• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 12
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 96
  • 31
  • 26
  • 18
  • 17
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Des Polycystines au centrosome, une enzyme clef : la calcium/calmoduline dependent kinase 2 / From polycystins to centrosomes, a key enzyme : the calcium/calmodulin dependant kinase 2

Ribe-Pinachyan, Emilie 16 December 2010 (has links)
La polykystose rénale autosomique dominante (ADPKD) est la maladie monogéniquehumaine la plus fréquente (prévalence 1/800). Les gènes responsables de cette maladie sont PKD1(codant pour PC1) ou PKD2 (codant pour PC2). La maladie évolue vers l’insuffisance rénale terminale.Aujourd’hui, seul un traitement symptomatique est proposé aux malades. Les mécanismes à l’originede l’ADPKD sont mal connus. Les modèles animaux permettent de mieux comprendre laphysiopathologie d’une maladie. Il n’existe pas de bon modèle de polykystose (même causemoléculaire, même mode de transmission, même signes cliniques). En utilisant la transgénose degrands fragments, nous avons créé un modèle de surexpression de PKD2 humain. Le transgène estsous le contrôle de son promoteur naturel humain. Cette souris exprime deux fois plus de PC2 queles sauvages. Elle ne présente que quelques microkystes mais une tubulopathie associant défaut deconcentration des urines et protéinurie tubulaire. La surexpression de PC2 inhibe l’expression degènes codant pour des protéines de la matrice extracellulaire. Le phénotype cellulaire de cesanimaux est remarquable : un tiers des cellules présentent un nombre élevé de centrosomes. Cephénotype cellulaire a été retrouvé chez des souris sous exprimant Pkd2 et chez des souris sousexprimant Pkd1. Ce caractère multicentrosomique est corrigé en incubant les cellules avec uninhibiteur de CaMKII ou en croisant nos souris transgéniques avec une souris KO de Camk2. Nousavons réussi à lier CaMKII, la duplication des centrosomes et les polycystines, in vitro et in vivo. Ceciamène un éclairage nouveau sur la duplication du centrosome et la physiopathologie de l’ADPKD. / Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common monogenic human disease (prevalence 1/800). Genes responsible for this disease are PKD1 (encoding PC1) or PKD2 (encoding PC2). The disease progresses to end stage renal disease. Today, only symptomatic treatment is offered to patients. The mechanisms underlying the ADPKD are unknown. Animals models allow better understand the disease’s pathophysiology. There is no good model of ADPKD (same molecular cause, same clinical signs). We created a mice model of human PKD2 overexpression. The transgène is under the control of its human natural promoter. This mouse expresses PC2 twice as much as the wild. It shows only few microcysts but tubulopathy involving lack of urine concentration and tubular proteinuria. PC2 overexpression inhibits the expression of genes encoding proteins of the extracellular matrix. The cellular phenotype of these animals is special : one third of the cells have a high number of centrosomes. This cellular phenotype was found in Pkd2 Knockout mice and in Pkd1 knockout mice. This multicentrosomic character is corrected by incubating the cells with a CaMKII inhibitor or by crossing our transgenic mice with Camk2 knockout mice. We propose a link between CaMKII, Centrosome duplication and polycystin in vitro and in vivo. This brings a new light on centrosome duplication and pathophysiology of ADPKD.
42

