• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 15
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Filmes de poli (3-hexiltiofeno) (P3HT) para transistores de filmes finos orgânicos utilizados como sensores. / Poly(3-hexylthiophene) (P3HT) in organic thin-film transistors for sensing applications.

Marco Roberto Cavallari 05 June 2014 (has links)
A importância da pesquisa em eletrônica orgânica, se comparada à microeletrônica convencional baseada principalmente em silício, surge pela presença de inúmeros semicondutores e técnicas de deposição de baixo custo e em grande superfície. Os Transistores de Filmes Finos Orgânicos (OTFTs, do inglês Organic Thin-Film Transistors) são a unidade fundamental em circuitos eletrônicos e, geralmente, apresentam a estrutura de um transistor de efeito de campo. Podem ser fabricados sobre substratos plásticos e oferecem grande número de aplicações como: mostradores, etiquetas de identificação por rádio frequência e eletrônica têxtil. Além disso, há demanda por componentes eletrônicos portáteis e baratos, principalmente como sensores em diagnósticos médicos e veterinários in-situ. A geometria de OTFT mais utilizada em sensores na atualidade é a bottom gate sobre substratos de silício altamente dopado e com óxido de porta inorgânico. Polímeros como poli(3-hexiltiofeno) (P3HT) vêm sendo amplamente utilizados pela comunidade científica, atestando o potencial comercial deste semicondutor em sensores. Neste contexto, esta tese apresenta o desenvolvimento de transistores à base de P3HT como sensores na detecção de analitos em fase vapor. O estudo é composto por uma etapa inicial de caracterização da mobilidade dos portadores de carga por técnicas de transiente de corrente, seguida pela otimização do desempenho de parâmetros elétricos do transistor através de alterações no processamento dos filmes dielétrico e semicondutor. Enfim, conclui-se a investigação através do entendimento dos fatores ligados à degradação do OTFT após exposição à atmosfera e sob estresse elétrico, além do detalhamento da sensibilidade e especificidade do sensor. Sensores de P3HT oferecem enorme potencial de detecção de amônia, cetonas e compostos organoclorados. Outros semicondutores poliméricos são provavelmente necessários para maior especificidade em relação a vapor dágua e álcoois. / Research on organic electronics, compared to conventional silicon-based microelectronics, is necessary as it offers plenty of semiconductors and low-cost deposition techniques that can be performed over wide surfaces. Organic Thin-Film Transistors (OTFTs) are the fundamental unity in electronic circuits and, usually, display the metal insulator semiconductor field-effect transistor (MISFET) structure. OTFTs can be processed over cheap plastic substrates and integrate a high number of applications as: flexible displays, radio frequency identification tags, textile electronics and sensors (e.g. chemical and biological compounds). Nowadays, consumers demand portable and low-cost electronic devices, mainly as sensors for in-situ medical and veterinarian diagnosis. The most widely used OTFT structure in sensing is the bottom-gate/bottom-contact FET over highly-doped silicon substrates and inorganic dielectrics. Polymers as poly(3-hexylthiophene) (P3HT) have found increasing acceptance by the scientific community, attesting their potential as semiconductors for commercial applications. In this context, the thesis lies in the development of organic transistors based in P3HT polymer for the detection of vapor-phase compounds. This study begins with transistor performance optimization through changes in dielectric and semiconductor processing. Thin-film thickness and P3HT cast solution drying time are the main studied parameters. It involves also the understanding of device performance degradation when exposed to atmosphere and under bias stress, before finally mapping sensitivity and specificity against gaseous analytes. P3HT-based sensors are potentially interesting for ammonia, ketones and organochlorides detection. Other polymeric semiconductors may be necessary to increase specificity against water steam and alcohol analytes.
12

