• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 48
  • 31
  • 9
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 173
  • 80
  • 44
  • 40
  • 27
  • 27
  • 27
  • 24
  • 22
  • 21
  • 20
  • 20
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Studies on Fracture and Fatigue Behavior of Cementitious Materials- Effects of Interfacial Transition Zone, Microcracking and Aggregate Bridging

Keerthy, M Simon January 2015 (has links) (PDF)
The microstructure of concrete contains random features over a wide range of length scales in which each length scale possess a new random composite. The influence of individual material constituents at different scales and their mutual interactions are responsible for the formation of fracture process zone (FPZ). The presence of the FPZ and the various toughening mechanism occurring in it, influences the fatigue and fracture behavior of concrete which also gets influenced by the geometry, spacial distribution and material properties of individual material constituents and their mutual interactions. Hence, in order to study the influence of interfacial transition zone, microcrack and aggregate bridging on the fracture and fatigue behavior of concrete, a multiscale analysis becomes necessary. This study aims at developing a linearized model which helps in understanding the fracture and fatigue behavior of cementitious materials by considering the predominant fracture process zone (FPZ) mechanisms such as microcracking and aggregate bridging. This is achieved by quantifying the critical microcrack length and the bridging resistance offered by the aggregates. Further, the moment carrying capacity of a cracked concrete beam is determined by considering the effect of aggregate bridging. A modified stress intensity factor (SIF) is derived based on linear elastic fracture mechanics (LEFM) approach by considering the material behavior at different scales through a multiscale approach. The model predicts the entire crack growth curve for plain concrete by considering these process zone mechanisms. Furthermore, the fracture and fatigue response of concrete is studied through the development of analytical models which include the properties of the mix constituents using the multiscale based SIF. The effect of the interfacial transition zone, microcracks and resistance offered through aggregate bridging on the resistance to crack initiation and propagation are studied. A fatigue crack growth law is proposed using the concepts of dimensional analysis and self-similarity. Through sensitivity analyses, the influence of different parameters on the overall fracture and fatigue behavior are studied. In addition, studies related to concrete-concrete bi-material interfaces are conducted in order to understand the influence of repair materials on the service life of damaged concrete structures when subjected to fatigue loading. An analytical model is proposed in this study to predict the crack growth curve using the concepts of dimensional analysis and self-similarity in conjunction with the human population growth model. It is seen that a repair done with a patch having similar elastic properties as those of the parent concrete will have a larger fatigue life.
152

Analyse de l'effet d'un adjuvant biosourcé pour élaborer des matériaux cimentaires plus éco-respectueux / Study of environmental friendly concrete : use of bacterial products to improve their durability