The centriole in evolution : from motility to mitosis

Smith, Amy Elisabeth January 2013 (has links)
Centrioles and basal bodies with their characteristic 9+2 structure are found in all major eukaryotic lineages. The correlation between the occurrence of centrioles and the presence of cilia/flagella, but not centrosome-like structures, suggests that the ciliogenesis function of centrioles is ancestral. Here, it is demonstrated that the centriole domain of centrosomes emerged within the Metazoa from an ancestral state of possessing a centriole with basal body function but no functional association with a centrosome. Centrosome structures involving a centriole are metazoan innovations. When an axoneme is still present but no longer fully functional, such as the sensory cilia of Caenorhabditis elegans or, as depicted here, the flagellum of the intracellular amastigote stage of the Leishmania mexicana parasite, the basal body structure is less constrained and can depart from the canonical structure. A general view has emerged that classifies axonemes into canonical motile 9+2 and noncanonical, sensory 9+0 structures. This study reveals this view to be overly simplistic, and additional axonemal architectures associated with potential sensory structures should be incorporated into prevailing models. Here, a striking similarity between the axoneme structure of Leishmania amastigotes and vertebrate primary cilia is revealed. This striking conservation of ciliary structure, despite the evolutionary distance between Leishmania and mammalian cells, suggests a sensory function for the amastigote flagellum. Adding weight to a sensory hypothesis, close examination of Leishmania positioning inside the parasitophorous vacuole revealed frequent contact between the flagellum tip and the vacuole membrane. A sensory function could also explain the retention of a flagellum in Trypanosoma cruzi amastigotes, an intracellular stage that, as shown in this study, emerged independently to the Leishmania amastigote. Basal body appendages, such as pro-basal bodies and microtubule rootlets, also vary widely in their structure. Choanoflagellates, a sister group to the Metazoa, posses an extensive microtubule rootlet system that provides support for their characteristic collar tentacles. This atypical structure is reflected in the underlying molecular components of the choanoflagellate basal body. The importance of choanoflagellates as the closest known relative of metazoans was first revealed by their similarity to choanocytes, the feeding cells of sponges. Although phylogenetic analyses leave little doubt that choanoflagellates are a sister group of animals, comparisons of molecular and structural components of appendages associated with the collar tentacles highlight significant differences and questions the extent to which the collar structures of choanoflagellates and choanocytes can be assumed to be homologous. Finally, the confinement of a centriole-based centrosome to the Metazoa provides little support for the flagellar synthesis constraint as an explanation for the origin of multicellularity. There is, indeed, an apparent constraint; no flagellated or ciliated metazoan cell ever divides. This constraint, however, did not arise until after the incorporation of centrioles into the centrosome in the metazoan lineage and the co-option of centrioles as a structural and functional component of the centrosome. The flagellar synthesis constraint is therefore not an explanation for the origin of multicellularity but a consequence of it.
43

The role and regulation of Asterless in the centrosome cycle

Novak, Zsofia A. January 2014 (has links)
Centrosomes are the main microtubule organizing centres in animal cells and are formed by a pair of centrioles together with surrounding pericentriolar material (PCM). Cycling cells duplicate their centrosomes strictly once per cell cycle. This process is driven by the semi-conservative duplication of the centrioles that are found at the centrosome core. During the exit from mitosis the two centrioles within the single inherited centrosome separate, and upon the start of S-phase each of these inherited mother centrioles assembles an adjacent daughter at its side. This process results in two complete centrosomes that can form the poles of the mitotic spindle, and thus segregate evenly to the next cell generation. The formation of a daughter centriole suppresses the initiation of new duplication events from the same templating mother centriole until this daughter separates - disengages - at the end of the cell cycle. This regulation - that acts to repress centriole amplification - is summarized in the 'licensing model of centriole duplication' (Tsou and Stearns, 2006). This model states that centriole disengagement provides the license for the re-duplication of mother centrioles. Importantly, experiments show that while abolishing centriole engagement is sufficient to allow mother centrioles to re-duplicate within the same cycle, it is insufficient to allow daughter centrioles the assembly of a granddaughter before they mature into mothers towards the end of their first cell cycle. The molecular nature of this daughter-to-mother transition remains mysterious. In this thesis I show that in Drosophila embryos the essential centriole duplication protein Asl is not incorporated into daughter centrioles as they assemble during S-phase, but is only incorporated once mother and daughter separate at the end of mitosis. The initial incorporation of Asterless (Asl) is irreversible, and is dependent on centriolar DSas-4. Crucially, Asl incorporation is essential for daughter centrioles to mature into mothers that can support centriole duplication. I propose that Asl acts as a permanent primary license that allows new centrioles to duplicate for the first time. Once acquired, this primary license is not lost but rather further regulation is taken over by the reduplication licensing mechanism, disengagement. This work extends the previously proposed licensing model to also explain how new centrioles are licensed for their first duplication event.
44

Interaction of centrosomal component SPD-5 with Wnt signals in the control of cell polarity in Caenorhabditis elegans

