• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 118
  • 23
  • 8
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 201
  • 158
  • 94
  • 74
  • 72
  • 64
  • 43
  • 33
  • 29
  • 29
  • 27
  • 26
  • 24
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

HYBRID MEMBERS EMPLOYING FRP SKIN REINFORCEMENT FOR BEAMS AND CLADDING WALL APPLICATIONS

Shawkat, WALEED 05 January 2009 (has links)
This thesis explores two hybrid systems employing a core material reinforced by an external skin, namely, cladding walls composed of polyurethane foam core sandwiched between fibre-reinforced polymer (FRP) skins, and beams composed of concrete-filled FRP or steel tubes. The walls were studied in two phases. In phase I, the polyurethane foam core was injected between two carbon-FRP (CFRP) skins. Ten panels were tested to investigate their structural performance and failure modes. Test parameters included quality control in terms of reproducibility of test results, moment-shear ratio, and the orientation of an architectural masonry-like coating. The study showed that design is governed by stiffness and not strength and that the CFRP was underutilized. Also, quality control was shown to be poor for this method of fabrication. As such, in phase II, ten panels were fabricated by laminating glass-FRP (GFRP) skins to prefabricated polyurethane foam blocks. Similar flexural testing was carried out to investigate two different densities of foam, and moment-shear ratio. The study showed evidence of high quality control and that the density of the foam core significantly affected flexural capacity and stiffness. Rectangular concrete-filled tubes (CFTs), with either steel or pultruded GFRP tubes were fabricated and tested as beams in three-point bending, at different shear span-to-depth (a/d) ratios of 1 to 5 to examine crack patterns, strength and failure modes. It was shown that the critical (a/d) ratio, at which moment capacity drops, is between 4 and 5 for CFTs with GFRP tubes and between 1 and 2 for CFTs with steel tubes. It was also shown that ductility is drastically reduced at (a/d) ratios below 3 for steel tubes. Crack pattern and size were highly dependent on the magnitude of slip between the concrete and tube. A major full depth flexural crack developed in all CFTs with GFRP tubes. However, when internal steel rebar was added, major diagonal cracks were formed in addition to fine flexural cracks. In CFTs with steel tubes, fine flexural cracks developed, except at a/d = 1, where fine diagonal cracks were predominant. A strut-and-tie model was developed and provided reasonable agreement with test results. / Thesis (Master, Civil Engineering) -- Queen's University, 2008-12-23 12:25:09.685
2

Correspondance AdS/CFT et théories des champs à fort couplage / Gauge/Gravity Duality and Field Theories at Strong Coupling

Giecold, Gregory 17 June 2011 (has links)
L'objet de cette thèse est l'étude de certaines propriétés de théories des champs à fort couplage via la dualité avec la théorie des cordes, dans la limite de supergravité. L'analyse expérimentale du plasma de quarks et de gluons produit au RHIC et au LHC tend en effet à indiquer que cet état de la matière se comporte comme un fluide quasiment parfait. Les méthodes perturbatives de la QCD sont impuissantes à décrire ses propriétés et la chromodynamique quantique sur réseau fait face à des problèmes tant techniques que conceptuels pour calculer les observables dynamiques d'un tel système. La correspondance AdS/CFT offre par conséquent un outil unique permettant d'étudier en première approximation cette phase de la QCD. L'un des aspects de cette thèse consiste en la description par une équation stochastique de Langevin d'un parton massif se propageant dans un plasma de Yang--Mills maximalement supersymétrique. Bien que cette théorie semble décrire de manière satisfaisante la phase déconfinée de la QCD, il est toutefois désirable de chercher un dual en théorie des cordes rendant compte des aspects de la QCD à basse énergie. L'autre axe directeur de cette thèse propose ainsi de rendre compte de solutions de moindre supersymétrie, sans invariance conforme, et avec confinement. On obtient le dual gravitationnel d'états metastables de telles théories. En particulier, on dérive une contribution au potentiel inflationnaire dans le cadre d'un modèle cosmologique générique de la théorie des cordes. / In this thesis, we apply the gauge/string duality in its supergravity limit to infer some properties of field theories at strong coupling. Experiments at RHIC and at the LHC indeed suggest that the quark--gluon plasma behaves as one of the most perfect fluid ever achieved in any controlled experimental setup. Perturbative approaches fail at accounting for its properties, whereas lattice QCD methods face technical as well as conceptual difficulties in computing dynamical aspects of this new state of matter. As a result, the AdS/CFT correspondence currently is the best tool at our disposal for analytically modelling this phase of QCD. One of the contributions of this thesis amounts to deriving a stochastic Langevin equation for a heavy quark moving across a maximally supersymmetric Yang--Mills plasma at strong coupling. Even though this theory seems to describe in a surprisingly satisfactory way the high--energy, deconfined phase of QCD, it is also of much interest to try and search for a string theory dual making closer contact with QCD at lower energies. As such, the other main focus of this thesis deals with supergravity solutions of lesser supersymmetry, without conformal invariance and exhibiting confinement. We build for the first time the gravity dual to metastable states of such theories. In particular, we find the contribution from anti--branes to the inflation potential in some general scenario of string cosmology.
3