Measuring the efficiency and charge carrier mobility of organic solar cells

ABUDULIMU, ABASI January 2012 (has links)
P3HT single layer, P3HT/PCBM bilayer and P3HT/PCBM inverted bilayer devices were produced by spin coating organic layers onto ITO patterned glass in air, and clamping it with an Au coated silicon wafer, as top electrode, at the end (Figure13). Normal and inverted bilayer devices were also fabricated with and without PEDOT:PSS. All devices were divided into two groups by changing concentration of P3HT solution. The first group of devices contained 1.0 wt. % P3HT solution (P3HT in dichlorobenzene); the second group 0.56wt %. Power conversion efficiency, short circuit current, open circuit voltage, fill factor and maximum extracted power were measured on all produced devices. In contrast, all devices with 1.0wt % P3HT concentration showed better result than the devices with 0.56wt %. The highest result was obtained for P3HT single layer devices in both cases with short circuit current 56uA/cm2, open circuit voltage 0.94mV, maximum power 11.4uW/cm2 and power conversion efficiency of 0.11%. Inverted bilayer devices performed better than the non-inverted one. The devices with PEDOT:PSS got slightly better performance than the non-PEDOT:PSS used one. Charge carrier mobility measurement was done for all fabricated devices with charge extraction by linearly increasing voltage (CELIV) and dark injected space charge limited current (DI-SCLC) methods. All devices showed same magnitude of charge carrier mobility 10-5 cm2/V.s, the highest value still belongs to P3HT single layer device. The charge carrier mobility in all devices observed by DI-SCLC technique is one order of magnitude higher than by CELIV technique. This may be due to DI-SCLC method`s restriction on ohmic contacts between material and electrode. / بۇ تەتقىقاتتا ئورگانىك ماتېرىيالدىن پايدىلنىپ ئۈچ خىل قۇياش ئىنىرگىيەلىك باتارىيە ئادەتتىكى ئۆي مۇھىتىدا ياساپ چىقىلدى. ئەڭ چوڭ توك كۈچى، ئەڭ                                                    يۇقىرى بېسىم، ئەڭ يۇقىرى قۇۋەت ۋە زەرەت يۆتكۈلۈش تېزلىكى ئۆلچەپ چىقىلدى ئۇيغۇر
13

Etude de l'intégration de transistors à canal en graphène épitaxié par une technologie compatible CMOS / Technological integration of graphene transistors

Clavel, Milène 15 December 2011 (has links)
Le graphène est un plan unique d'atomes de carbone formant une structure en nid d'abeilles. Dans le cas idéal, le graphène possède des propriétés physiques étonnantes résultant de sa structure électronique en « cône de Dirac ». En particulier, la mobilité électronique dans le graphène est exceptionnelle ce qui ouvre des perspectives pour les transistors futurs. Dans cette thèse notre objectif est de tester les propriétés et les performances de transistors réalisés sur graphène à l'aide d'une technologie compatible CMOS. Depuis 2004, il est connu qu'on peut obtenir ce matériau bidimensionnel à partir de la graphitisation du carbure de silicium (SiC). C'est cette technique qui a été utilisée ici. Parmi les résultats obtenus, nous présenterons en particulier une méthode innovante pour déterminer le nombre de couches de graphène. Nous détaillerons la technologie d'intégration mise au point, avec la réalisation de transistors à canal court et étroit. Nous montrerons les caractéristiques obtenues. La mobilité électronique mesurée est à l’état de l’art international. Nous analyserons également le rôle du diélectrique de grille sur la qualité des performances. / Graphene consists of a single atoms plane reorganized in honeycomb lattice. Ideal graphene has astonishing properties coming from his electronic structure in Dirac cone. One of these properties is an exceptional mobility indispensable for future transistors. In this work, our objective is to evaluate properties and performance of transistors based on graphene. These transistors are fabricated by using a CMOS-like integration. Since 2004, graphene can be obtained via sublimation of silicon carbide substrate. We used this technique to study graphene. We will present a particular method to enumerate the number of layer obtained in surface and the integration choosen to obtain short and thin transistors. We will show electrical characteristic obtained. The charge carrier mobility measured is similar to the state of the art. An analysis of the gate dielectric is also presented.
14

Structure and dynamics of poly(9,9-dioctylfluoren-2,7-co-benzothiadiazole) (F8BT) and correlations with its electrical properties / Estrutura e dinâmica molecular do poly (9,9-dioctylfluoren-2,7-diyl-co-benzothiadiazole) (F8BT) e correlações com suas propriedades elétricas.