Han, Suhao January 1900 (has links)
Doctor of Philosophy / Department of Biology / Michael A. Herman / All multicellular organisms consist of a variety of cell types. One of the mechanisms to generate this cellular diversity is the asymmetric cell division, which requires the establishment of cell polarity. In Caenorhabditis elegans hermaphrodites, 807 of 949 somatic cell divisions are asymmetric. The centrosome and the Wnt signaling pathway both have been shown to regulate cell polarity and subsequently asymmetric divisions in many model organisms. However, it is not clear whether the Wnt signaling pathway manipulates the cell polarity through specific cellular organelles, such as the centrosome. To address this question, we examined a centrosomal component, SPD-5, to see whether it cooperates with the Wnt signaling pathway to regulate certain asymmetric cell divisions. We showed that SPD-5, which was originally found to be critical for the embryonic development, also played a role during certain post-embryonic cell divisions in C. elegans. Specifically the asymmetric divisions of seam cells that required SPD-5 function were also known to be regulated by the Wnt signaling pathway. Thus the stem-cell like seam cell divisions could be an intriguing system to study the interaction of centrosomes and the Wnt pathway. We found that SPD-5 was required for a successful cell division, similar to other centrosomal components. This suggests that SPD-5 still functions as a centrosomal component during C. elegans post-embryonic development. It has been shown that establishment of seam cell polarity relies on the asymmetric localization of certain Wnt pathway components. Interestingly, we found that SPD-5 was required for the proper localization of several Wnt components in a way that was independent of a key MTOC (microtubule-organizing center) member γ-tubulin. In addition, SPD-5 genetically interacted with the Wnt pathway components APR-1/APC and POP-1/Tcf to regulate asymmetric divisions of seam cells. These data suggest that SPD-5 interacts with the Wnt signaling pathway in controlling the polarity of seam cells. Overall, our results suggest a novel role of SPD-5 in cooperating with the Wnt signaling pathway to regulate cell polarity and asymmetric cell division, in addition to its function as a centrosomal component.
45

Mecanismos e efeitos da internalização de nanotubos de carbono de parede simples sobre o ciclo celular. / Mechanisms and effects of internalization of single wall carbon nanotube in cell cycle.

Souza, Marcelo Medina de 05 December 2014 (has links)
O presente trabalho teve por objetivo avaliar alterações devido à exposição a Nanotubos de Carbono de Parede Simples (NTCPS) em duas linhagens celulares epiteliais (BBnt e HK2) e em uma linhagem celular monocítica (THP-1), enfocando os mecanismos de internalização e os efeitos sobre o ciclo celular. Foi avaliada a ação dos receptores scavenger na internalização dos NTCPS nas células HK2 e THP-1 e a interferência de duas concentrações de NTCPS sobre os elementos do citoesqueleto e no ciclo celular, nas células HK2 e BBnt. As concentrações utilizadas foram equivalentes as permitidas pelo The National Institute for Occupational Safety and Health: 2,4 e 24 mg/cm2. A análise de expressão de mRNA por RT-PCR para receptores scavenger, mostrou que a internalização do NTCPS pode ocorre por endocitose. Sendo que os receptores SCARA5 e SRA são os responsáveis pela internalização nas células THP-1, enquanto MARCO e SRA realizam o processo de internalização nas células HK2. Observou-se que em ambas as concentrações, as células BBnt apresentaram amplificação centrossômica, com a ocorrência de 25,38% e 28,46% de mitoses alteradas para cada concentração, respectivamente. Não houve interferência significativa na progressão do ciclo celular em ambas as linhagens. O estudo da interação dos NTCPS com vesículas lipídicas não apresentou evidencias de alterações ou danos na membrana das vesículas, porém as vesículas apresentaram-se associadas umas às outras após o tratamento com 24 mg/cm2. / This study aimed to assess changes due to exposure to of Single-wall Carbon Nanotubes (SWCNT) in two epithelial cell lines (BBnt and HK2) and a monocytic cell line (THP-1), focusing on the mechanisms of internalization and effects on the cell cycle. The action of scavenger receptors in the internalization of SWNTC in HK2 and THP-1 cells and the interference of two concentrations of SWNTC about elements of the cytoskeleton and the cell cycle, in BBnt and HK2 cells was evaluated. The concentrations used were equivalent to those allowed by The National Institute for Occupational Safety and Health: 2,4 to 24 mg/cm2. Analysis of mRNA expression by RT-PCR for scavenger receptors showed that the SWNTC internalization can occurs by endocytosis. Being that SCARA5 and SRA receptors are responsible for internalization in THP-1 cells, while MARCO and SRA perform the process of internalization in HK2 cells. It was observed that at both concentrations, the cells showed centrosome amplification in BBnt cells, with the occurrence of 25.38% and 28.46% of mitosis changed for each concentration, respectively. There was no significant interference with cell cycle progression in both strains. The study of the interaction of lipid vesicles with SWNTC showed no evidence of change or damage the membrane of the vesicles, but the vesicles were associated with each other after treatment with 24 mg/cm2.
46

Mecanismos e efeitos da internalização de nanotubos de carbono de parede simples sobre o ciclo celular. / Mechanisms and effects of internalization of single wall carbon nanotube in cell cycle.

