Brönsted ainsi que les espèces cationiques. Les acides de Lewis étudiés n’ont pas apportés de résultats satisfaisants et ont donc été abandonnés. Parmi les acides de Brönsted, les acides sulfoniques ont été sélectionné. Des résultats mitigés ont été obtenus. En effet, soit la polymérisation s’est montrée trop rapide et non contrôlable soit trop lente. Le mécanisme de polymérisation amorcé par ces espèces ne semble pas adapté aux résines époxydes. La synthèse d’une structure appropriée a été envisagée mais pour des raisons stratégiques a été par la suite abandonnée. Plusieurs structures d’espèces cationiques ont été étudiées, à la fois des espèces commerciales (ex : triphénylcarbénium, …) ainsi que des espèces synthétisées au laboratoire (ex : xanthénium, …). Les travaux effectués sur ces systèmes amorceurs ont montrés qu’un amorçage indirect avec formation de l’amorceur in situ était une voie à privilégier.A partir de ce constat, deux technologies ont été étudiées. La première, à caractère purement académique, concerne une voie redox. Un système déjà publié basé sur le système sel d’iodonium/sel de cuivre/acétoïne a été ré-évalué. Les résultats obtenus ne correspondant pas au mécanisme publié, une étude mécanistique a été réalisée afin de proposer un nouveau mécanisme réactionnel. Le mécanisme de réaction est basé sur une réaction de décomposition, probablement par complexation, du sel d’iodonium par un sel de cuivre. Le produit de décomposition formé étant sensible à l’hydrolyse, il est possible d’accélérer la vitesse de polymérisation par la présence d’un composé hydroxylé type acétoïne. [...] / In the past few years, The Mäder Group has launched a new theme, " dual- cure " polymerization and process. This process is a coupling between photochemical and thermal reactivity. This theme is designed for applications where the product is thick and/or loaded with fillers. The photopolymerization is limited in depth and then the thermal process is used to complete the polymerization of the sample or in the non-irradiated areas. This theme has been the work of a first PhD (2007-2010) conducted by the student Adrien Criqui in the “Département de Photochimie Générale (DPG)”. In this PhD, the photo- and thermal radical polymerization with aldehydes was studied. Results have given birth to an innovative technology, particularly with applications under air. Therefore, it wonder if aldehydes could be used in the photo- and thermal cationic polymerization.The first year of PhD has begun with the study of the potential of aldehydes in the photo- and thermal cationic polymerization of epoxy resin. Aldehydes have shown that they are good photosensitizers of the cationic photopolymerization initiated by an iodonium salt. Some aldehydes coupled with an iodonium salt led to thermal polymerization. However rates of polymerization are too slow to be exploited. The way of aldehydes has been aborted due to these results. Despite this, this topic has been the work of a mechanistic study that led to the conclusion that the iodonium/aldehyde salt couple reacts according to a redox mechanism in which the auto-oxidation of the aldehyde is essential. The reduction of the photoinitiator by the radical derived from the auto- oxidation of the aldehyde aollow to initiate cationic polymerization.Subsequently, an extensive bibliography on the cationic polymerization of epoxides was carried out with the aim to find new initiator systems. Therefore, several systems have been selected i.e., Lewis and Brösted acids, and cationic species. Lewis acids studied gave no satisfactory results and were therefore given up. Among the Bronsted acids, sulfonic acids were selected. Mixed results were obtained. Sometimes the polymerization has been too fast and sometimes too slow. The polymerization mechanism initiated by these species does not seem suitable for epoxy resins. The synthesis of a suitable sulfonic acid was considered but for strategic reasons was later dropped. Several structures of cationic species have been also studied, both commercial species (eg: triphenylcarbenium , ... ) as well as synthesized species (eg: xanthénium ...). Work on these initiator systems convinced to use an indirect method to initiate polymerization.From this, two technologies have been studied. The first, relates to a redox pathway. A published system based on iodonium salt/copper salt/acetoïne combination has been re-evaluated. Results do not match the published mechanism. A new mechanistic has been proposed. The reaction mechanism is based on a decomposition reaction, presumably by complexation, of the iodonium salt with a copper salt. The decomposition product formed is susceptible to hydrolysis. Rates of polymerization have been accelerated the by the presence of a hydroxy compound like acetoïne. From the knowledges, ways of controlling the rate of polymerization (eg: complexing metal salt) and a new initiator system have been proposed. The second technology relates to a bi-component consisting of a photoinitiator/thermal initiator and a co- initiator. The reaction between the initiator and co-initiator allows initiating the polymerization. The polymerization rate can be controlled from the structure of initiator and co-initiator. The initiator is also a photoinitiator, the photo- and thermal nature is ensured. Two classes of co-initiators have been studied from a fundamental point of view (hydroperoxides and vinyl ether). It has been shown that hydroperoxides reduce initiator by an electron transfer. [...]