Dinâmica de solitons em superfluidos holográficos / Dynamics of solitons in holographic superfluids

Santos, Victor Pereira do Nascimento January 2010 (has links)
SANTOS, Victor Pereira do Nascimento. Dinâmica de solitons em superfluidos holográficos. 2010. 62 f. Dissertação (Mestrado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2010. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2015-06-23T20:57:29Z No. of bitstreams: 1 2010_dis_vpnsantos.pdf: 969083 bytes, checksum: 66187abe576db7775b0fcfd1ae693c87 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-06-23T21:04:21Z (GMT) No. of bitstreams: 1 2010_dis_vpnsantos.pdf: 969083 bytes, checksum: 66187abe576db7775b0fcfd1ae693c87 (MD5) / Made available in DSpace on 2015-06-23T21:04:21Z (GMT). No. of bitstreams: 1 2010_dis_vpnsantos.pdf: 969083 bytes, checksum: 66187abe576db7775b0fcfd1ae693c87 (MD5) Previous issue date: 2010 / We numerically study the formation and dynamics of domain-wall-like topological defects in superfluids, using a (3+1)-dimensional abelian Maxwell-Higgs model, under the AdS/CFT correspondence. We obtain the bulk-boundary propagators, as well as the correlation functions on the boundary for a scalar field, both in massive and non-massive cases. If we impose that the fields depends only on a boundary coordinate and the bulk radial coordinate, we obtain in the dual theory the domain wall solutions found in literature. From these solutions we found that the superfluid is characterized by two length scales, one for the order parameter and other for the charge density. We also study the change of charge density in the region near the interface of the defect, and finally we investigate the modifications needed in theory to study the dynamics of these solutions. / Neste trabalho, estudamos numericamente a formação e a dinâmica de defeitos topológicos do tipo parede de domínio em superfluidos em um modelo (3+1)-dimensional do tipo Maxwell-Higgs abeliano, no contexto da correspondência AdS/CFT. Obtemos os propagadores bulk-fronteira, assim como as funções de correlação na fronteira, para um campo escalar nos casos massivo e não-massivo. Se impusermos que os campos dependem apenas da coordenada radial no bulk e de uma coordenada na fronteira, conseguimos obter na teoria dual as soluções do tipo parede de domínio encontradas na literatura. A partir dessas soluções, estudamos suas propriedades, verificando que o superfluido é caracterizado por duas escalas de comprimento, uma para o parâmetro de ordem e outra para a densidade de carga. Estudamos também a variação da densidade de carga na região próxima à interface do defeito, e por fim, investigamos as modificações necessárias na teoria para se estudar a dinâmica dessas soluções.
4