Marcelo Medina de Souza 05 December 2014 (has links)
O presente trabalho teve por objetivo avaliar alterações devido à exposição a Nanotubos de Carbono de Parede Simples (NTCPS) em duas linhagens celulares epiteliais (BBnt e HK2) e em uma linhagem celular monocítica (THP-1), enfocando os mecanismos de internalização e os efeitos sobre o ciclo celular. Foi avaliada a ação dos receptores scavenger na internalização dos NTCPS nas células HK2 e THP-1 e a interferência de duas concentrações de NTCPS sobre os elementos do citoesqueleto e no ciclo celular, nas células HK2 e BBnt. As concentrações utilizadas foram equivalentes as permitidas pelo The National Institute for Occupational Safety and Health: 2,4 e 24 mg/cm2. A análise de expressão de mRNA por RT-PCR para receptores scavenger, mostrou que a internalização do NTCPS pode ocorre por endocitose. Sendo que os receptores SCARA5 e SRA são os responsáveis pela internalização nas células THP-1, enquanto MARCO e SRA realizam o processo de internalização nas células HK2. Observou-se que em ambas as concentrações, as células BBnt apresentaram amplificação centrossômica, com a ocorrência de 25,38% e 28,46% de mitoses alteradas para cada concentração, respectivamente. Não houve interferência significativa na progressão do ciclo celular em ambas as linhagens. O estudo da interação dos NTCPS com vesículas lipídicas não apresentou evidencias de alterações ou danos na membrana das vesículas, porém as vesículas apresentaram-se associadas umas às outras após o tratamento com 24 mg/cm2. / This study aimed to assess changes due to exposure to of Single-wall Carbon Nanotubes (SWCNT) in two epithelial cell lines (BBnt and HK2) and a monocytic cell line (THP-1), focusing on the mechanisms of internalization and effects on the cell cycle. The action of scavenger receptors in the internalization of SWNTC in HK2 and THP-1 cells and the interference of two concentrations of SWNTC about elements of the cytoskeleton and the cell cycle, in BBnt and HK2 cells was evaluated. The concentrations used were equivalent to those allowed by The National Institute for Occupational Safety and Health: 2,4 to 24 mg/cm2. Analysis of mRNA expression by RT-PCR for scavenger receptors showed that the SWNTC internalization can occurs by endocytosis. Being that SCARA5 and SRA receptors are responsible for internalization in THP-1 cells, while MARCO and SRA perform the process of internalization in HK2 cells. It was observed that at both concentrations, the cells showed centrosome amplification in BBnt cells, with the occurrence of 25.38% and 28.46% of mitosis changed for each concentration, respectively. There was no significant interference with cell cycle progression in both strains. The study of the interaction of lipid vesicles with SWNTC showed no evidence of change or damage the membrane of the vesicles, but the vesicles were associated with each other after treatment with 24 mg/cm2.
47

Identifying new shared substrates of Aurora kinases at the mitotic apparatus

Deretic, Jovana January 2018 (has links)
Aurora A and B are the major kinases that control key events in mitosis, such as centrosome function, spindle assembly, chromosome segregation and cytokinesis, through phosphorylation of multiple proteins. These kinases share identical consensus target motifs, so the substrate specificity is determined by distinctive sub-cellular localization of the Auroras. Many proteins have been identified as targets of either Aurora A, or Aurora B, or both kinases by mass spectrometry studies. However, only a few of the identified phosphorylation sites in these targets have a characterized function in vivo. Therefore, the molecular mechanisms underlying the regulation of certain mitotic events by Aurora kinases remain unclear. The objective of my work was to develop a tool for identifying new substrates of both Aurora kinases. More specifically, I aimed to identify the molecular targets of Aurora A at the kinetochores, and determine how Aurora A contributes to the error correction near spindle poles. I first demonstrated that the outer kinetochore protein HEC1/Ndc80, phosphorylated by Aurora B at kinetochores, can also be phosphorylated by Aurora A close to the centrosomes (Chapter 2). My finding showed that Aurora kinases can share substrates in the cells and revealed the mechanism by which Aurora A contributes to the error-correction near spindle poles. To identify and characterise novel substrates of Aurora kinases, I developed a bioinformatic approach in collaboration with the Centre Bioinformatician, Alastair Kerr. This bioinformatic method uses the Auroras’ shared consensus motifs combined with several parameters that control the substrate specificity of Aurora kinases. I tested the phosphorylation of the chosen candidates in vitro using radiolabelled kinase assays. In my study, five proteins were validated - SPICE1, TTLL4, AHCTF1, CLASP2 and an uncharacterized protein KIAA1468 - as in vitro substrates of Aurora A and Aurora B kinases (Chapter 3). I then focussed on the Aurora kinases-dependent regulation of spindle and centriole-associated protein, SPICE1, in cells (Chapter 4). Using either site-directed mutagenesis of SPICE1 or inhibition of Aurora kinases with small molecule inhibitors, I found that the predicted phosphorylation of the SPICE1 C terminus had the function in cells of directing the SPICE1 localization on the spindle MTs. My results demonstrate the high accuracy of this genome-wide bioinformatics approach. By complementing mass spectrometry studies, here lies a potential for the identification of other unknown substrates, which is important for the general understanding of how Aurora kinases regulate the mitotic apparatus.
48