|
164 |
Peptídeos antimicrobianos e doença periodontal : influência do tabagismo na expressão de peptídeos antimicrobianos e possíveis efeitos de peptídeos sintéticos sobre biofilmes multi-espécies /Soldati, Kahena Rodrigues. January 2020 (has links)
Orientador: Daniela Leal Zandim-Barcelos / Resumo: Peptídeos antimicrobianos (PAMs) são importantes componentes da resposta do hospedeiro contra patógenos invasores. Além da ação antimicrobiana direta, podem também participar na modulação do sistema imune. No entanto, o papel dos PAMs na etiopatogênese da doença periodontal e os fatores de risco que podem influenciar sua expressão na cavidade bucal ainda não se encontram totalmente elucidados. Dessa forma, os objetivos do presente estudo foram: (1) avaliar a influência do tabagismo nos níveis de LL-37 e HNP 1-3 no fluido crevicular gengival (FCG) de pacientes com periodontite e investigar a associação entre os níveis destes PAMs e de mediadores inflamatórios nos sítios com ausência e presença de doença periodontal; (2) investigar o impacto do tabagismo nos níveis de hBD1 e 2 em pacientes com periodontite e avaliar os efeitos da nicotina e cotinina na expressão destes PAMs por queratinócitos; (3) avaliar a atividade metabólica e enzimática durante a recolonização de biofilmes multi-espécies periodontopatogênicos após tratamento com peptídeos sintéticos derivados da catelicidina humana (LL31 e D-LL31). A quantificação dos PAMs e mediadores inflamatórios no FCG foi realizada por meio de ensaio ELISA sanduiche e Multiplex, repectivamente, enquanto a RT-qPCR em tempo real detectou a expressão gênica dos PAMs por queratinócitos. A produção de ácido láctico foi mensurada para determinar a atividade metabólica nos biofilmes pós-tratamento, enquanto a atividade enzimática foi analisad... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Antimicrobial peptides (AMPs) are important components of the host response against invading pathogens. In addition to the direct antimicrobial activity, they can also participate in the immune system modulation. However, the role of AMPs in the etiopathogenesis of periodontal disease and the risk factors that may influence their expression in the oral cavity are not yet fully understood. Thus, the purposes of the present study were: (1) to evaluate the influence of smoking on the levels of LL-37 and HNP 1-3 in the gingival crevicular fluid (GCF) of patients with periodontitis and to investigate the association between the levels of these AMPs and inflammatory mediators at sites with absence and presence of periodontal disease; (2) to investigate the impact of smoking on hBD1 and 2 levels in patients with periodontitis and to evaluate the effects of nicotine and cotinine on the expression of these AMPs by keratinocytes; (3) evaluate the metabolic and enzymatic activity during the recolonization of multi-species periodontopathogenic biofilms after treatment with synthetic peptides derived from human cathelicidin (LL31 and D-LL31). The quantification of AMPs and inflammatory mediators in the GCF was performed by sandwich ELISAs and Multiplex assay, respectively, while RT-qPCR in real time detected the gene expression of the AMPs by keratinocytes. The production of lactic acid was measured to determine the metabolic activity in post-treatment biofilms, while the enzymatic activi... (Complete abstract click electronic access below) / Doutor
|
165 |
Terpenes as renewable monomers for biobased materials / Terpener som förnyelsebara monomerer för biobaserade materialNorström, Emelie January 2011 (has links)
With the ambition to decrease the utilization of fossil fuels, a development of those raw materials that today only are seen as waste products is necessary. One of those waste products is turpentine. Turpentine is the largest natural source of terpenes in the world today. The main components are the terpenes α-pinene, β-pinene and 3-carene. In this project, different polymerisation techniques have been evaluated to polymerise limonene with the aim to make a material out of the green raw material, turpentine. Limonene is a terpene that can be found in turpentine. It has a planar structure and should work as a model for other terpenes. Previous work on polymerising terpenes has focused on succeeding with performing polymerisations of terpenes utilizing the techniques of cationic polymerisation and radical polymerisation. However, this has been done without the aim to make a material out of the polymers. In this project, on the other hand, the main focus has been to obtain a polymer that can be used as a basis for a material. Techniques that have been applied are: radical polymerisation, cationic polymerisation and thiol-ene polymerisation. In this study, attempts to homopolymerise limonene and also copolymerise it with other synthetic monomers, such as styrene, have been performed with both radical polymerisation and cationic polymerisation. The procedure for the radical polymerisation has been conducted following the work by Sharma and Srivastava. [1] Even though several articles have been published about radical copolymerisations of limonene with other synthetic monomers, the radical polymerisations have not succeeded in this project. Further, the technique of thiol-ene chemistry has shown that limonene can be used in polymerisations; limonene reacts spontaneously with 2-mercaptoethyl ether forming a viscous polymer. The obtained polymers have been characterized with proton nuclear magnetic resonance(1H-NMR), size exclusion chromatography (SEC), matrix-assisted laser desorption ionization-time of flight mass spectroscopy (MALDI-TOF MS), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy.