Conformal aspects of turbulence and quantum hall systems

Skoulakis, Spyridon January 1999 (has links)
No description available.
5

Holographic Correspondence and Exploring New Regimes of AdS/CFT Duality

Park, Miok January 2013 (has links)
We aim to have a comprehensive understanding of holographic correspondence and to demonstrate how the holographic correspondence (or renormalization) can be applied. Thus this thesis is divided into two parts. The first part is devoted to the former purpose (chapters 1 to 4 including appendix A,B, and C), and the second part is dedicated for the latter purpose (chapter 5 to 7). In Part I, the structure of the AdS/CFT correspondence is analyzed, and the properties of the AdS spacetime is studied in the context of the AdS/CFT correspondence; Here, we investigate the isometry group, the conformal structure, and generation of asymptotic solution near the conformal boundary. This solution yields significant convenience for the process of holographic renormalization. Moreover the properties of the Minkowski spacetime are compared to those of the AdS spacetime. To develop a greater understanding of the Lifshitz/quantum critical theory correspondence, the quantum phase transition is studied. Furthermore The holographic renormalization is briefly reviewed. In part II, the holographic renormalization associated with the Mann-Marolf (MM) counterterm is investigated for the asymptotically Minkowski spacetime in (n+3) dimensions. As a boundary condition, the cylindrical coordinate is considered. The solution of the MM-counterterm is obtained by solving the given algebraic equation, and from the counterterm solution, the boundary stress tensor is calculated. It is proven that the formula for conserved quantities via the boundary stress tensor holds. Next, we investigate deformations of Lifshitz holography with the Gauss-Bonnet term in (n+1) dimensional spacetime. To admit the non-trivial solution of the sub-leading orders, a value of the dynamical critical exponent z is restricted by z= n-1-2(n-2)α̃, where is the (redefined) Gauss-Bonnet coupling constant. Such solution of sub-leading orders correspond to the marginally relevant modes for the massive vector field and are generated by Λ~0, at the asymptotic region. A generic black hole solution, which is characterized by the horizon flux of the vector field and α̃, is considered in the bulk. We explore its thermodynamic properties, which depend on temperature, by varying n and α̃. As a result, the contribution of the marginally relevant mode is found in a function of Λ^z/T, and the relation between the free energy density and the energy density is numerically recovered when the marginally relevant mode is turned off (Λ=0), is obtained.
6

Holographic Correspondence and Exploring New Regimes of AdS/CFT Duality

Park, Miok January 2013 (has links)
We aim to have a comprehensive understanding of holographic correspondence and to demonstrate how the holographic correspondence (or renormalization) can be applied. Thus this thesis is divided into two parts. The first part is devoted to the former purpose (chapters 1 to 4 including appendix A,B, and C), and the second part is dedicated for the latter purpose (chapter 5 to 7). In Part I, the structure of the AdS/CFT correspondence is analyzed, and the properties of the AdS spacetime is studied in the context of the AdS/CFT correspondence; Here, we investigate the isometry group, the conformal structure, and generation of asymptotic solution near the conformal boundary. This solution yields significant convenience for the process of holographic renormalization. Moreover the properties of the Minkowski spacetime are compared to those of the AdS spacetime. To develop a greater understanding of the Lifshitz/quantum critical theory correspondence, the quantum phase transition is studied. Furthermore The holographic renormalization is briefly reviewed. In part II, the holographic renormalization associated with the Mann-Marolf (MM) counterterm is investigated for the asymptotically Minkowski spacetime in (n+3) dimensions. As a boundary condition, the cylindrical coordinate is considered. The solution of the MM-counterterm is obtained by solving the given algebraic equation, and from the counterterm solution, the boundary stress tensor is calculated. It is proven that the formula for conserved quantities via the boundary stress tensor holds. Next, we investigate deformations of Lifshitz holography with the Gauss-Bonnet term in (n+1) dimensional spacetime. To admit the non-trivial solution of the sub-leading orders, a value of the dynamical critical exponent z is restricted by z= n-1-2(n-2)α̃, where is the (redefined) Gauss-Bonnet coupling constant. Such solution of sub-leading orders correspond to the marginally relevant modes for the massive vector field and are generated by Λ~0, at the asymptotic region. A generic black hole solution, which is characterized by the horizon flux of the vector field and α̃, is considered in the bulk. We explore its thermodynamic properties, which depend on temperature, by varying n and α̃. As a result, the contribution of the marginally relevant mode is found in a function of Λ^z/T, and the relation between the free energy density and the energy density is numerically recovered when the marginally relevant mode is turned off (Λ=0), is obtained.
7