Etude de la migration du corps basal au cours de la ciliogénèse / Study of basal body migration during primary ciliogenesis

Pitaval, Amandine 05 February 2016 (has links)
Le cil primaire, véritable organite sensoriel cellulaire est présent à la surface de la plupart des cellules de mammifères en quiescence. Truffé de récepteurs à sa membrane, le cil capte les signaux mécaniques et chimiques, jouant ainsi un rôle clé dans de nombreux processus développementaux et physiologiques. Un défaut de structure et/ou de fonction du cil est à l'origine de cancérogénèse et de pathologies humaines appelées ciliopathies.Le cil primaire est ancré à la membrane plasmique grâce au corps basal, structure dérivée du centriole père et connectée aux trois réseaux du cytosquelette. La formation du cil primaire nécessite une succession d'étapes cytoplasmiques hautement régulées. Elle débute par la maturation du centriole père en corps basal. Cette étape nécessite le recrutement de protéines spécifiques au centriole père permettant l'association avec une vésicule ciliaire à l'extrémité distale du centriole père. Ce complexe migre et vient s'ancrer à la membrane apicale déclenchant la nucléation de microtubules pour la formation de la partie externe du cil, ou axonème. En parallèle, la ciliogénèse nécessite un remodelage important du cytosquelette d'actine ainsi qu'un trafic de vésicules orienté vers la base du cil. Si la plupart des étapes sont bien caractérisées, celle concernant la migration du corps basal ainsi que la contribution du cytosquelette reste mal comprise.Afin de mieux appréhender les mécanismes impliqués dans la migration du corps basal lors de la ciliogénèse, nous avons développé un système expérimental basé sur l'utilisation de micro-patrons adhésifs recouverts de fibronectine. Cette technologie comporte de nombreux avantages. Elle permet le contrôle de l'étalement de la cellule inhérent à la surface imposée par la matrice extracellulaire régulant ainsi l'organisation du cytosquelette ainsi que le positionnement des organelles subcellulaires. Par ailleurs, le volume cellulaire induit par le confinement spatial facilite l'observation de la position du centrosome en z au cours du temps, indispensable pour l'étude de chaque étape de la ciliogénèse cytoplasmique.Dans un premier temps, nous avons démontré que la forme et l'architecture du cytosquelette d'actine qui en dépend sont des régulateurs majeurs du processus ciliogénique. Les cellules confinées spatialement et sevrées 24h sur des petits disques développent un réseau branché au niveau de leur surface apicale nécessaire à la croissance du cil primaire. A l'inverse, les cellules étalées sur des grands disques sont beaucoup plus contractées. Elles développent d'importantes fibres de stress sur leur surface ventrale. Le centrosome reste sous le noyau et le niveau de contraction empêche l'assemblage du cil. Le niveau de contractilité module donc la formation du réseau d'actine apicale qui contrôle en retour le mouvement du corps basal et l'élongation du cil.Dans un deuxième temps, nous avons étudié la dynamique du cytosquelette d'actine et de microtubules durant l'étape de migration du corps basal c'est à dire juste après la privation de sérum. Nos résultats indiquent que la migration nécessite une augmentation transitoire de la stabilité des microtubules concomitante avec une augmentation de la contractilité des filaments d'actine. Un crible basé sur l'ARN interférence nous a permis d'identifier des gènes impliqués dans le processus de migration dont CEP164, contribuant à l'ancrage du centriole père à la vésicule ciliaire. Les cellules déficientes en CEP164 montrent un défaut de réorganisation du cytosquelette expliquant l'inhibition du transport du corps basal vers la membrane apicale.L'ensemble des résultats nous permet d'avancer dans la compréhension des conditions requises pour le mouvement du corps basal vers la membrane apicale. Celui-ci nécessite à la fois un remodelage significatif du cytosquelette en constant dialogue et en interaction avec certains composants ciliaires nécessaires à la formation du cil primaire. / The primary cilium is a sensory organelle present on the surface of most quiescent cells. It possesses numerous receptors on its surface and is responsible for transducing biochemical and mechanical signals to the interior of the cell and playsimportant roles during development and in homeostasis. Defects in primary cilium assembly are the underlying cause of a group of pleiotropic diseases referred to as ciliopathies.The primary cilium is anchored to the plasma membrane through the basal body which is derived from the mother centriole and is connected to three networks of the cytoskeleton. Primary cilium formation is a highly regulated and multi-step process that begins with the maturation of the centriole mother into basal body in the cytoplasm of the cell. One of the first steps of primary cilium assembly is the recruitment of specific proteins to the mother centriole to initiate the formation of a ciliary vesicle at the distal end of the mother centriole. Once formed, the mother centriole migrates to and is anchored to the apical membrane, triggering the elongation of microtubules from the distal end of the mother centriole to form the outer part of primary cilium, or axoneme. In order for this to occur, significant remodeling of the actin cytoskeleton and directe-trafficking of vesicles to the base of the cilium is required. While much progress has been made in characterizing the initial steps of primary ciliogenesis, how the basal body migrates to the plasma membrane is not fully understood.To gain a better understanding of the mechanisms involved in the migration of basal body during ciliogenesis, we developed an experimental system based on the use of adhesive micro-patterns coated with fibronectin. This technology has many advantages. It enables the control of the cell spreading which is imposed by the size of the adhesive area and, in turn, the regulation of cytoskeletal organization and the positioning of subcellular organelles. Furthermore, this technique enables the cell volume induced by the spatial confinement, to be controlled, facilitating the observation and measurement of the centrosome's position in z throughout the primary ciliogenesis process.First, we demonstrated that the shape and architecture of the actin cytoskeleton are major regulators of primary ciliogenesis. Cells spatially confined and starved for 24h on small discoidal micropattern develop an apical web like actin network necessary for the primary cilium growth. In contrast, cells plated on large discs are much more contracted and they develop significant stress fibers on their ventral surface. In this situation, the centrosome remains below the nucleus and the level of contraction prevents the assembly of a primary cilium. The level of contractility therefore modulates the formation of apical actin network that in turn controls the movement of the basal body and the cilium elongation.Secondly, we studied actin cytoskeleton and microtubule reorganization during the basal body migration step that occured just after serum starvation. Our results indicate that migration requires a transient increase in the stability of microtubules, concomitant with an increase in contractility of actin filaments. By RNA interference screening, we have identified genes involved in the migration process including CEP164, which has previously been shown to participate in the anchoring of the ciliary vesicle to the mother centriole. CEP164-deficient cells were found to have defects in cytoskeletal reorganization thereby explaining why basal body transport to the plasma membrane was blocked in these cells.Altogether, these results enable our understanding of how basal body movement to the apical membrane is driven. This requires both significant remodeling and crosstalk between the actin and microtubule cytoskeleton and interaction with ciliary components necessary for the formation of a primary cilium.
49