Gregório Couto Faria 16 September 2011 (has links)
The PHD project has two main goals. The first one is specifically related to investigations on molecular dynamics, structural conformations and packing of polyfluorene-based polymers. For this purpose, Wide Angle X-Ray Diffraction (WAXD), Solid-State Nuclear Magnetic Resonance (NMR) and Dynamical-Mechanical Thermal Analysis (DMTA) are being used as the main techniques. The second goal is to correlate molecular phenomena, as characterized in the first part, with opto-electronic properties of polyfluorene when used as active layer in an electronic device, such as a Polymer Light-Emitting Diode (PLED). In the second part, fabrication of devices and their electrical characterization as a function of temperature are the main objectives. Impedance Spectroscopy, Current-Voltage characterization of the devices and Time-Of-Flight (TOF) techniques are among the main techniques to be used in the second part of the project. Therefore, the project combines fundamental studies on molecular dynamics with technological performance of organic electronic. / O projeto de doutorado entitulado \"Correlação das Propriedades Óticas e Elétricas com a Estrutura Física e Dinâmica Molecular de Filmes e Dispositivos de Polifluorenos e Derivados\". O primeiro é especificamente ligado a investigação da dinâmica molecular, conformação estrutural e empacotamento de polímeros derivados do polifluoreno. Para isso, Difração de Raio-X de Alto Ângulo (WAXD)1, Ressonânica Magnética no Estado Sólido (RMN) e Análise Térmica Dinâmico Mecânica (DMTA) serão utilizadas como técnicas principais. O segundo objetivo é o de correlacionar, os fenômenos observados na primeira parte do projeto, com as propriedades opto-eletrônicas dos filmes poliméricos sendo utilizados como camada ativa em dispositivos eletrônicos do tipo Diodo Polimérico Emissor de Luz (PLED). Na segunda parte, a fabricação dos dispositivos e sua caracterização como função da temperatura serão os principais objetivos. Espectroscopia de Impedância, Corrente-Voltagem, Tempo de Vôo (TOF) e Photo-CELIV serão as principais técnicas de caracterização utilizadas. Dessa forma, o projeto combina estudos fundamentais de aspectos moleculares com o desempenho tecnológico de dispositivos optoeletrônicos.
15

Density of States and Charge Carrier Transport in Organic Donor-Acceptor Blend Layers / Zustandsdichte und Ladungsträgertransport in Organischen Donator-Akzeptor-Mischschichten