He, Huan 17 July 2015 (has links)
Cette thèse s’inscrit dans le cadre du projet SEPOLBE qui a pour ambition d’élaborer des adjuvants respectueux de l’environnement qui doivent se substituer à des produits soumis à autorisation REACH. Elle a pour but de mettre en évidence les propriétés de mortiers enrichis d’un adjuvant fabriqué à partir de produits extracellulaires issus de bactéries selon un protocole original. Ce travail consiste en l’étude des caractéristiques de mortiers bioadjuvantés dans le but de développer l’usage de bétons plus éco‐respectueux en améliorant leurs compositions chimiques et leur durabilité. L’action du produit biologique utilisé a été évaluée aussi bien sur sa capacité à modifier le réseau poreux des mortiers et pâtes cimentaires que sur ses effets sur la prise du ciment, la rhéologie à l’état frais et les caractéristiques mécaniques à l’état durci des mortiers permettant ainsi de qualifier ce produit comme bioadjuvant. Il a présenté un effet notable sur l’ouvrabilité de mortiers (de CEM I ou CEM V) avec une action plastifiante. De plus, quel que soit le temps de cure, un optimum de concentration en bioadjuvant de 1,5% a été déterminé pour obtenir des résistances mécaniques dumême ordre de grandeur que les échantillons non adjuvantés, et supérieures au minimum requis par la norme EN 196‐1. Le bioadjuvant n’influence pas la porosité totale accessible à l’eau des mortiers et des pâtes de ciment, toutefois, pour ces dernières, les mesures par porosimétrie par injection de mercure ont révélé l’existence d’un seuil (entre 0,5 et 0,75% de bioadjuvant) à partir duquel la structure poreuse des pâtes cimentaires est modifiée. Les effets de modification de surface de pâtes cimentaires – le liant du béton pouvant constituer un maillon faible en ce qui concerne les problèmes de durabilité de celui‐ci – ont été analysés. Pour des temps de cure élevés, la rugosité des surfaces des pâtes cimentaires diminue en présence du bioadjuvant. Ce travail a permis de lever des verrous techniques concernant l’emploi d’un produit biosourcé en tant qu’adjuvant, ainsi que d’apporter une contribution à la connaissance des interactions entre les micro‐organismes et les matériaux cimentaires. En effet, une approche originale, grâce à la PCR – technique peu utilisée avec les matériaux cimentaires – a permis de mettre en évidence qu’il y avait des bactéries au coeur du béton ayant une capacité à se développer dans des conditions de cures normalisés pour des temps de cure supérieurs à 120 jours. Le bioadjuvant est susceptible de modifier le développement bactérien et présente ainsi la possibilité de conférer aux bétons des capacités de résistances aux agressions environnementales plus importantes lui permettant d’être plus éco‐respectueux, aussi bien par sa composition que par sa meilleure durabilité. / This work is a part of the SEPOLBE project, which aims to develop eco‐friendly admixtures. The active principle of this admixture is made of extra‐cellular substances, secreted by microorganisms into their surroundings. It contributes to the effort in sustainable development that consists to limit the impact of buildings on environment and human health, with a guarantee of better quality concerning esthetical, durability and resistance criteria, according to the REACH regulation. The action of thisorganic product was evaluated on its setting time effects on cement as well as the mechanical behavior to the hardened state. The bioadmixture presents a significant effect on the workability of mortar (CEM I or CEM V) with a plasticizing action. Whatever the curing time, the compressive strength values of samples containing 1.5% of bioadmixture remain higher than the minimum data of standard strength according to the EN 196‐1 standard. The porosimetry by intrusion with mercury carried out with cement pastes showed the existence of a threshold (in the range 0.5‐0.75% of bioadmixture) from which the porous structure of cement pastes changes, while no modification were observed with the measurement of porosity accessible to water. For higher curing times, thesurface roughness of cement pastes, more heterogeneous, decreases with the presence of the bioadmixture. This work allowed to better control the use of a bio‐product assimilated as an admixture, as well as to contribute to the knowledge of the interactions between microorganisms and cementitious materials. An original approach, using the PCR ‐ not routinely used technique forthat purpose with cementitious materials ‐ helped to highlight that bacteria were present inside the mortar samples with a capacity to grow to higher curing time. The studied bioadmixture allows giving to the concrete the ability to resist against environmental stresses while being eco‐friendly, concerning both its chemical composition and its durability.
153

