• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 88
  • 59
  • 29
  • 13
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Introdução a dinâmica de velas solares e seus equilíbrios no sistema sol-terra para baixa luminosidade

Flavia Silvia dos Santos 10 December 2015 (has links)
Um dos maiores desafios para as agências espaciais é a utilização de fontes alternativas de energia que possibilitem missões espaciais de baixo custo no Sistema Solar. Neste contexto, a pressão de radiação solar tem sido apresentada como uma forma alternativa de propulsão para missões espaciais interplanetárias. Neste trabralho empregamos o modelo do Problema Restrito de Três Corpos Circular Espacial com a inclusão da força de pressão da radiação solar para investigar as estruturas dinâmicas mais essenciais no sistema Sol-Terra, isto é, as soluções de equilíbrio. Para um baixo valor do número de luminosidade, realizamos uma análise biparamétrica detalhada das famílias de soluções de equilíbrio que se relacionam às soluções clássicas do Problema Restrito. Através de um método de continuação numérica, calculamos os equilíbrios e suas localizações no espaço de fase e realizamos a análise de estabilidade linear dessas soluções, apresentando um estudo da classificação dos diferentes tipos de estabilidade no plano biparamétrico e suas bifurcações.
62

Mesure du flux de blazar Mrk421 au dessus de 60 GeV avec l'expérience CELESTE

Le Gallou, Roland 12 November 2001 (has links) (PDF)
Le domaine de longueurs d'onde du spectre electromagnetique s'etendant de 30 a 300 GeV a ete ouvert recemment par les experiences CELESTE et STACEE, qui utilisent la reconversion de centrales solaires pour capter la lumiere Cherenkov emise par les cascades de particules que ces photons de haute energie provoquent dans l'atmosphere terrestre.<br> Ces photons sont emis au sein d'objets tels que les supernovae, les pulsars ou les noyaux de galaxie de type blazar, les plus extremes et les plus variables de ces derniers. L'observation des blazars permet d'etudier le comportement de la matiere dans des conditions physiques extremes et de sonder le passe lointain de l'univers. Un des themes principaux de ce travail de these a ete de developper les methodes d'analyse de donnees de CELESTE et de valider leur fonctionnement.<br> Un effort particulier a ete porte sur la recherche de criteres de rejectionhadronique efficaces, la sensibilite du detecteur y etant intimement liee. Une variable originale basee sur l'annalyse temporelle du front d'onde, a ete degagee dans ce but. Le fonctionnement du detecteur et de l'analyse de donneesa ete valide par l'observation de la nebuleuse du crabe, la chandelle standard de l'astronomie gamma. L'acceptance du detecteur a ete calculee a partir de simulations de type Monte-Carlo. Le seuil du detecteur, d'apres ces etudes, est de 30 GeV au niveau declenchement et de 60 GeV apres les coupures d'analyse. CELESTE fontionne de façon stable depuis Novembre 1999, avec 40 heliostats, et a accumule des donnees en quantite interessante sur 4 blazars.<br> Sur Mrk-421, plusieurs sursauts d'activite ont ete detectes et un flux moyen a pu etre calcule. Une correlatio a ete observee entre l'activite vue par CELESTE et celle vue au TeV et en X, confirmant les modeles de ce type d'objet. des limites superieures ont ete calculees sur Mrk501, 1ES0219+42.8 et 1ES2344+51.4. Il s'agit la des premieres observations de blazars entre 60 et 250 GeV.
63

La simulation électronique de CELESTE : étude des biais et application à l'obsevation de la Nébuleuse de Crabe