Fischer, Janine 23 October 2015 (has links) (PDF)
In the last 25 years, organic or "plastic" solar cells have gained commercial interest as a light-weight, flexible, colorful, and potentially low-cost technology for direct solar energy conversion into electrical power. Currently, organic solar cells with a maximum power conversion effciency (PCE) of 12% can compete with classical silicon technology under certain conditions. In particular, a variety of strongly absorbing organic molecules is available, enabling custom-built organic solar cells for versatile applications. In order to improve the PCE, the charge carrier mobility in organic thin films must be improved. The transport characterization of the relevant materials is usually done in neat layers for simplicity. However, the active layer of highly efficient organic solar cells comprises a bulk heterojunction (BHJ) of a donor and an acceptor component necessary for effective charge carrier generation from photo-generated excitons. In the literature, the transport properties of such blend layers are hardly studied. In this work, the transport properties of typical BHJ layers are investigated using space-charge limited currents (SCLC), conductivity, impedance spectroscopy (IS), and thermally stimulated currents (TSC) in order to model the transport with numerical drift-diffusion simulations. Firstly, the influence of an exponential density of trap states on the thickness dependence of SCLCs in devices with Ohmic injection contacts is investigated by simulations. Then, the results are applied to SCLC and conductivity measurements of electron- and hole-only devices of ZnPc:C60 at different mixing ratios. Particularly, the field and charge carrier density dependence of the mobility is evaluated, suggesting that the hole transport is dominated by exponential tail states acting as trapping sites. For comparison, transport in DCV5T-Me33:C60, which shows better PCEs in solar cells, is shown not to be dominated by traps. Furthermore, a temperature-dependent IS analysis of weakly p-doped ZnPc:C60 (1:1) blend reveals the energy-resolved distribution of occupied states, containing a Gaussian trap state as well as exponential tail states. The obtained results can be considered a basis for the characterization of trap states in organic solar cells. Moreover, the precise knowledge of the transport-relevant trap states is shown to facilitate modeling of complete devices, constituting a basis for predictive simulations of optimized device structures. / Organische oder "Plastik"-Solarzellen haben in den letzten 25 Jahren eine rasante Entwicklung durchlaufen. Kommerziell sind sie vor allem wegen ihres geringen Gewichts, Biegsamkeit, Farbigkeit und potentiell geringen Herstellungskosten interessant, was zukünftig auf spezielle Anwendungen zugeschnittene Solarzellen ermöglichen wird. Die Leistungseffzienz von 12% ist dabei unter günstigen Bedingungen bereits mit klassischer Siliziumtechnologie konkurrenzfähig. Um die Effzienz weiter zu steigern und damit die Wirtschaftlichkeit zu erhöhen, muss vor allem die Ladungsträgerbeweglichkeit verbessert werden. In organischen Solarzellen werden typischerweise Donator-Akzeptor-Mischschichten verwendet, die für die effziente Generation freier Ladungsträger aus photo-induzierten Exzitonen verantwortlich sind. Obwohl solche Mischschichten typisch für organische Solarzellen sind, werden Transportuntersuchungen der relevanten Materialien der Einfachheit halber meist in ungemischten Schichten durchgeführt. In der vorliegenden Arbeit wird der Ladungstransport in Donator-Akzeptor-Mischschichten mithilfe raumladungsbegrenzter Ströme (space-charge limited currents, SCLCs), Leitfähigkeit, Impedanzspektroskopie (IS) und thermisch-generierter Ströme (thermally stimulated currents, TSC) untersucht und mit numerischen Drift-Diffusions-Simulationen modelliert. Zunächst wird mittels Simulation der Einfluss exponentiell verteilter Fallenzustände auf das schichtdickenabhängige SCLC-Verhalten unipolarer Bauelemente mit Ohmschen Kontakten untersucht. Die Erkenntnisse werden dann auf Elektronen- und Lochtransport in ZnPc:C60-Mischschichten mit verschiedenen Mischverhältnissen angewendet. Dabei wird die Beweglichkeit als Funktion von elektrischem Feld und Ladungsträgerdichte dargestellt, um SCLC- und Leitfähigkeitsmessungen zu erklären, was mit einer exponentiellen Fallenverteilung gelingt. Zum Vergleich werden dieselben Untersuchungen in DCV2-5T-Me33:C60, dem effizientesten der bekannten Solarzellenmaterialien dieser Art, wiederholt, ohne Anzeichen für fallendominierten Transport. Des weiteren werden erstmals schwach p-dotierte ZnPc:C60-Mischschichten mit temperaturabhängiger IS untersucht, um direkt die Dichte besetzter Lochfallenzustände zu bestimmen. Dabei werden wiederum exponentielle Fallenzustände sowie eine Gaußförmige Falle beobachtet. Insgesamt tragen die über Fallenzustände in Mischschichten gewonnenen Erkenntnisse zum Verständnis von Transportprozessen bei und bilden damit eine Grundlage für die systematische Identifizierung von Fallenzuständen in Solarzellen. Außerdem wird gezeigt, dass die genaue Beschreibung der transportrelevanten Fallenzustände die Modellierung von Bauelementen ermöglicht, auf deren Grundlage zukünftig optimierte Probenstrukturen vorhergesagt werden können.
16