|
166 |
Cationic Steroid Antimicrobials: Applications to Medical Device Coatings, Mechanism of Pro-Osteogenic Properties, and Potential Synergy with Common AntifungalsHilton, Brian J. 14 June 2021 (has links)
Cationic steroid antimicrobials (CSAs or ceragenins) are a novel class of synthetic, cholic acid-based mimics of endogenous antimicrobial peptides. These small molecule compounds display broad bactericidal activity against gram-negative and gram-positive bacteria, potent ability against fungal pathogens, and cidal effects against drug resistant and multidrug resistant microbes. Implantable medical devices provide an abiotic surface upon which bacteria and fungi can accumulate--thereby leading to localized or systemic infection. We proposed that CSA antibiotics can be incorporated into medical device surface coatings which can be optimized for the active release or elution of the CSA compounds over time to prevent device-associated infections. This report will discuss the progress of developing and testing coating systems for 3 such devices: cardiac implantable electronic devices (CIED), silicone nasal splints, and breast tissue expanders. In the case of CIEDs, an envelope material containing CSA was created using bioresorbable polymers. We found that this envelope elutes CSA antibiotics and kills all surrounding bacteria or fungi in both planktonic and biofilm forms within 1 hour of exposure. We also developed a nasal splint coating which is directly adhered to the surface of the silicone splint. This coating system demonstrated more than 8 days of protective ability (full microbicidal activity to the detection limit) against Candida albicans, and reduced microbial growth of P. aeruginosa, Candida auris, and MRSA for approximately 6 days. Lastly, in the case of tissue expanders, we developed a layered coating which displays fully-reductive antimicrobial activity against MRSA for 8 days with reintroduction of bacteria every 24 hours. Additionally, this work will discuss our investigations into the secondary properties of ceragenin compounds. On the basis of studies which have demonstrated the pro-osteogenic properties of CSA, we probed the mechanism of this effect. We studied the potential effects of ceragenins on the proliferation, differentiation, and migration of bone-derived mesenchymal stem cells (MSCs). We have determined the absence of any positive proliferative effects of ceragenins on these cells; however, we have demonstrated the significant migration-promoting chemoattractant properties of CSA. In the case of CSA-13, we have observed up to a 400% increase in migration compared to the control. Also, we demonstrated that the P2X7 receptor is strongly implicated in the cellular mechanism of this effect. Our studies of the differentiation-promoting properties of CSA on MSCs have been largely inconclusive, but further investigations are proposed in this report. Lastly, this work includes a report on our investigations into the potential synergistic interactions between CSA-131/CSA-44 with amphotericin B or caspofungin, two commonly used antifungal agents.
|
167 |
Invited Review: Diversity of Endotoxin and Its Impact on PathogenesisTrent, M., Stead, Christopher M., Tran, An X., Hankins, Jessica V. 01 August 2006 (has links)
Lipopolysaccharide or LPS is localized to the outer leaflet of the outer membrane and serves as the major surface component of the bacterial cell envelope. This remarkable glycolipid is essential for virtually all Gram-negative organisms and represents one of the conserved microbial structures responsible for activation of the innate immune system. For these reasons, the structure, function, and biosynthesis of LPS has been an area of intense research. The LPS of a number of bacteria is composed of three distinct regions - lipid A, a short core oligosaccharide, and the O-antigen polysaccharide. The lipid A domain, also known as endotoxin, anchors the molecule in the outer membrane and is the bioactive component recognized by TLR4 during human infection. Overall, the biochemical synthesis of lipid A is a highly conserved process; however, investigation of the lipid A structures of various organisms shows an impressive amount of diversity. These differences can be attributed to the action of latent enzymes that modify the canonical lipid A molecule. Variation of the lipid A domain of LPS serves as one strategy utilized by Gram-negative bacteria to promote survival by providing resistance to components of the innate immune system and helping to evade recognition by TLR4. This review summarizes the biochemical machinery required for the production of diverse lipid A structures of human pathogens and how structural modification of endotoxin impacts pathogenesis.