Filip, Münz 07 July 2003 (has links) (PDF)
Cette thèse présente le domaine de l'astronomie gamma et les principales sources de notre Galaxie (pulsars et SNRs) et celles situées à des distances cosmologiques (noyaux actifs de galaxie). La technique Cerenkov permet aux observatoires au sol de détecter des rayons gamma d'énergie du GeV absorbés dans l'atmosphère après avoir développé une cascade électromagnétique. Le projet CELESTE a atteint le but d'un seuil bas de 30 GeV, utilisant une grande surface de collection de l'ancienne centrale solaire de Thémis (Pyrénées Orientales). Une étude des principaux éléments du dispositif - un système de déclenchement mixte analogique-digital et un échantillonnage à haute fréquence du signal enregistré en plusieurs points du champ - représente la partie essentielle de cette thèse. Le code développé pour la simulation de la chaîne électronique de l'expérience a été vérifié profondément en faisant des comparaisonsavec les données réelles.<br> L'incertitude de la calibration en amplitude et de la mise-en-temps pour le déclenchement se traduit en erreurs sur la détermination du seuil en énergie et la surface effective. Les sources des biais éventuels sont étudiées (sur les différents points de la chaîne de simulation). Ces considérations sont appliquées aux observations de la Nébuleuse de Crabe, détectée par CELESTE déjà en 2000.
64

Qualitative analysis of the anisotropic Kepler problem

Casasayas i Mas, Josefa 01 January 1984 (has links)
The anisotropic Kepler problem was introduced by Gutzwiller as a classical mechanical system which approximates the following quantum mechanical system: the study of bound states of an electron near a donor impurity of a semiconductor. As it is known the anisotropic Kepler problem exhibits many qualitative phenomena of interest in the theory of differential equations such as non-integrability and chaotic behaviour. This paper is essentially devoted to the qualitative analysis of this problem, and also surveys the recent techniques and results from it.
65