[en] TOUGHNESS OF NON CONVENTIONAL COMPOSITE MATERIALS / [pt] TENACIDADE DE MATERIAIS COMPÓSITOS NÃO CONVENCIONAIS

FLAVIO DE ANDRADE SILVA 12 August 2004 (has links)
[pt] O objetivo deste trabalho foi avaliar as propriedades mecânicas, físicas e microestruturais de materiais compósitos cimentícios reforçados por fibras naturais e de laminados de bambu. O trabalho experimental foi direcionado para a determinação da tenacidade. Para se determinar a tenacidade foram utilizados três tipos de ensaios: impacto Charpy, impacto balístico e flexão em 3 pontos. Após os ensaios, a superfície de fratura dos corpos-de-prova foi analisada por microscopia eletrônica de varredura (MEV). Esta análise microestrutural serviu para determinar os modos de fratura e validar as hipóteses feitas nos modelos matemáticos utilizados. Foram usados modelos adaptados da literatura para a determinação da tenacidade e os valores teóricos obtidos foram confrontados com os experimentais. Determinou-se também através de modelos encontrados na literatura a tensão interfacial de todas as fibras utilizadas nesta pesquisa. Os modelos empregados para calcular a tenacidade e a tensão de adesão interfacial, se mostraram eficientes e válidos. Em segundo plano, porém não menos importante, ficou a determinação das propriedades térmicas dos materiais utilizados. Foram efetuados ensaios de condutividade térmica do compósito e ensaios termogravimétricos das fibras vegetais e do bambu. Os compósitos cimentícios foram reforçados por diferentes fibras naturais: polpa refinada de bambu (CPB), polpa de sisal (CPS), polpa de eucalipto (CPE), fibras curtas de sisal (CPFS) e wollastonita (CPW). As proporções das polpas de bambu, sisal e eucalipto utilizadas como reforço nas matrizes cimentícias foram de 8 por cento e 14 por cento em relação à massa do cimento, a da fibra curta de sisal (25 mm) foi de 3 por cento em relação ao volume e a da wollastonita foi de 11,5 por cento em relação à massa. Compóstios híbridos feitos com wollastonita e polpa de bambu (CPBW) foram também produzidos apenas variando a proporção da polpa de bambu em 8 por cento e 14 por cento e mantendo fixa a da wollastonita em 11,5 por cento. Como uma tentativa de se melhorar a resistência ao impacto, laminados CPB/AL foram também fabricados colando duas chapas de alumínio (liga 5052 H34) de espessura 0,8 mm em ambas às faces dos compósitos reforçados por fibra de bambu, formando assim compósitos sanduíche (CPBA). O bambu Moso (Phyllostachys heterocycla pubescens) com 5 anos de idade foi usado para fabricação dos laminados de bambu, sendo tratado com água fervida para a prevenção de ataques biológicos. Técnicas para a extração do laminado a partir de seu formato natural foram estudadas estabelecendo suas vantagens e desvantagens. Para o ensaio de impacto foram utilizados corpos-de-prova com dimensão nominal de 120 mm x 15 mm x 6 mm perfazendo um total de 18 corpos-de-prova. Para o de flexão foram realizados ensaios com uma lâmina simples de bambu (BL) e bambu laminado colado (BLC) com 3 camadas de lâminas dispostas ortogonalmente. Os resultados dos testes de impacto Charpy e flexão em 3 pontos comprovaram a boa tenacidade do bambu laminado quando submetido a cargas de impacto (42,54 kJ/m2) e a cargas estáticas (19,77 kJ/m2 para o laminado e 17,63 kJ/m2 para o laminado colado). Compósitos sanduíche constituídos de alumínio e laminados de bambu foram também fabricados. Estes foram analisados através de ensaios de impacto balísticos seguindo as recomendações da norma NIJ 0101.04. Observações no microscópico eletrônico de varredura foram realizadas para se analisar os mecanismos de falha dos laminados. / [en] The main objective of this work was to evaluate the mechanical, physical and microestructure properties of cementitious composite materials and bamboo laminates. The experimental program was focused on the determination of toughness. Three diferent types of tests were performed in order to establish it: Charpy impact, ballistic impact and three point bending test. After the tests, the fractured surface of the failed test specimens was observed using a Scanning Electron Microscope (SEM) to establish the failure mode. Mathematical models adapted from the available literature were used to determine the toughness from which the values were confronted to the ones obtained experimentally. It was also determined by mathematical models the interfacial bond stress of all fibers used in this research. The two models, used in the toughness and interfacial bond stress calculation, showed to be efficient, providing valid results. In second plan, but not less important, was the determination of the materials thermal properties. Thermal conductivity tests of the composites and thermogravimetry of the fibers and bamboo were performed. The cementitious composites were reinforced by different natural fibers: refined bamboo pulp (CPB), sisal pulp (CPS), eucalyptus pulp (CPE), short sisal fibers (CPFS) and wollastonite. The mass fraction of bamboo, sisal and eucalyptus pulp studied were 8 percent and 14 percent. For the wollastonite fiber the mass fraction studied was 11.5 percent and for the short sisal fiber a 3 percent volume fraction was studied. Hybrid composites made with wollastonite and bamboo pulp (CPBW) were also produced varying the bamboo fraction mass to 8 percent and 14 percent but keeping constant to 11.5 percent the wollastonite mass fraction. The slurry de-watering process was used in the production of all composites described before. To reduce the adverse effects of weathering on the cellulose fibers and to improve the impact load and flexural resistance of the composite, aluminum thin sheets were used to produce a sandwich composite lamina with the CPB, which was denominated as CPBA. Compound Adhesive gel from Otto Baumgart which is a type of epoxy was used to fix the aluminum sheets on the CPB. The use of aluminum has proved to give much higher impact resistance results when compared to the CPB ones. The 5 years old Moso bamboo (Phyllostachys heterocycla pubescens), which was previously treated in boiled water to eliminate biological agents, was used to produce the bamboo laminates. Techniques were developed to extract bamboo laminates from its natural form, establishing its advantages and disadvantages. For the Charpy impact test, a total of 18 specimens with nominal dimensions of 120 mm x 15 mm x 6 mm were tested. Laminated (BL) and 3 layer cross ply laminated bamboo (BLC) were tested in bending. A total of 9 specimens were tested per bamboo configuration. The BL specimens had nominal dimensions of 120 mm x 30 mm x 6 mm and the BLC were 120 mm x 30 mm x 17 mm. The results demonstrated the good toughness of bamboo laminates when subject to dynamic (42.54 kJ/m2) and to static load (19.77 kJ/m2 for the laminate and 17.63 kJ/m2 for the cross ply laminate). Aluminum thin sheets were again used to make sandwich composites, but now using the bamboo laminate (BLCA). The BLCA was tested using the ballistic impact test following the standard NIJ 0101.04. Analysis on the Scanning Eléctron Microscope (SEM) were performed in order to establish the laminate s failure mechanisms.
154