High Charge Carrier Mobility Polymers for Organic Transistors

Erdmann, Tim 10 March 2017 (has links) (PDF)
I) Introduction p-Conjugated polymers inherently combine electronic properties of inorganic semiconductor crystals and material characteristics of organic plastics due to their special molecular design. This unique combination has led to developing new unconventional optoelectronic technologies and, further, resulted in the evolution of semiconducting polymers (SCPs) as fundamental components for novel electronic devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs) and organic solar cells (OSCs).[1–5] Moreover, the material flexibility, capability for thin-film formation, and solution processibility additionally allow utilizing modern printing technologies for the large-scale fabrication of flexible, light-weight organic electronics. This especially enables to significantly increase the production speed and, moreover, to drastically reduce the costs per unit.[6, 7] In particular, transistors are the most important elements in modern functional electronic devices because of acting as electronic switches in logic circuits or in displays to control pixels. However, due to molecular arrangement and interactions, the electronic performance of SCPs cannot compete with the one of monocrystalline silicon which is used in state-of-the-art high-performance microtechnology.[5, 8] Nonetheless, intensive and continuing efforts of scientists focused on improving the performance of OFETs, with the special focus on the charge carrier mobility, by optimizing the polymer structure, processing conditions and OFET device architecture. By this, it was possible to identify crucial relationships between polymer structure, optoelectronic properties, microstructure, and OFET performance.[8] Nowadays, the interdisciplinary scientific success is represented by high-performance SCPs with charge carrier mobilities exceeding the value of amorphous silicon.[3, 9] However, further research is essential to enable developing the next generation of electronic devices for application in healthcare, safety technology, transportation, and communication. II) Objective and Results Within the scope of this doctoral thesis, current high-performance p-conjugated SCPs should be studied comprehensively to improve the present understanding about the interdependency between molecular structure, material properties and charge transport. Therefore, the extensive research approaches focused on different key aspects of high charge carrier mobility polymers for organic transistors. The performed investigations comprised the impact of, first, novel design concepts, second, precise structural modifications and, third, synthetic and processing conditions and led to the major findings listed below. 1. The design concept of tuning the p-conjugation length allows to gradually modulate physical material properties and demonstrates that a strong localization of frontier molecular orbitals in combination with a high degree of thin-film ordering can provide a favorable platform for charge transport in p-conjugated semiconducting polymers.[1] 2. The replacement of thiophene units with thiazoles in naphthalene diimide-based p- conjugated polymers allows to increase interchain interactions and to lower frontier molecular orbitals. This compensates the potentially detrimental enhancement of backbone torsion and drives the charge transport to unipolar electron transport, whereas mobility values are partially comparable with those of the respective thiophene containing analogs. 3. p-Conjugated diketopyrrolo[3,4-c]pyrrole-based copolymers can be synthesized within fifteen minutes what, in combination with avoiding aqueous washings and optimizing processing conditions, allowed an increase in morphological and energetic order and, thus, improved the charge transport properties significantly. III) Conclusion The key findings of this doctoral thesis provide new significant insights into important aspects of designing, synthesizing and processing high charge carrier mobility polymers. By this, they can guide future research to further improve the performance of organic electronic devices - decisive for driving the development and fabrication of smart, functional and wearable next-generation electronics. References [1] T. Erdmann, S. Fabiano, B. Milián-Medina, D. Hanifi, Z. Chen, M. Berggren, J. Gierschner, A. Salleo, A. Kiriy, B. Voit, A. Facchetti, Advanced Materials 2016, 28 (41), 9169–9174, DOI:10.1002/adma.201602923. [2] Y. Karpov, T. Erdmann, I. Raguzin, M. Al-Hussein, M. Binner, U. Lappan, M. Stamm, K. L. Gerasimov, T. Beryozkina, V. Bakulev, D. V. Anokhin, D. A. Ivanov, F. Günther, S. Gemming, G. Seifert, B. Voit, R. Di Pietro, A. Kiriy, Advanced Materials 2016, 28 (28), 6003–6010, DOI:10.1002/adma.201506295. [3] A. Facchetti, Chemistry of Materials 2011, 23 (3), 733–758, DOI:10.1021/cm102419z. [4] A. J. Heeger, Chemical Society Reviews 2010, 39, 2354–2371, DOI:10.1039/B914956M. [5] H. Klauk, Chemical Society Reviews 2010, 39, 2643–2666, DOI:10.1039/B909902F. [6] S. G. Bucella, A. Luzio, E. Gann, L. Thomsen, C. R. McNeill, G. Pace, A. Perinot, Z. Chen, A. Facchetti, M. Caironi, Nature Communications 2015, 6, 8394, DOI:10.1038/ncomms9394. [7] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 2000, 290 (5499), 2123–2126, DOI:10.1126/science.290.5499.2123. [8] D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, H. Sirringhaus, Nature 2014, 515 (7527), 384–388, DOI:10.1038/nature13854. [9] S. Holliday, J. E. Donaghey, I. McCulloch, Chemistry of Materials 2014, 26 (1), 647–663, DOI: 10.1021/cm402421p.
17

Příprava a charakterizace atomárně tenkých vrstev / Fabrication and characterization of atomically thin layers