On Quasiperiodic Perturbations of Ordinary Differential Equations

Jorba i Monte, Àngel 11 October 1991 (has links)
In this work we study several topics concerning quasi-periodic time-dependent perturbations of ordinary differential equations. This kind of equations appear as models in many applied problems of Celestial Mechanics, and we have used, as an illustration, the study of the behaviour near the equilateral libration points of the real Earth-Moon system. Let us introduce this problem as a motivation. As a first approximation, suppose that the Earth and Moon arc revolving in circular orbits around their centre of masses, neglect the effect of the rest of the solar system and neglect the spherical terms coming from the Earth and Moon (of course, all the effects minor than the above mentioned) as the relativistic corrections, must be neglected). With this, we can write the equations of motion of an infinitesimal particle (by infinitesimal we mean that the particle is influenced by the Earth and Moon, but it does not affect them) by means of Newton's Jaw. The study of the motion of that particle is the so-called Restricted Three Body Problem (RTBP). Usually, in order to simplify the equations, the units of length, time and mass are chosen so that the angular velocity of rotation, the sum of masses of the bodies and the gravitational constant are all equal to one. With these normalized units, the distance between the bodies is also equal to one. If these equations of motion are written in a rotating frame leaving fixed the Earth and Moon (these main bodies are usually called primaries), it is known that the system has five equilibrium points. Two of them can be found as the third vertex of equilateral triangles having the Earth and Moon as vertices, and they are usually called equilateral libration points.It is also known that, when the mass parameter "mi" (the mass of the small primary in the normalized units) is less than the Routh critical value "mi"(R) = 1/2(1 - square root (23/27) = 0.03852 ... (this is true in the Earth-Moon case) these points are linearly stable. Applying the KAM theorem to this case we can obtain that there exist invariant tori around these points. Now, if we restrict the motion of the particle to the plane of motion of the primaries we have that, inside each energy level, these tori split the phase space and this allows to prove that the equilateral points are stable (except for two values, "mi" = "mi"2 and "mi"= "mi"3 with low order resonances). In the spatial case, the invariant tori do not split the phase space and, due to the possible Arnold diffusion, these points can be unstable. But Arnold diffusion is a very slow phenomenon and we can have small neighbourhoods of "practical stability", that is, the particle will stay near the equilibrium point for very long time spans.Unfortunately, the real Earth-Moon system is rather complex. In this case, due to the fact that that the motions of the Earth and the Moon are non circular (even non elliptical) and the strong influence of the Sun, the libration points do not exist as equilibrium points, and we need to define "instantaneous" libration points as the ones forming an equilateral triangle with the Earth and the Moon at each instant. If we perform some numerical integrations starting at (or near) these points we can see that the solutions go away after a short period of time, showing that these regions are unstable.Two conclusions can be obtained from this fact. First: if we are interested in keeping a spacecraft there, we will need to use some kind of control. Second: the RTBP is not a good model for this problem} because the behaviour displayed by it is different from the one of the real system.For these reasons, an improved model has been developed in order to study this problem. This model includes the main perturbations (due to the solar effect and to the noncircular motion of the Moon), assuming that they are quasi-periodic. This is a very good approximation for time spans of some thousands of years. It is not clear if this is true for longer time spans, but this matter will not be considered in this work. This model is in good agreement with the vector field of the solar system directly computed by means of the JPL ephemeris, for the time interval for which the JPL model is available.The study of this kind of models is the main purpose of this work.First of all, we have focused our attention on linear differential equations with constant coefficients, affected by a small quasi-periodic perturbation. These equations appear as variational equations along a quasi-periodic solution of a general equation and they also serve as an introduction to nonlinear problems.The purpose is to reduce those systems to constant coefficients ones by means of a quasi-periodic change of variables, as the classical Floquet theorem does for periodic systems. It is also interesting to nave a way to compute this constant matrix, as well as the change of variables. The most interesting case occurs when the unperturbed system is of elliptic type. Other cases, as the hyperbolic one, have already been studied. We have added a parameter ("epsilon") in the system, multiplying the perturbation, such that if "epsilon" is equal to zero we recover the unperturbed system. In this case we have found that, under suitable hypothesis of non-resonance, analyticity and non-degeneracy with respect to "epsilon", it is possible to reduce the system to constant coefficients, for a cantorian set of values of "epsilon". Moreover, the proof is constructive in an iterative way. This means that it is possible to find approximations to the reduced matrix as well as to the change of variables that performs such reduction. These results are given in Chapter 1.The nonlinear case is now going to be studied. We have then considered an elliptic equilibrium point of an autonomous ordinary differential equation, and we have added a small quasi-periodic perturbation, in such a way that the equilibrium point does not longer exist. As in the linear case, we have put a parameter ("epsilon") multiplying the perturbation. There is some "practical" evidence that there exists a quasi-periodic orbit, having the same basic frequencies that the perturbation, such that, when the perturbation goes to zero, this orbit goes to the equilibrium point. Our results show that, under suitable hypothesis, this orbit exists for a cantorian set of values of "epsilon". We have also found some results related to the stability of this orbit. These results are given in Chapter 2.A remarkable case occurs when the system is Hamiltonian. Here it is interesting to know what happens to the invariant tori near these points when the perturbation is added. Note that the KAM theorem can not be applied directly due to the fact that the Hamiltonian is degenerated, in the sense that it has some frequencies (the ones of the perturbation) that have fixed values and they do not depend on actions in a diffeomorphic way. In this case, we have found that some tori still exist in the perturbed system. These tori come from the ones of the unperturbed system whose frequencies are non-resonant with those of the perturbation. The perturbed tori add these perturbing frequencies to the ones they already had. This can be described saying that the unperturbed tori are "quasi-periodically dancing" under the "rhythm" of the perturbation. These results can also be found in Chapter 2 and Appendix C.The final point of this work has been to perform a study of the behaviour near the instantaneous equilateral libration points of the real Earth-Moon system. The purpose of those computations has been to find a way of keeping a spacecraft near these points in an unexpensive way. As it has been mentioned above in the real system these points are not equilibrium points, and their neighbourhood displays unstability. This leads us to use some control to keep the spacecraft there. It would be useful to have an orbit that was always near these points, because the spacecraft could be placed on it. Thus, only a station keeping would be necessary. The simplest orbit of this kind that we can compute is the one that replaces the equilibrium point. In Chapter 3, this computation has been carried out first for a planar simplified model and then for a spatial model. Then, the solution found for this last model has been improved, by means of numerical methods, in order to have a real orbit of the real system (here, by real system we mean the model of solar system provided by the JPL tapes). This improvement has been performed for a given (fixed) time-span. That is sufficient for practical purposes. Finally, an approximation to the linear stability of this refined orbit has been computed, and a very mild unstability has been found, allowing for an unexpensive station keeping. These results are given in Chapter 3 and Appendix A.Finally, in Appendix B the reader can find the technical details concerning the way of obtaining the models used to study the neighbourhood of the equilateral points. This has been jointly developed with Gerard Gomez, Jaume Llibre, Regina Martinez, Josep Masdemont and Carles Simó.We study several topics concerning quasi-periodic time-dependent perturbations of ordinary differential equations. This kind of equations appear in many applied problems of Celestial Mechanics, and we have used, as an illustration, the study of the behaviour near the Lagrangian points of the real Earth-Moon system. For this purpose, a model has been developed. It includes the main perturbations (due to the Sun and Moon), assuming that they are quasi-periodic.Firstly, we deal with linear differential equations with constant coefficients, affected by a small quasi-periodic perturbation, trying to reduce then: to constant coefficients by means of a quasi-periodic change of variables. The most interesting case occurs when the unperturbed system is of elliptic type. We have added a parameter "epsilon" in the system, multiplying the perturbation, such that if "epsilon" is equal to zero we recover the unperturbed system. In this case, under suitable hypothesis of non-resonance, analyicity and non degeneracy with respect to "epsilon", it is possible to reduce the system to constant coefficients, for a cantorian set of values of "epsilon".In the nonlinear case, we have considered an elliptic equilibrium point of an autonomous differential equation, and we have added a small quasi-periodic perturbation, in such a way that the equilibrium point does not exist. As in the linear case, we have put a parameter ("epsilon") multiplying the perturbation. Then, for a cantorian set of "epsilon", there exists a quasi-periodic orbit having the same basic frequencies as the perturbation, going to the equilibrium point when t: goes to zero. Some results concerning the stability of this orbit are stated. When the system is Hamiltonian, we have found that some tori still exist in the perturbed system. These tori come from the ones of the unperturbed system whose frequencies are non-resonant with those of the perturbation, adding these perturbing frequencies to the ones they already had.Finally, a study of the behaviour near the Lagrangian points of the real Earth-Moon system is presented. The purpose has been to find the orbit replacing the equilibrium point. This computation has been carried out first for the model mentioned above and then it has been improved numerically, in order to have a real orbit of the real system. Finally, a study of the linear stability of this refined orbit has been done.
66