Molecular Mechanism of Aurora-A Kinase in Human Oncogenesis

He, Lili 07 July 2008 (has links)
Aurora-A is a mitotic kinase, which regulates cell cycle progression through modulating centrosome function. Aurora-A expression is frequently altered in human malignancies. The discrepancy between overexpression and amplification suggests that elevated Aurora-A level is likely to be regulated also by transcriptional and/or translational modifications. In this study, we have demonstrated: 1) transcriptional regulation of Aurora-A by E2F3; 2) feedback regulation between tumor suppressor CHFR and Aurora-A; 3) CNTD2 as a novel Aurora-A partner and oncogene to activate Aurora-A and induce transformation. Aurora-A expression and activity are cell cycle regulated. The mechanism of Aurora-A upregulation at onset of mitosis is largely unknown. We demonstrated, for the first time, that transcription factor E2F3 directly binds to Aurora-A promoter and tightly regulates Aurora-A expression during G2/M phase. Moreover, expression of E2F3 considerably correlates with Aurora-A level in human ovarian cancer, indicates that E2F3 is a causal factor for Aurora-A overexpression. Thus, E2F3-Aurora-A axis could be an important target for cancer intervention. The frequent inactivation of prophase checkpoint CHFR caused by DNA methylation or mutation has been reported in human cancers. We showed that CHFR is hypermethylated in ovarian carcinoma. Aurora-A phosphorylates CHFR on Ser-218 and Ser-337 in vivo and in vitro, which inhibits CHFR ubiquitin ligase activity. The feedback regulation loop between Aurora-A and CHFR could play a critical role in regulation of cell cycle progression, imbalance of which may contribute to human oncogenesis. Using yeast 2-hybrid screening, we identified a splicing form of CNTD2 as Aurora-A interacting protein. CNTD2 locates to chromosome 19q13.2 AKT2 amplicon. CNTD2 is amplified and overexpressed in human ovarian, pancreatic and lung cancer cell lines and primary tumors. CNTD2 colocalizes and interacts with Aurora-A in the centrosome. CNTD2 expression induces Aurora-A and cdc2 kinase activity, G2/M progression, and malignant transformation. These data indicate that CNTD2 is an oncogene and could play a pivotal role in Aurora-A activation during the cell cycle and that disruption of CNTD2-Aurora-A axis may represent a potential means to antitumor drug discovery.
50