Tesař, Jan January 2020 (has links)
Tato práce se zabývá oblastí dvourozměrných materiálů, jejich přípravou a analýzou. Pravděpodobně nejznámějším zástupcem dvourozměrných materiálů je grafen. Tento 2D allotrop uhlíku, někdy nazývaný „otec 2D materiálů“, v sobě spojuje neobyčejnou kombinaci elektrických, tepelných a mechanických vlastností. Grafen získal mnoho pozornosti a byl také připraven mnoha metodami. Jedna z těchto metod však stále vyniká nad ostatními kvalitou produkovaného grafenu. Mechanická exfoliace je ve srovnání s jinými technikami velmi jednoduchá, takto připravený grafen je však nejkvalitnější. Práce je také zaměřena na optimalizaci procesu tvorby heterostruktur složených z vrstev grafenu a hBN. Dle prezentovaného postupu bylo připraveno několik van der Waalsových heterostruktur, které byly analyzovány Ramanovskou spektroskopií, mikroskopií atomových sil a nízkoenergiovou elektronovou mikroskopií. Měření pohyblivosti nosičů náboje bylo provedeno v GFET uspořádání. Získané hodnoty pohyblivosti prokázaly vynikající transportní vlastnosti exfoliovaného grafenu v porovnání s grafenem připraveným jinými metodami. V práci popsaný proces přípravy je tedy vhodný pro výrobu kvalitních heterostruktur.
18

Density of States and Charge Carrier Transport in Organic Donor-Acceptor Blend Layers / Zustandsdichte und Ladungsträgertransport in Organischen Donator-Akzeptor-Mischschichten