Desenvolvimento da função perturbadora e aplicações em dinâmica de exoplanetas

Casteletti, Juliana Rodrigues [UNESP] 06 November 2013 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:09Z (GMT). No. of bitstreams: 0 Previous issue date: 2013-11-06Bitstream added on 2014-06-13T18:30:57Z : No. of bitstreams: 1 casteletti_jr_me_rcla.pdf: 1198028 bytes, checksum: 64d53c9ad4dac00f0f39d72fc52d6fae (MD5) / Secretaria de Educação do Estado de São Paulo / Realizamos neste trabalho o estudo de tópicos fundamentais de Mecânica Celeste visando a aplicação em problemas de interesse atual, tal como o estudo de ressonâncias de movimentos médios em sistemas planetários extrassolares. Ênfase foi dada nos seguintes tópicos: i) formulação do problema ressonante de dois planetas em interação mútua; ii) desenvolvimento e expansão da função perturbadora; iii) solução numérica de problemas de valor inicial; iv) aplicações ao par de planetas HD10180d,e, os quais estão próximos da ressonância 3:1. A abordagem dos problemas foi realizada analítica e numericamente. Na primeira parte deste trabalho formulamos o problema geral de três corpos e reproduzimos os principais passos do desenvolvimento da função perturbadora. Na segunda parte realizamos simulações dos sistemas em questão utilizando as equações exatas de movimento (Newton) e comparamos os resultados com soluções numéricas das equações de Lagrange, i.e., equações de variação dos elementos orbitais escritas em termos da função perturbadora envolvida. Os resultados das simulações numéricas realizadas neste trabalho poderão ser aplicados para três propostas: i) comparação dos resultados entre as soluções exatas e aproximadas (Lagrange) das equações de movimento para, com isso, obter evidências numéricas do domínio de validade da aplicação da função perturbadora expandida nos problemas ressonantes; ii) estudo de dinâmica ressonante, i.e., caracterização e evolução temporal de ângulos críticos associados às ressonâncias; iii) estabilidade dinâmica de longo período dos sistemas em questão / In this work we study a fundamental Celestial Mechanics in order to apply to problems of current interest, such as dynamics of extrasolar planetary systems. Emphasis is given on the following topics: i) formulation of the problem of two resonant planets in mutual interaction, ii) dedution and expansion of the disturbing function; iii) numerical solution of initial value problems, iv) applications to the pair of planets HD10180d,e which orbits are near to the 3:1 resonance. We adopt both, analytical and numerical approaches. In the first part, we formulate the general three-body problem, and reproduce the main steps of the expansion of the disturbing function. In the second part we show the results of a great deal of numerical simulations of the systems using both the exact equations of motion (Newton) Lagrange equations. The simulations have been done with three main goals: i) comparison of the results of the exact and approximate solutions (Lagrange) equations of motion, in order to obtain numerical evidences of the validity domain of the application of the expanded disturbing function to resonant problems, ii) study of the resonant dynamics, i.e., characterization and evolution of critical angles associated with resonances, iii) investigate long-term dynamic stability of the systems in question
67