Aspects of the design and behaviour of road structures incorporating lightly cementitious layers

De Beer, Morris 28 July 2008 (has links)
Please read the abstract in the section, 00front, of this document / Thesis (DPhil)--University of Pretoria, 2008. / Civil Engineering / unrestricted
155

Porušování vybraných stavebních kompozitů v blízkosti rozhraní plniva a matrice / Fracture of selected building composites in the vicinity of aggregate-matrix-interface

Vyhlídal, Michal January 2018 (has links)
The interface between aggregate grains and matrix in cementitious composites is their weakest element. The topic is particularly significant in the case of high performance and high strength concrete technology for which the eliminination or reduction of these weak links are necessary. The aim of this thesis is to determine the influence of the interface on the fracture behaviour of the cementitious composites. The fracture experiments were performed for this purpose and were complemented by the nanoindentation’s results and scanning electron microscopy results. Numerical model was created in ANSYS software on the basis of these data and the fracture toughness values of the interface were evaluated by means of the generalized fracture mechanics principles. Conclusion of the thesis is proof that the interface properties have a significant influence on the fracture behaviour of cementitious composites.
156

Effects of mixing and pumping energy on technological and microstructural properties of cement-based mortars

Takahashi, Keisuke 28 November 2014 (has links)
Numerous recurrent situations following mixing and pumping of mortars and concretes cause degradation of fluidity and hardening characteristics. Which, in turn, lead to adverse effects on the quality of workmanship and structural defects. Nonetheless, relatively little research on the mixing and pumping energies used for the onsite transport and preparation of mortar or concrete has been directed at the core reasons or mechanisms for changes in technological properties. This dissertation describes and explains the effects of various mixing and pumping parameters on the mortar characteristics in a field trial and on a laboratory scale. Observations using a rheograph revealed that shearing action does exhibit the most pronounced influence on the characteristics of mortars during the pumping. The performed investigations indicate that higher shearing actions, for example, excessive mixing duration and long-distance pumping lead to reduced flowability, accelerated and increased hydration rate, increased early compressive strength and early-age shrinkage. From these findings, the underlying mechanism responsible for acceleration and increase of hydration rate is pinpointed as: the increased dissolution from the active surface area due to the destruction of the protective superficial layers of cement grains, as well as a transition from flocculation to dispersion. The creation of new surfaces leads to further consumption of active super plasticizer in solution phase and to subsequent degrading changes in fluidity (decreasing flowability). The degradation of fluidity and densification of microstructure provoked by the hydration changes do increase the early age shrinkage of mortar.
157

Zeitliche Entwicklung des Verbundes von AR-Glas- und Kohlenstofffaser- Multifilamentgarnen in zementgebundenen Matrices

Butler, Marko, Hempel, Simone, Mechtcherine, Viktor 03 June 2009 (has links)
Mit zunehmendem Alter zeigt das Verbundverhalten von Multifilamentgarnen aus alkaliresistentem Glas (AR-Glas) oder Kohlenstoff in Abhängigkeit von der Zusammensetzung der zementgebundenen Matrix eine sehr unterschiedliche Entwicklung. Während bei AR-Glas teilweise drastische Verluste des Leistungsvermögens zu verzeichnen sind, treten diese bei Kohlefasern nicht auf. Zur Untersuchung der Phänomene wurden beidseitige Garnauszugversuche durchgeführt und die Interphase zwischen Filamenten und Matrix im Rasterelektronenmikroskop (ESEM) untersucht. Die unterschiedlichen mechanischen Eigenschaften stehen in Zusammenhang mit verschieden ausgeprägten Mikrostrukturen der Interphasen. Welche Ursachen die unterschiedliche morphologische Entwicklung der Interphasen hat, ist Gegenstand aktueller Arbeiten.
158