Spiky strings and the AdS/CFT correspondence

Losi, Manuel January 2011 (has links)
In this dissertation, we explore some aspects of semiclassical type IIB string theory on AdS3 x S1 and on pure AdS3 in the limit of large angular momentum S. We first focus on the integrability technique known as finite-gap formalism for strings in AdS3 x S1, leading to the definition of a hyperelliptic Riemann surface, the spectral curve, which encodes, albeit in a rather implicit fashion, the semiclassical spectrum of a very large family of string solutions. Then, we show that, in the large angular momentum limit, the spectral curve separates into two distinct surfaces, allowing the derivation of an explicit expression for the spectrum, which is correspondingly characterised by two separate branches. The latter may be interpreted in terms of two kinds of spikes appearing on the strings: 'large' spikes, yielding an infinite contribution to the energy and angular momentum of the string, and 'small' spikes, representing finite excitations over the background of the 'large' spikes. According to the AdS/CFT correspondence, strings moving in AdS3 x S1 should be dual to single trace operators in the sl(2) sector of N = 4 super Yang-Mills theory. The corresponding one-loop spectrum in perturbation theory may also be computed through integrability methods and, in the large conformal spin limit S → ∞ (equivalent to the AdS3 angular momentum in string theory) is also expressed in terms of a spectral curve and characterised in terms of the so-called holes. We show that, with the appropriate identifications and with the usual extrapolation from weak to strong 't Hooft coupling described by the cusp anomalous dimension, the large-S spectra of gauge theory and of string theory coincide. Furthermore, we explain how 'small' and 'large' holes may be identified with 'small' and 'large' spikes. Finally, we discuss several explicit spiky string solutions in AdS3 which, at the leading semiclassical order, display the previously studied finite-gap spectrum. We compute the spectral curves of these strings in the large S limit, finding that they correspond to specific regions of the moduli space of the finite-gap curves. We also explain how 'large' spikes may be used in order to extract a discrete system of degrees of freedom from string theory, which can then be matched with the degrees of freedom of the dual gauge theory operators, and how 'small' spikes are in fact very similar to the Giant Magnons living in R x S2.
8

Implementing Aspects of Quantum Information into the AdS/CFT Correspondence / Aspekte der Quanteninformation in der AdS/CFT-Korrespondenz