Estudo da Distribuição de Pequenos Objetos no Sistema Solar / Study of the Distribuition of Small Bodies in the Solar System

Ladeira, Denis Gouvêa 20 December 2003 (has links)
Submitted by Gustavo Caixeta (gucaixeta@gmail.com) on 2017-02-15T17:50:45Z No. of bitstreams: 1 texto completo.pdf: 8101996 bytes, checksum: d85a5adfc37ea87da2423866b0914047 (MD5) / Made available in DSpace on 2017-02-15T17:50:45Z (GMT). No. of bitstreams: 1 texto completo.pdf: 8101996 bytes, checksum: d85a5adfc37ea87da2423866b0914047 (MD5) Previous issue date: 2003-12-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil / O estudo é realizado utilizando modelos planar e não planar. Considerando os sete maiores planetas, empregamos as equações do movimento do problema de n-corpos em um sistema de referência heliocêntrico para integrar um total de 10 X 106 condições iniciais que foram distribuídas entre 0.52 UA e 52 UA. Os resultados obtidos são comparados com a distribuição de asteroides e cometas observada e são determinadas as principais ressonâncias de movimento médio. / The study is performed by planar and 3-D models. Considering the seven greater planets, we employ the motionºs equations for the n-body problem in a heliocentric frame to integrate the orbits of 10 X 106 initial conditions distributed between 0.52 AU e 52 AU. The results were compared with the distribution of observed asteroids and comets, and we determine the main mean motion resonances.
68