|
168 |
Synthesis and Characterization of Novel Amphiphilic Diblock Copolymers Poly (2-Ethyl-2-Oxazoline)-b-Poly (Vinylidene Fluoride)Aljeban, Norah 06 1900 (has links)
Poly (2-ethyl-2-oxazoline)-based amphiphilic diblock copolymer has the potential to form promising membrane materials for water purification due to the thermal stability and good solubility in aqueous solution and also for gas separation because of the presence of polar amide group along the polymer backbone. Moreover, their self-assembly into micelles renders them candidate materials as nanocarriers for drug delivery applications. In this study, a novel well-defined linear PEtOx-based amphiphilic diblock copolymer with a hydrophobic fluoropolymer, i.e., PVDF, have been successfully synthesized by implementing a synthesis methodology that involves the following four steps. In the first step, poly (2-ethyl-2-oxazoline) (PEtOx) was synthesized via living cationic ring-opening polymerization (LCROP) of 2-ethyl-2-oxazoline (EtOx) monomer. The “living” nature of LCROP allows the desirable termination to occur by using the proper termination agent, namely, water, to achieve the polymer with a terminal hydroxyl group, i.e., PEtOx-OH. The hydroxyl end group in PEtOx-OH was converted to PEtOx-Br using 2-bromopropionyl bromide via an esterification reaction. In the third step, the PEtOx-Br macro-CTA was subsequently reacted with potassium ethyl xanthate to insert the necessary RAFT agent via nucleophilic substitution reaction to obtain PEtOx-Xanthate. It s worth mentioning that this step is vital for the sequential addition of the second block via the RAFT polymerization reaction of fluorinated monomer, i.e., VDF, to finally obtain the well-defined amphiphilic diblock copolymer with variable controlled chain lengths. Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR) and Fourier Transform Infrared Spectroscopy (FT-IR) confirmed the structure of the macroinitiator and final copolymer, respectively. Size Exclusion Chromatography (SEC) determined the number-average molecular weight (Mn) and the polydispersity index (PDI) of the obtained copolymer. Furthermore, the polymorphism of the diblock copolymer characterized by X-Ray Diffraction (XRD) indicated that the copolymer displays the electroactive α-phase. The resultant amphiphilic diblock copolymer exhibits spherical micelles morphology, as confirmed by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). Moreover, Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) investigated the thermal decomposition behavior of the copolymer and determined the glass transition temperature (Tg ≈ 70 °C), melting temperature (Tm ≈ 160-170 °C), and crystallization temperature (Tc ≈ 135-143 °C) of the diblock copolymer, respectively.
|
169 |
Complex Macromolecular Architectures by Living Cationic PolymerizationAlghamdi, Reem D. 05 1900 (has links)
Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or “grafting-onto” methodologies, which yielding in well-defined PVEs segments with control Mn(GPC) = [VE]/[initiator] and narrow MWDs.
|
170 |
Liposome-coated Magnesium Phosphate Nanoparticle for Delivery of Cytochrome C into Lung Cancer Cells A549Yue, Weizhou 01 January 2017 (has links)
Proteins are large biomolecules that have great therapeutic potential in treating many human diseases. However, chemical/enzymatic degradation, denaturation, and poor penetration into cells are some of the challenges for clinical use of intracellular proteins.
Previously, our group has developed cationic lipid-coated magnesium phosphate nanoparticle (LP MgP NP-CAT) formulations to enhance the intracellular delivery of the negatively charged protein catalase. The goal of the current research is to develop a formulation to deliver cytochrome c (CytC), a positively charged protein into lung cancer cells A549. Specifically, this thesis research prepares and tests liposome-coated magnesium phosphate nanoparticle for delivery of cytochrome c (CytC LP/MgP).
CytC LP/MgP was designed, prepared and characterized, showing that it had an average diameter around 150 nm and ζ-potential around +30 mV. The morphology of CytC LP/MgP was validated by transmission electron microscopy.
CytC LP/MgP successfully led to the attachment of CytC to A549 cells, as supported by fluorescence imaging. Intracellular delivery of CytC alleviated the cytotoxicity of cationic lipids in A549 cells, as suggested by the MTS assay on cell viability, which could facilitate the clinical use of cationic lipids in drug delivery systems.
|
Page generated in 0.073 seconds