Koldioxidutsläpp och energianvändning vid husbyggnad med betongstomme : En studie av två flerbostadshus inom projektet Sågklingan/Pilen i Västerås

Ivarsson, Benjamin January 2022 (has links)
Purpose:  The purpose is to investigate the use of concrete as a frame material and its effects on carbon dioxide emissions and energy use. Carbon dioxide emissions and energy use are examined from the production stage to the management stage 100 years in the future. In addition, investigate other material compositions in concrete to study the possibilities 0f lower carbon dioxide impact and energy use. Method: The methods used have included investigating one construction project involving two multi-family houses with the same conditions. The investigation conducted is primarily made through calculations of CO2 emission and energy use. Furthermore, a literary study has also been conducted focused on investigating what the impact concrete has on the environment and what different alternatives are available to reduce potential carbon dioxide emissions and energy use in house construction with a concrete frame. The study has focused on both the production phase and the management phase. The construction stage has been investigated primarily within the concrete production, enforcement and including transports. Whereas the management stage has been studied upon the energy use of the buildings and its effect on carbon dioxide emission.  The literature study deals with methods that can be associated with the case study but will also deal with other presumptive methods. Results: The study of the construction project shows that CO2 emission and energy use primarily comes from cement production within the production stage. Whereas, looking at the whole life cycle studied, the primary contributor to CO2 emissions and energy use over time is the management stage of the buildings. The result also shows that by using renewable steel as reinforcement can significantly effect the energy use, as well as, CO2 emission of the production phase. Conclusions: The cement production is one of the biggest causes of CO2 emissions and energy use in the production phase of the studied life cycle. While the management phase is the largest in terms of the total life cycle studied. Several methods are possible to decrease the use of energy use and CO2-emission in the production stage, and to combine those methods is an alternative that suggested
159

VÝZKUM A VÝVOJ KOMPOZITNÍCH MATERIÁLŮ S VYŠŠÍ REZISTENCÍ VŮČI PŮSOBENÍ VYŠŠÍCH TEPLOT / RESEARCH AND DEVELOPMENT COMPOSITE MATERIAL WITH A HIGHER RESISTANCE TO HIGH TEMPERATURES

Válek, Jaroslav January 2014 (has links)
Concrete has many advantageous properties as regards resistance to fire. It is non-flammable and it has a low thermal conductivity. However, concrete structures, which are not designed for resistance against fire, show significant damage after heating. In particular, the explosive flaking with the consequence of weakening the reinforced concrete cross-section and exposing the steel reinforcement to the temperatures higher than critical temperature of reinforcement. There are only a few possible measures of preventing or mitigating the effects temperature load used. Ways of protection can be divided into two systems: active and passive. Active systems are designed to ensure the greatest possible reduction of temperatures the concrete is exposed to. Passive systems directly resist to high temperatures and fire. Design of composition of concrete with the aim of higher resistance to exposition to high temperatures belongs among the passive systems. A part of the work focuses on summary searches of the problems of concrete and reinforced concrete structures exposed to high temperatures and fire. The goal of the work is defining requirements for cement matrix based composite material and its design ensuring the highest possible resistance to high temperatures or direct fire.
160

Performance and mechanism on a high durable silica alumina based cementitious material composed of coal refuse and coal combustion byproducts

Yao, Yuan 01 January 2012 (has links)
Coal refuse and combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. Recycling is one practical solution to utilize this huge amount of solid waste through activation as substitute for ordinary Portland cement. The central goal of this dissertation is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to ordinary Portland cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economy benefit for construction and building materials. The results show that thermal activation temperature ranging from 20°C to 950°C significantly increases the workability and pozzolanic property of the coal refuse. The optimal activation condition is between 700°C to 800°C within a period of 30 to 60 minutes. Microanalysis illustrates that the improved pozzolanic reactivity contributes to the generated amorphous materials from parts of inert aluminosilicate minerals by destroying the crystallize structure during the thermal activation. In the coal refuse, kaolinite begins to transfer into metakaol in at 550°C, the chlorite minerals disappear at 750°C, and muscovite 2M 1 gradually dehydroxylates to muscovite HT. Furthermore, this research examines the environmental acceptance and economic feasibility of this technology and found that this silica alumina-based cementitious material not only meets EPA requirements but also shows several advantages in industrial application.

Page generated in 0.0794 seconds