Abt, Raimond January 2019 (has links) (PDF)
In recent years many discoveries have been made that reveal a close relation between quantum information and geometry in the context of the AdS/CFT correspondence. In this duality between a conformal quantum field theory (CFT) and a theory of gravity on Anti-de Sitter spaces (AdS) quantum information quantities in CFT are associated with geometric objects in AdS. Subject of this thesis is the examination of this intriguing property of AdS/CFT. We study two central elements of quantum information: subregion complexity -- which is a measure for the effort required to construct a given reduced state -- and the modular Hamiltonian -- which is given by the logarithm of a considered reduced state. While a clear definition for subregion complexity in terms of unitary gates exists for discrete systems, a rigorous formulation for quantum field theories is not known. In AdS/CFT, subregion complexity is proposed to be related to certain codimension one regions on the AdS side. The main focus of this thesis lies on the examination of such candidates for gravitational duals of subregion complexity. We introduce the concept of \textit{topological complexity}, which considers subregion complexity to be given by the integral over the Ricci scalar of codimension one regions in AdS. The Gauss-Bonnet theorem provides very general expressions for the topological complexity of CFT\(_2\) states dual to global AdS\(_3\), BTZ black holes and conical defects. In particular, our calculations show that the topology of the considered codimension one bulk region plays an essential role for topological complexity. Moreover, we study holographic subregion complexity (HSRC), which associates the volume of a particular codimension one bulk region with subregion complexity. We derive an explicit field theory expression for the HSRC of vacuum states. The formulation of HSRC in terms of field theory quantities may allow to investigate whether this bulk object indeed provides a concept of subregion complexity on the CFT side. In particular, if this turns out to be the case, our expression for HSRC may be seen as a field theory definition of subregion complexity. We extend our expression to states dual to BTZ black holes and conical defects. A further focus of this thesis is the modular Hamiltonian of a family of states \(\rho_\lambda\) depending on a continuous parameter \(\lambda\). Here \(\lambda\) may be associated with the energy density or the temperature, for instance. The importance of the modular Hamiltonian for quantum information is due to its contribution to relative entropy -- one of the very few objects in quantum information with a rigorous definition for quantum field theories. The first order contribution in \(\tilde{\lambda}=\lambda-\lambda_0\) of the modular Hamiltonian to the relative entropy between \(\rho_\lambda\) and a reference state \(\rho_{\lambda_0}\) is provided by the first law of entanglement. We study under which circumstances higher order contributions in \(\tilde{\lambda}\) are to be expected. We show that for states reduced to two entangling regions \(A\), \(B\) the modular Hamiltonian of at least one of these regions is expected to provide higher order contributions in \(\tilde{\lambda}\) to the relative entropy if \(A\) and \(B\) saturate the Araki-Lieb inequality. The statement of the Araki-Lieb inequality is that the difference between the entanglement entropies of \(A\) and \(B\) is always smaller or equal to the entanglement entropy of the union of \(A\) and \(B\). Regions for which this inequality is saturated are referred to as entanglement plateaux. In AdS/CFT the relation between geometry and quantum information provides many examples for entanglement plateaux. We apply our result to several of them, including large intervals for states dual to BTZ black holes and annuli for states dual to black brane geometries. / In den letzten Jahren wurden viele Entdeckungen gemacht, welche eine enge Beziehung zwischen Quanteninformation und Geometrie im Kontext der AdS/CFT-Korrespondenz aufzeigen. In dieser Dualität zwischen einer konformen Quantenfeldtheorie (CFT) und einer Gravitationstheorie auf Anti-de-Sitter-Räumen (AdS) werden Quanteninformationsgrößen