Fischer, Janine 12 June 2015 (has links)
In the last 25 years, organic or "plastic" solar cells have gained commercial interest as a light-weight, flexible, colorful, and potentially low-cost technology for direct solar energy conversion into electrical power. Currently, organic solar cells with a maximum power conversion effciency (PCE) of 12% can compete with classical silicon technology under certain conditions. In particular, a variety of strongly absorbing organic molecules is available, enabling custom-built organic solar cells for versatile applications. In order to improve the PCE, the charge carrier mobility in organic thin films must be improved. The transport characterization of the relevant materials is usually done in neat layers for simplicity. However, the active layer of highly efficient organic solar cells comprises a bulk heterojunction (BHJ) of a donor and an acceptor component necessary for effective charge carrier generation from photo-generated excitons. In the literature, the transport properties of such blend layers are hardly studied. In this work, the transport properties of typical BHJ layers are investigated using space-charge limited currents (SCLC), conductivity, impedance spectroscopy (IS), and thermally stimulated currents (TSC) in order to model the transport with numerical drift-diffusion simulations. Firstly, the influence of an exponential density of trap states on the thickness dependence of SCLCs in devices with Ohmic injection contacts is investigated by simulations. Then, the results are applied to SCLC and conductivity measurements of electron- and hole-only devices of ZnPc:C60 at different mixing ratios. Particularly, the field and charge carrier density dependence of the mobility is evaluated, suggesting that the hole transport is dominated by exponential tail states acting as trapping sites. For comparison, transport in DCV5T-Me33:C60, which shows better PCEs in solar cells, is shown not to be dominated by traps. Furthermore, a temperature-dependent IS analysis of weakly p-doped ZnPc:C60 (1:1) blend reveals the energy-resolved distribution of occupied states, containing a Gaussian trap state as well as exponential tail states. The obtained results can be considered a basis for the characterization of trap states in organic solar cells. Moreover, the precise knowledge of the transport-relevant trap states is shown to facilitate modeling of complete devices, constituting a basis for predictive simulations of optimized device structures.:1 Introduction 2 Organic Semiconductors and Solar Cells 2.1 Structural, Optical, and Energetic Properties 2.2 Charge Carrier Transport 2.2.1 Classical Transport Models 2.2.2 Hopping and Tunneling Transport 2.2.3 Limitations of Transport Characterization 2.3 Doping 2.4 Single Carrier Devices 2.4.1 Theory of Space-Charge Limited Currents 2.4.2 Electrical Potential Mapping by Thickness Variation 2.4.3 Influence of the Contacts 2.5 Organic Solar Cells 2.5.1 Principles 2.5.2 The p-i-n Concept 2.5.3 Recombination 2.5.4 Electrical Characterization 3 Numerical Drift-Diffusion Simulations 3.1 Modeling Organic Semiconductors 3.2 System of Differential Equations 3.3 Simulation Algorithm and Modules 4 Exploiting Contact Diffusion Currents for Trap Characterization in Organic Semiconductors 4.1 Motivation 4.2 Drift-Diffusion Model 4.3 Results and Discussion 4.4 Conclusion 5 Transport Characterization of Donor-Acceptor Blend Layers 5.1 Motivation 5.2 Device Fabrication 5.3 Hole Transport in ZnPc:C60 Blends with Balanced Mixing Ratios 5.3.1 Current-Voltage Measurements 5.3.2 Drift-Diffusion Model 5.3.3 Modeling Results 5.3.4 Discussion 5.4 Hole Transport in Fullerene-Rich ZnPc:C60 Blends 5.4.1 Results and Discussion 5.5 Electron Transport in ZnPc:C60 (1:1) 5.5.1 Results and Discussion 5.6 Transport in Blend Layers with the High Efficiency Donor DCV2-5T-Me33 5.6.1 Hole Transport in DCV2-5T-Me33:C60 5.6.2 Electron Transport in DCV2-5T-Me33:C60 5.7 Conclusions for Transport in Blend Layers 6 Doping-Enabled Density of States Determination in Donor-Acceptor Blend Layers 6.1 Motivation 6.2 Theory 6.3 Methods 6.4 Results 6.4.1 Impedance Spectroscopy 6.4.2 Fermi level, Mott-Schottky Analysis, and Band Diagram 6.4.3 DOOS Determination 6.4.4 Thermally Stimulated Currents 6.4.5 Solar Cell Characteristics 6.5 Discussion 6.6 Conclusions on the DOS of ZnPc:C60 (1:1) 7 Conclusion and Outlook Materials, Symbols, Abbreviations Bibliography / Organische oder "Plastik"-Solarzellen haben in den letzten 25 Jahren eine rasante Entwicklung durchlaufen. Kommerziell sind sie vor allem wegen ihres geringen Gewichts, Biegsamkeit, Farbigkeit und potentiell geringen Herstellungskosten interessant, was zukünftig auf spezielle Anwendungen zugeschnittene Solarzellen ermöglichen wird. Die Leistungseffzienz von 12% ist dabei unter günstigen Bedingungen bereits mit klassischer Siliziumtechnologie konkurrenzfähig. Um die Effzienz weiter zu steigern und damit die Wirtschaftlichkeit zu erhöhen, muss vor allem die Ladungsträgerbeweglichkeit verbessert werden. In organischen Solarzellen werden typischerweise Donator-Akzeptor-Mischschichten verwendet, die für die effziente Generation freier Ladungsträger aus photo-induzierten Exzitonen verantwortlich sind. Obwohl solche Mischschichten typisch für organische Solarzellen sind, werden Transportuntersuchungen der relevanten Materialien der Einfachheit halber meist in ungemischten Schichten durchgeführt. In der vorliegenden Arbeit wird der Ladungstransport in Donator-Akzeptor-Mischschichten mithilfe raumladungsbegrenzter Ströme (space-charge limited currents, SCLCs), Leitfähigkeit, Impedanzspektroskopie (IS) und thermisch-generierter Ströme (thermally stimulated currents, TSC) untersucht und mit numerischen Drift-Diffusions-Simulationen modelliert. Zunächst wird mittels Simulation der Einfluss exponentiell verteilter Fallenzustände auf das schichtdickenabhängige SCLC-Verhalten unipolarer Bauelemente mit Ohmschen Kontakten untersucht. Die Erkenntnisse werden dann auf Elektronen- und Lochtransport in ZnPc:C60-Mischschichten mit verschiedenen Mischverhältnissen angewendet. Dabei wird die Beweglichkeit als Funktion von elektrischem Feld und Ladungsträgerdichte dargestellt, um SCLC- und Leitfähigkeitsmessungen zu erklären, was mit einer exponentiellen Fallenverteilung gelingt. Zum Vergleich werden dieselben Untersuchungen in DCV2-5T-Me33:C60, dem effizientesten der bekannten Solarzellenmaterialien dieser Art, wiederholt, ohne Anzeichen für fallendominierten Transport. Des weiteren werden erstmals schwach p-dotierte ZnPc:C60-Mischschichten mit temperaturabhängiger IS untersucht, um direkt die Dichte besetzter Lochfallenzustände zu bestimmen. Dabei werden wiederum exponentielle Fallenzustände sowie eine Gaußförmige Falle beobachtet. Insgesamt tragen die über Fallenzustände in Mischschichten gewonnenen Erkenntnisse zum Verständnis von Transportprozessen bei und bilden damit eine Grundlage für die systematische Identifizierung von Fallenzuständen in Solarzellen. Außerdem wird gezeigt, dass die genaue Beschreibung der transportrelevanten Fallenzustände die Modellierung von Bauelementen ermöglicht, auf deren Grundlage zukünftig optimierte Probenstrukturen vorhergesagt werden können.:1 Introduction 2 Organic Semiconductors and Solar Cells 2.1 Structural, Optical, and Energetic Properties 2.2 Charge Carrier Transport 2.2.1 Classical Transport Models 2.2.2 Hopping and Tunneling Transport 2.2.3 Limitations of Transport Characterization 2.3 Doping 2.4 Single Carrier Devices 2.4.1 Theory of Space-Charge Limited Currents 2.4.2 Electrical Potential Mapping by Thickness Variation 2.4.3 Influence of the Contacts 2.5 Organic Solar Cells 2.5.1 Principles 2.5.2 The p-i-n Concept 2.5.3 Recombination 2.5.4 Electrical Characterization 3 Numerical Drift-Diffusion Simulations 3.1 Modeling Organic Semiconductors 3.2 System of Differential Equations 3.3 Simulation Algorithm and Modules 4 Exploiting Contact Diffusion Currents for Trap Characterization in Organic Semiconductors 4.1 Motivation 4.2 Drift-Diffusion Model 4.3 Results and Discussion 4.4 Conclusion 5 Transport Characterization of Donor-Acceptor Blend Layers 5.1 Motivation 5.2 Device Fabrication 5.3 Hole Transport in ZnPc:C60 Blends with Balanced Mixing Ratios 5.3.1 Current-Voltage Measurements 5.3.2 Drift-Diffusion Model 5.3.3 Modeling Results 5.3.4 Discussion 5.4 Hole Transport in Fullerene-Rich ZnPc:C60 Blends 5.4.1 Results and Discussion 5.5 Electron Transport in ZnPc:C60 (1:1) 5.5.1 Results and Discussion 5.6 Transport in Blend Layers with the High Efficiency Donor DCV2-5T-Me33 5.6.1 Hole Transport in DCV2-5T-Me33:C60 5.6.2 Electron Transport in DCV2-5T-Me33:C60 5.7 Conclusions for Transport in Blend Layers 6 Doping-Enabled Density of States Determination in Donor-Acceptor Blend Layers 6.1 Motivation 6.2 Theory 6.3 Methods 6.4 Results 6.4.1 Impedance Spectroscopy 6.4.2 Fermi level, Mott-Schottky Analysis, and Band Diagram 6.4.3 DOOS Determination 6.4.4 Thermally Stimulated Currents 6.4.5 Solar Cell Characteristics 6.5 Discussion 6.6 Conclusions on the DOS of ZnPc:C60 (1:1) 7 Conclusion and Outlook Materials, Symbols, Abbreviations Bibliography
19