Efeitos de torques gravitacionais na dinâmica de asteróides múltiplos

Boldrin, Luiz Augusto Guimarães [UNESP] 27 May 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:29Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-05-27Bitstream added on 2014-06-13T20:33:08Z : No. of bitstreams: 1 boldrin_lag_me_guara.pdf: 3330498 bytes, checksum: 08e50694f19fe39f5f0bffa60c6c5946 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A compreensão do universo é um dos grandes desejos da humanidade desde o princípio, e o estudo do movimento dos corpos celestes é uma parte deste todo. Dentro deste contexto está nosso trabalho, que tem como meta o estudo da dinâmica de asteróides múltiplos do nosso sistema solar, sendo este composto pelo movimento de translação dos asteróides satélites (asteróides menores que orbitam um de maior porte) e o movimento de atitude do asteróide central (asteróide de maior porte). O estudo dos asteróides múltiplos é uma grande chave para o conhecimento do passado de nosso sistema solar, visto que os mesmos são remanescentes da formação dos planetas. Partindo dessa motivação, realizamos um trabalho sobre a dinâmica do sistema (87) Sylvia no qual estudamos por meio de simulações numéricas a dinâmica dos satélites de Sylvia perturbados por Sol e Júpiter (Winter et al, 2009). Neste estudo foi mostrado que Rômulo e Remo sofrem fortes perturbações seculares provenientes de Sol e Júpiter, que poderiam desestabilizá-los. Descobrimos também que o achatamento (J2) do corpo central é de extrema importância na estabilidade dos satélites. Partindo desse resultado, para este trabalho, decidimos fazer uma análise mais minuciosa do problema em questão. Para isso, nós realizamos simulações considerando o movimento de atitude do asteróide central, algo até agora não considerado por nós. Este movimento de atitude é perturbado pelos torques causados por seus satélites, Sol e planetas. Apresentaremos neste trabalho uma sucinta abordagem teórica de nosso modelo juntamente com uma revisão bibliográfica de alguns modelos analítico aproximados encontrados na literatura, alguns testes de nossa ferramenta computacional e um estudo de dois sistemas triplos de asteróides conhecidos. Os sistemas estudados foram (87) Sylvia e (45) Eugenia. Os resultados nos mostrou que... / The understanding of the universe is one of the greats desires of humanity since the beginning, and the study of movement of celestial bodies is a part of it. Inside this context lies our work, which has as goal the study of the dynamics of multiple asteroids from our solar system, being this one compound of the movement of translation of the satellite asteroids (smaller asteroids which orbit one of larger size) and the movement of attitude of the central asteroid (largest size asteroid). The study of multiple asteroids is a great key for knowledge of our solar system past, since they are remaining objects of the formation of planets. Starting from that motivation, we developed a work about the dynamics of the system (87) Sylvia, in which we studied through numerical simulations the dynamics of Sylvia’s satellites perturbed by Sun and Jupiter (Winter et al, 2009). In this study, it has been shown that Romulus and Remus experience strong secular perturbations from Sun and Jupiter, which could destabilize them. We also found out that the flatness (J2) of the central body is of extreme importance in the stability of the satellites. Based on this result, for this work, we decided to do a closer analysis of the problem concerned. To do so, we developed simulations considering the movement of attitude of the central asteroid, which, so far, has not been considered by us. This movement of attitude is perturbed by torques caused by their satellites, Sun and planets. We will present in this work a brief theoretical approach of our model along with a bibliographic review of some approximate analytical models found in the literature, some tests of our computational tool and a study of two familiar triple systems of asteroids. The studied systems was (87) Sylvia and (45) Eugenia. The results has shown us that the movement of attitude of the central body experience great perturbation due to the Sun... (Complete abstract click electronic access below)
69

Dinâmica e estabilidade de satélites regulares como consequência da migração planetária

Deienno, Rogerio [UNESP] 05 August 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:31Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-08-05Bitstream added on 2014-06-13T18:53:37Z : No. of bitstreams: 1 deienno_r_me_rcla.pdf: 1861115 bytes, checksum: 046085d2e2d453bbb5cc4bae42e458a4 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Segundo Tsiganis et al (2005), no modelo de Nice os satélites regulares dos planetas gigantes seriam imunes aos efeitos da migraçãao sendo que os irregulares em geral seriam ejetados. Uma demonstraçãao clara e os cálculos que levam a isso, não são conhecidos. Neste trabalho estudaremos este problema, em especial para os casos dos sistemas de Urano e Saturno. Usamos o código de Gomes et al (2005) e tal com em Yokoyama et al (2008), o efeito do Sol e do achatamento do planeta será tomado, incluindo agora o disco planetesimal e a interação mútua dos satélites regulares. Os encontros próximos entre os satélites e planetesimais são tratados tal como em Nogueira (2008). Investigamos a possibilidade de existência de uma distância limite tal que satélites interiores a este limite resistam às instabilidades da migração. Neste sentido observa-se que Oberon e Titan, em geral, são os mais distantes (últimos) satélites que resistem á migração. Assim, em geral os objetos irregulares não resistem à migração. Por outro lado, as simulações mostram que embora os atuais satélites regulares sejam de fato primordiais, eventualmente podem ocorrer significativas instabilidades nesta região, que poderiam causar ejeção de algum satélite regular. Como resultado natural dos vários encontros, algumas capturas de satélites irregulares ocorrem. Neste sentido, um breve estudo de satélites capturados é mostrado / According to Tsiganis et al (2005), in the Nice model, the regular satellites of the giant planets would be immune under the effects of the migration while the irregular ones would be ejected. A clear demonstration and the simulations showing that are not known. In this work we study this problem, in special for the cases of Uranus’ and Saturn’s systems. We use Gomes’ code (GOMES et al,2005) and as in Yokoyama et al(2008), the effect of the Sun and of the oblateness of the planet are taken, but now including the planetesimal disk and the mutual interaction of the regular satellites. The close encounters between the satellites and the planetesimals are taken as in Nogueira (2008). We investigate the possibility of the existence of a limit distance such that satellites within this limit, resist the instabilities of the migration. In this sense we observe that, in general, Oberon and Titan are the outermost (last) that resist to the migration. Therefore, in general the irregular objects do not resist the migration. On the other hand, the simulations also show that although the current regular satellites are indeed primordial, eventually, some significant instabilities can occur in their region, leading to a possible ejection of some regular satellite. As a natural result of the several encounters, some captures of the irregular satellites occur. In this sense, a brief study of the captured satellites is shown
70