Functional analyses of microtubule and centrosome-associated proteins in Dictyostelium discoideum

Samereier, Matthias January 2011 (has links)
Understanding the role of microtubule-associated proteins is the key to understand the complex mechanisms regulating microtubule dynamics. This study employs the model system Dictyostelium discoideum to elucidate the role of the microtubule-associated protein TACC (Transforming acidic coiled-coil) in promoting microtubule growth and stability. Dictyostelium TACC was localized at the centrosome throughout the entire cell cycle. The protein was also detected at microtubule plus ends, however, unexpectedly only during interphase but not during mitosis. The same cell cycle-dependent localization pattern was observed for CP224, the Dictyostelium XMAP215 homologue. These ubiquitous MAPs have been found to interact with TACC proteins directly and are known to act as microtubule polymerases and nucleators. This work shows for the first time in vivo that both a TACC and XMAP215 family protein can differentially localize to microtubule plus ends during interphase and mitosis. RNAi knockdown mutants revealed that TACC promotes microtubule growth during interphase and is essential for proper formation of astral microtubules in mitosis. In many organisms, impaired microtubule stability upon TACC depletion was explained by the failure to efficiently recruit the TACC-binding XMAP215 protein to centrosomes or spindle poles. By contrast, fluorescence recovery after photobleaching (FRAP) analyses conducted in this study demonstrate that in Dictyostelium recruitment of CP224 to centrosomes or spindle poles is not perturbed in the absence of TACC. Instead, CP224 could no longer be detected at the tips of microtubules in TACC mutant cells. This finding demonstrates for the first time in vivo that a TACC protein is essential for the association of an XMAP215 protein with microtubule plus ends. The GFP-TACC strains generated in this work also turned out to be a valuable tool to study the unusual microtubule dynamics in Dictyostelium. Here, microtubules exhibit a high degree of lateral bending movements but, in contrast most other organisms, they do not obviously undergo any growth or shrinkage events during interphase. Despite of that they are affected by microtubuledepolymerizing drugs such as thiabendazole or nocodazol which are thought to act solely on dynamic microtubules. Employing 5D-fluorescence live cell microscopy and FRAP analyses this study suggests Dictyostelium microtubules to be dynamic only in the periphery, while they are stable at the centrosome. In the recent years, the identification of yet unknown components of the Dictyostelium centrosome has made tremendous progress. A proteomic approach previously conducted by our group disclosed several uncharacterized candidate proteins, which remained to be verified as genuine centrosomal components. The second part of this study focuses on the investigation of three such candidate proteins, Cenp68, CP103 and the putative spindle assembly checkpoint protein Mad1. While a GFP-CP103 fusion protein could clearly be localized to isolated centrosomes that are free of microtubules, Cenp68 and Mad1 were found to associate with the centromeres and kinetochores, respectively. The investigation of Cenp68 included the generation of a polyclonal anti-Cenp68 antibody, the screening for interacting proteins and the generation of knockout mutants which, however, did not display any obvious phenotype. Yet, Cenp68 has turned out as a very useful marker to study centromere dynamics during the entire cell cycle. During mitosis, GFP-Mad1 localization strongly resembled the behavior of other Mad1 proteins, suggesting the existence of a yet uncharacterized spindle assembly checkpoint in Dictyostelium. / Die Kenntnis der Funktion von Mikrotubuli-assoziierenden Proteinen (MAPs) ist von grundlegender Bedeutung für das Verständnis der Mikrotubuli-Dynamik und deren Regulation. Im Rahmen dieser Arbeit wurde die Rolle des Mikrotubuli-assoziierenden Proteins TACC (Transforming acidic