der CFT mit geometrischen Objekten in AdS assoziiert. In der vorliegenden Arbeit wird dieser faszinierende Aspekt von AdS/CFT untersucht. Wir studieren zwei Objekte welche eine zentrale Rolle in der Quanteninformation spielen: Die Teilregionkomplexität (subregion complexity) -- welche ein Maß für den nötigen Aufwand zur Konstruktion eines vorgegebenen reduzierten Zustandes ist -- und den modularen Hamiltonoperator -- welcher durch den Logarithmus eines reduzierten Zustandes gegeben ist. Während eine klare Definition der Teilregionkomplexität mittels unitärer Gatter für diskrete Systeme angegeben werden kann, ist eine präzise Formulierung für Quantenfeldtheorien nicht bekannt. In der AdS/CFT-Korrespondenz wird angenommen, dass die Teilregionkomplexität mit bestimmten Regionen der Kodimension eins in AdS-Räumen in Beziehung stehen. Der Hauptfokus der vorliegenden Arbeit ist die Untersuchung derartiger Kandidaten für Gravitationsduale der Teilregionkomplexität. Wir führen das Konzept der \textit{topologischen Komplexität} (topological complexity) ein, welches das Integral über den Ricci-Skalar bestimmter Teilregionen von AdS-Räumen als das Gravitationsdual der Teilregionkomplexität ansieht. Der Satz von Gauss-Bonnet erlaubt es uns sehr allgemeine Ausdrücke für die Teilregionkomplexität von CFT\(_2\)-Zuständen mit globalem AdS\(_3\), BTZ-Schwarzen-Löchern oder konischen Defekten als Gravitationsdual zu konstruieren. Unsere Berechnungen zeigen insbesondere, dass die Topologie der betrachteten Kodimension-Eins-Regionen eine große Rolle für die topologische Komplexität spielt. Weiterhin befassen wir uns mit der holographischen Teilregionkomplexität (holographic subregion complexity, HSRC), welche annimmt, dass die Teilregionkomplexität durch das Volumen bestimmter Kodimension-Eins-Regionen in AdS-Räumen gegeben ist. Wir leiten einen expliziten Ausdruck für die HSRC von Vakuumzuständen in Größen der Feldtheorie her. Die Formulierung der HSRC in Feldtheoriegrößen könnte es ermöglichen zu untersuchen ob diese Größe tatsächlich als die Teilregionkomplexität der CFT interpretiert werden kann. Sollte sich dies bestätigen, kann unser Feldtheorieausdruck für HSRC als Definition für die Teilregionkomplexität der CFT angesehen werden. Wir verallgemeinern unseren Ausdruck für HSRC dahingehend, dass er auch für Zustände dual zu BTZ-Schwarzen-Löchern und konischen Defekten gültig ist. Ein weiterer Fokus der vorliegenden Arbeit ist der modulare Hamiltonoperator einer Familie von Zuständen \(\rho_\lambda\), welche von einem kontinuierlichen Parameter \(\lambda\) abhängen. Hierbei kann \(\lambda\) beispielsweise der Energiedichte oder der Temperatur entsprechen. Die Bedeutung des modularen Hamiltonoperator für die Quanteninformation ist auf seinen Beitrag zur relativen Entropie zurückzuführen -- eine der wenigen Größen der Quanteninformation für welche eine formale Definition für Quantenfeldtheorien bekannt ist. Der Beitrag erster Ordnung in \(\tilde{\lambda}=\lambda-\lambda_0\) des modularen Hamiltonoperators zur relativen Entropie zwischen \(\rho_\lambda\) und einem Referenzzustand \(\rho_{\lambda_0}\) ist gegeben durch den ersten Hauptsatz der Verschränkung (first law of entanglement). Wir untersuchen unter welchen Umständen Beiträge höherer Ordnung in \(\tilde{\lambda}\) zu erwarten sind. Wir zeigen, dass für Zustände die auf zwei Teilregionen \(A\), \(B\) reduziert wurden in der Regel mindestens einer dieser Beiträge höherer Ordnung in \(\tilde{\lambda}\) zur relativen Entropie liefert, wenn \(A\) und \(B\) die Araki-Lieb-Ungleichung saturieren. Die Araki-Lieb-Ungleichung besagt, dass die Differenz der Verschränkungsentropien von \(A\) und \(B\) stets kleiner oder gleich der Verschränkungsentropie der Vereinigung von \(A\) und \(B\) ist. Regionen für welche die Araki-Lieb-Ungleichung saturiert ist werden als Verschränkungsplateaus (entanglement plateaux) bezeichnet. In der AdS/CFT-Korrespondenz gibt es aufgrund der Beziehung zwischen Quanteninformation und Geometrie viele Beispiele für derartige Plateaus. Wir wenden unser Resultat auf einige dieser an. Unter anderem diskutieren wir große Intervalle für Zustände dual zu BTZ-Schwarzen-Löchern und Annuli für Zustände dual zu schwarzen Branen.
9