Efeitos de torques gravitacionais na dinâmica de asteróides múltiplos /

Boldrin, Luiz Augusto Guimarães. January 2011 (has links)
Orientador: Othon Cabo Winter / Co orientador: Rodney da Silva Gomes / Banca: Silvia Maria Giuliatti Winter / Banca: Nelson Callegari Junior / Resumo: A compreensão do universo é um dos grandes desejos da humanidade desde o princípio, e o estudo do movimento dos corpos celestes é uma parte deste todo. Dentro deste contexto está nosso trabalho, que tem como meta o estudo da dinâmica de asteróides múltiplos do nosso sistema solar, sendo este composto pelo movimento de translação dos asteróides satélites (asteróides menores que orbitam um de maior porte) e o movimento de atitude do asteróide central (asteróide de maior porte). O estudo dos asteróides múltiplos é uma grande chave para o conhecimento do passado de nosso sistema solar, visto que os mesmos são remanescentes da formação dos planetas. Partindo dessa motivação, realizamos um trabalho sobre a dinâmica do sistema (87) Sylvia no qual estudamos por meio de simulações numéricas a dinâmica dos satélites de Sylvia perturbados por Sol e Júpiter (Winter et al, 2009). Neste estudo foi mostrado que Rômulo e Remo sofrem fortes perturbações seculares provenientes de Sol e Júpiter, que poderiam desestabilizá-los. Descobrimos também que o achatamento (J2) do corpo central é de extrema importância na estabilidade dos satélites. Partindo desse resultado, para este trabalho, decidimos fazer uma análise mais minuciosa do problema em questão. Para isso, nós realizamos simulações considerando o movimento de atitude do asteróide central, algo até agora não considerado por nós. Este movimento de atitude é perturbado pelos torques causados por seus satélites, Sol e planetas. Apresentaremos neste trabalho uma sucinta abordagem teórica de nosso modelo juntamente com uma revisão bibliográfica de alguns modelos analítico aproximados encontrados na literatura, alguns testes de nossa ferramenta computacional e um estudo de dois sistemas triplos de asteróides conhecidos. Os sistemas estudados foram (87) Sylvia e (45) Eugenia. Os resultados nos mostrou que... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The understanding of the universe is one of the greats desires of humanity since the beginning, and the study of movement of celestial bodies is a part of it. Inside this context lies our work, which has as goal the study of the dynamics of multiple asteroids from our solar system, being this one compound of the movement of translation of the satellite asteroids (smaller asteroids which orbit one of larger size) and the movement of attitude of the central asteroid (largest size asteroid). The study of multiple asteroids is a great key for knowledge of our solar system past, since they are remaining objects of the formation of planets. Starting from that motivation, we developed a work about the dynamics of the system (87) Sylvia, in which we studied through numerical simulations the dynamics of Sylvia's satellites perturbed by Sun and Jupiter (Winter et al, 2009). In this study, it has been shown that Romulus and Remus experience strong secular perturbations from Sun and Jupiter, which could destabilize them. We also found out that the flatness (J2) of the central body is of extreme importance in the stability of the satellites. Based on this result, for this work, we decided to do a closer analysis of the problem concerned. To do so, we developed simulations considering the movement of attitude of the central asteroid, which, so far, has not been considered by us. This movement of attitude is perturbed by torques caused by their satellites, Sun and planets. We will present in this work a brief theoretical approach of our model along with a bibliographic review of some approximate analytical models found in the literature, some tests of our computational tool and a study of two familiar triple systems of asteroids. The studied systems was (87) Sylvia and (45) Eugenia. The results has shown us that the movement of attitude of the central body experience great perturbation due to the Sun... (Complete abstract click electronic access below) / Mestre

Page generated in 0.0343 seconds