coiled-coil), welches in vielen Organismen an der Stabilisierung und dem Wachstum von Mikrotubuli beteiligt ist, im Modellorganismus Dictyostelium discoideum untersucht. Das Dictyostelium TACC Protein konnte während des gesamten Zellzyklus am Centrosom nachgewiesen werden. Darüber hinaus wurde es an den Mikrotubuli-Plus-Enden vorgefunden, überraschenderweise jedoch ausschließlich während der Interphase. Die gleiche Zellzyklusabhängige Lokalisation wurde für CP224 beobachtet, einem Homologen der XMAP215 Proteine in Dictyostelium. Diese ubiquitären MAPs sind konservierte, direkte Interaktionspartner der TACC Proteine und spielen eine zentrale Rolle bei der Nukleation und der Polymerisation von Mikrotubuli. Durch diese Arbeit konnte erstmals in vivo gezeigt werden, dass TACC und XMAP215 Proteine während der Interphase und Mitose unterschiedlich stark mit Mikrotubuli-Plus-Enden assoziiert sein können. Durch Untersuchungen an Knockdown-Mutanten wurde ersichtlich, dass Dictyostelium TACC eine Rolle beim Mikrotubuli-Wachstum während der Interphase spielt und über weite Strecken der Mitose essentiell für die Ausbildung von astralen Mikrotubuli ist. In anderen Organismen konnte als Ursache instabiler Mikrotubuli in TACC Mutanten häufig unzureichendes Rekrutieren des jeweiligen XMAP215 Proteins an das Centrosom ausgemacht werden. Um entsprechende Auswirkungen auf die Lokalisation von CP224 durch den Knockdown von TACC in Dictyostelium zu untersuchen, wurden Fluorescence Recovery after Photobleaching (FRAP) Experimente durchgeführt. Diese ergaben, dass CP224 auch in Abwesenheit von TACC in vollem Umfang an die Centrosomen und Spindelpole rekrutiert wird. Anders als im Wildtyp, konnte in TACC Mutanten allerdings kein CP224 an den Mikrotubuli-Plus-Enden nachgewiesen werden. Somit konnte erstmals in vivo gezeigt werden, dass ein TACC Protein essentiell für die Assoziation eines XMAP215 Proteins mit den Mikrotubuli-Plus-Enden ist. Im Laufe der genannten Experimente stellte sich heraus, dass sich die GFP-TACC Stämme aufgrund ihrer markierten Plus-Enden sehr gut für Untersuchungen zur ungewöhnlichen Mikrotubuli-Dynamik in Dictyostelium eignen. Zwar weisen Mikrotubuli hier über die gesamte Länge ausgeprägte Krümmungs- und Seitwärtsbewegungen auf, es können jedoch im Vergleich zu anderen Organismen während der Interphase kaum Wachstums- oder Verkürzungsvorgänge beobachtet werden. Dennoch können Dictyostelium Mikrotubuli unter Verwendung von Agenzien wie Thiabendazol oder Nocodazol, welche ausschließlich auf dynamische Mikrotubuli wirken, signifikant verkürzt werden. Durch FRAP Experimente und Einsatz von 5D Fluoreszenz-Mikroskopie an lebenden Zellen konnte in dieser Arbeit erstmalig nachgewiesen werden, dass Dictyostelium Mikrotubuli nur in der Zellperipherie, nicht aber im pericentrosomalen Bereich dynamisch sind. Die Identifikation bislang unbekannter Bestandteile des Dictyostelium Centrosoms erfuhr in den vergangenen Jahren große Fortschritte. Ein von unserer Gruppe durchgeführter Proteomics-Ansatz brachte eine Vielzahl potentiell centrosomaler Proteine zu Tage, von welchen bereits viele am Centrosom nachgewiesen werden konnten. Der zweite Teil dieser Arbeit befasst sich mit der Charakterisierung dreier noch unbekannter Proteine aus dem Proteomics-Ansatz, Cenp68, CP103 und dem Dictyostelium Homologen des Spindle Assembly Checkpunkt Proteins Mad1. Hierbei zeigte sich, dass lediglich CP103 Bestandteil isolierter, Mikrotubuli-freier Centrosomen ist, während Cenp68 an die Centromere und Mad1 an die Kinetochoren lokalisieren. Die Charakterisierung von Cenp68 umfasste außerdem die Herstellung eines polyklonalen anti-Cenp68 Antikörpers, das Suchen nach Interaktionspartnern und die Erzeugung eines Cenp68 Knockout-Stammes. Letzterer wies jedoch keinen offensichtlichen Phänotyp auf. Das Verhalten des Dictyostelium Mad1 Proteins während der Mitose stimmte in großen Teilen mit dem anderer Mad1 Proteine überein, was auf die Existenz eines bislang unerforschten Spindle Assembly Chekpunkts in Dictyostelium hinweisen könnte.

Page generated in 0.0793 seconds