Complexity and Entanglement in the AdS/CFT Correspondence / Komplexität und Verschränkung in der AdS/CFT Korrespondenz

Miekley, Nina January 2020 (has links) (PDF)
The AdS/CFT correspondence is an explicit realization of the holographic principle. It describes a field theory living on the boundary of a volume by a gravitational theory living in the interior and vice-versa. With its origins in string theory, the correspondence incorporates an explicit relationship between the degrees of freedom of both theories: the AdS/CFT dictionary. One astonishing aspect of the AdS/CFT correspondence is the emergence of geometry from field theory. On the gravity side, a natural way to probe the geometry is to study boundary-anchored extremal surfaces of different dimensionality. While there is no unified way to determine the field theory dual for such non-local quantities, the AdS/CFT dictionary contains entries for surfaces of certain dimensionality: it relates two-point functions to geodesics, the Wilson loop expectation value to two-dimensional surfaces and the entanglement entropy, i.e. a measure for entanglement between states in a region and in its complement, to co-dimension two surfaces in the bulk. In this dissertation, we calculate these observables for gravity setups dual to thermal states in the field theory. The geometric dual is given by AdS Schwarzschild black holes in general dimensions. We find analytic results for minimal areas in this setup. One focus of our analysis is the high-temperature limit. The leading and subleading term in this limit have diverse interpretation for the different observables. For example, the subleading term of the entanglement entropy satisfies a c-theorem for renormalization flows and gives insights into the number of effective degrees of freedom. The entanglement entropy emerged as the favorable way to probe the geometric dual. In addition to the extremal bulk surface, the holographic entanglement entropy associates a bulk region to the considered boundary region. The volume of this region is conjectured to be a measure of complexity, i.e. a measure of how difficult it is to obtain the corresponding field-theory state. Building on our aforementioned results for the entanglement entropy, we study this complexity for AdS Schwarzschild black holes in general dimensions. In particular, we draw conclusions on how efficient holography encodes the field theory and compare these results to MERA tensor networks, a numerical tool to study quantum many-body systems. Moreover, we holographically study the complexity of pure states. This sheds light on the notion of complexity in field theories. We calculate the complexity for a simple, calculable example: states obtained by conformal transformations of the vacuum state in AdS3/CFT2. In this lower-dimensional realization of AdS/CFT, the conformal group is infinite dimensional. We construct a continuous space of states with the same complexity as the vacuum state. Furthermore, we determine the change of complexity caused by small conformal transformation. The field-theory operator implementing this transformation is known and allows to compare the holographic results to field theory expectations. / Die AdS/CFT Korrespondenz ist ein explizites Beispiel für das holographische Prinzip. Es beschreibt eine Feldtheorie auf dem Rand eines Volumens durch eine Theorie mit Gravitation im Inneren und vice-versa. Aus dem Ursprung in der Stringtheorie folgt ein expliziter Zusammenhang zwischen den Freiheitsgraden beider Theorien: das AdS/CFT Lexikon. Ein verblüffender Aspekt der AdS/CFT Korrespondenz ist die Entstehung der Geometrie aus der Feldtheorie. Ein natürlicher Weg um die Geometrie auf der Gravitationsseite zu untersuchen sind extremale Flächen, die am Rand verankert sind. Es gibt keinen einheitlichen Weg um die duale Größe in der Feldtheorie für solche nichtlokalen Größen zu bestimmen, jedoch gibt es für Flächen bestimmer Dimension Einträge im AdS/CFT Lexikon: es bringt Zweipunktfunktionen mit Geodäten, Wilson loops mit zweidimensionalen Flächen und die Verschränkungsentropie, ein Maß für Verschränkung zwischen einer Region und ihrem Komplement, mit Flächen der Kodimension zwei in Verbindung. In dieser Dissertation untersuchen wir diese Observablen für Geometrien dual zu thermischen Zuständen in der Feldtheorien. Die duale Geometrien sind AdS Schwarzschild schwarze Löcher in allgemeiner Raumzeitdimension. Wir erhalten analytische Ergebnisse. Ein Fokus liegt auf das Verhalten bei hoher Temperatur. Die in diesem Limit dominanten Terme haben vielfältige Interpretationen für die unterschiedlichen Observablen. Der Term zweiter Ordnung für die Verschränkungsentropie erfüllt zum Beispiel ein c-Theorem für Renormalizisierungsgruppen und gibt daher Aufschlüsse über die Anzahl der effektiven Freiheitsgrade. Die Verschränkungsentropie stellt sich als erfolgreicher Weg heraus um die duale Geometrie zu untersuchen. Neben der extremalen Fläche bringt die holographische Verschränkungsentropie auch eine Raumregion zu der gegebenen Randregion in Verbindung. Das Volumen dieser Raumregion wird als Maß für die Komplexität, ein Maß für den Schwierigkeitsgrad den entsprechenden Zustand in der Feldtheorie zu konstruieren, angesehen. Wir berechnen dieses Volumen für AdS Schwarzschild aufbauend auf unseren oben erwähnten Ergebnissen zu der Verschränkungsentropie. Wir ziehen Rückschlüsse wie effektiv Holographie die Feldtheorie beschreibt und vergleichen diese Ergebnisse zu MERA Tensornetzwerken, einer numerische Methode um Vielteilchensysteme zu beschreiben. Anschließend betrachten wir die Komplexität von reinen Zuständen holographisch. Dies gibt Einblicke in das Konzept von Komplexität in Feldtheorien. Wir untersuchen die Komplexität für ein einfaches, berechenbares Beispiel: Zustände erzeugt von konformen Transformationen des Vakuumzustandes in AdS3/CFT2. Die konforme Gruppe hat unendlich viele Dimensionen in diesem niedrig dimensionalen Beispiel von AdS/CFT. Wir konstruieren ein kontinuierliches Raum von Zuständen mit gleicher Komplexität wie der Vakuumzustand. Außerdem bestimmen wir die Änderung der Komplexität für kleine konforme Transformationen. Der Operator in der Feldtheorie ist bekannt und erlaubt uns unsere Ergebnisse zu Feldtheorieerwartungen zu vergleichen.
10

Symmetry Resolution of Entanglement in Holography / Symmetrieaufgelöste Verschränkung in Holographie

Zhao, Suting January 2024 (has links) (PDF)
This thesis investigates the charged moments and the symmetry-resolved entanglement entropy in the context of the AdS3/CFT2 duality. In the first part, I focus on the holographic U(1) Chern-Simons-Einstein gravity, a toy model of AdS3/CFT2 with U(1) Kac-Moody symmetry. I start with the vacuum background with a single entangling interval. I show that, apart from a partition function in the grand canonical ensemble, the charged moments can also be interpreted as the two-point function of vertex operators on the replica surface. For the holographic description, I propose a duality between the bulk U(1) Wilson line and the boundary vertex operators. I verify this duality by deriving the effective action for the Chern-Simons fields and comparing the result with the vertex correlator. In the twist field approach, I show that the charged moments are given by the correlation function of the charged twist operators and the additional background operators. To solve the correlation functions involved, I prove the factorization of the U(1) extended conformal block into a U(1) block and a Virasoro block. The general expression for the U(1) block is derived by directly summing over the current descendant states, and the result shows that it takes an identical form as the vertex correlators. This leads to the conclusion that the disjoint Wilson lines compute the neutral U(1) block. The final result for the symmetry-resolved entanglement entropy shows that it is always charge-independent in this model. In the second part, I study charged moments in higher spin holography, where the boundary theory is a CFT with W3 symmetry. I define the notion of the higher spin charged moments by introducing a spin-3 modular charge operator. Restricting to the vacuum background with a single entangling interval, I employ the grand canonical ensemble interpretation and calculate the charged moments via the known higher spin black hole solution. On the CFT side, I perform a perturbative expansion for the higher spin charged moments in terms of the connected correlation functions of the spin-3 modular charge operators. Using the recursion relation for the correlation functions of the W3 currents, I evaluate the charged moments up to the quartic order of the chemical potential. The final expression matches with the holographic result. My results both for U(1) Chern-Simons Einstein gravity and W3 higher spin gravity constitute novel checks of the AdS3/CFT2 correspondence. / Diese Arbeit untersucht die Symmetrie-aufgelöste Verschränkungsentropie im Kontext der AdS3/CFT2-Dualität. Im ersten Teil konzentriere ich mich auf die holographische U(1) Chern-Simons-Einstein- Gravitations-Theorie, welches ein Spielzeugmodell für AdS3/CFT2 mit U(1) Kac-Moody-Symmetrie ist. Ich beginne mit dem Vakuumhintergrund mit einem einzigen Verschränkungsintervall. Ich zeige, dass neben einer Partitionsfunktion im großen kanonischen Ensemble die geladenen Momente auch als Zweipunktfunktion von Vertex-Operatoren auf der Replikationsoberfläche interpretiert werden können. Für deren holographische Beschreibung wähle ich eine Dualität zwischen der Bulk U(1) Wilson-Linie und den Randvertexoperatoren. Diese Dualität verifiziere ich, indem ich die effektive Wirkung für die Chern-Simons-Felder herleite und das Ergebnis mit dem Vertex-Korrelator vergleiche. Im Twist-Field-Ansatz zeige ich, dass die geladenen Momente durch die Korrelationsfunktion der geladenen Twist-Operatoren und der zusätzlichen Hintergrundoperatoren gegeben sind. Um die beteiligten Korrelationsfunktionen zu lösen, beweise ich die Faktorisierung des U(1) erweiterten konformen Blocks in einen U(1)-Block und einen Virasoro- Block. Der allgemeine Ausdruck für den U(1) Block wird direkt durch die Summierung über alle Absteigerzustände hergeleitet. Das erzielte Ergebnis hat tatsächlich die gleiche Form wie die Vertex-Korrelatoren hat. Dies führt zur Schlussfolgerung, dass die getrennten Wilson-Linien den neutralen U(1) Block berechnen. Das Endergebnis für die Symmetrieaufgelöste Verschränkungsentropie zeigt, dass sie in diesem Modell immer ladungsunabhängig ist. Im zweiten Teil untersuche ich geladene Momente in der Holographie höherer Spins, wobei die Randtheorie eine CFT mit W3 Symmetrie ist. Ich definiere das Konzept der geladenen Momente höheren Spins, indem ich einen Spin-3-modularen Ladungsoperator einführe.Wenn ich mich auf den Vakuum-Hintergrund mit einem einzelnen Verschränkungsintervall beschränke, nutze ich die Interpretation des großkanonischen Ensembles und berechne die geladenen Momente mithilfe der bekannten Lösung für das schwarze Loch höheren Spins. Auf der CFT-Seite führe ich eine perturbative Expansion für die höheren spingeladenen Momente in Bezug auf die verbundenen Korrelationsfunktionen der modularen Spin-3-Ladungsoperatoren durch. Unter Verwendung der Rekursionsrelationen für die Korrelationsfunktionen der W3-Ströme werte ich die geladenen Momente bis zur quartischen Ordnung des chemischen Potenzials aus. Das endgültige Ergebnis stimmt mit dem holographischen Ergebnis überein. Meine Ergebnisse für U(1) Chern-Simons-Einstein-Gravitation und W3 höhere Spingravitation stellen neuartige Überprüfungen des AdS3/CFT2 dar Korrespondenz.

Page generated in 0.0378 seconds