High Charge Carrier Mobility Polymers for Organic Transistors

Erdmann, Tim 03 February 2017 (has links)
I) Introduction p-Conjugated polymers inherently combine electronic properties of inorganic semiconductor crystals and material characteristics of organic plastics due to their special molecular design. This unique combination has led to developing new unconventional optoelectronic technologies and, further, resulted in the evolution of semiconducting polymers (SCPs) as fundamental components for novel electronic devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs) and organic solar cells (OSCs).[1–5] Moreover, the material flexibility, capability for thin-film formation, and solution processibility additionally allow utilizing modern printing technologies for the large-scale fabrication of flexible, light-weight organic electronics. This especially enables to significantly increase the production speed and, moreover, to drastically reduce the costs per unit.[6, 7] In particular, transistors are the most important elements in modern functional electronic devices because of acting as electronic switches in logic circuits or in displays to control pixels. However, due to molecular arrangement and interactions, the electronic performance of SCPs cannot compete with the one of monocrystalline silicon which is used in state-of-the-art high-performance microtechnology.[5, 8] Nonetheless, intensive and continuing efforts of scientists focused on improving the performance of OFETs, with the special focus on the charge carrier mobility, by optimizing the polymer structure, processing conditions and OFET device architecture. By this, it was possible to identify crucial relationships between polymer structure, optoelectronic properties, microstructure, and OFET performance.[8] Nowadays, the interdisciplinary scientific success is represented by high-performance SCPs with charge carrier mobilities exceeding the value of amorphous silicon.[3, 9] However, further research is essential to enable developing the next generation of electronic devices for application in healthcare, safety technology, transportation, and communication. II) Objective and Results Within the scope of this doctoral thesis, current high-performance p-conjugated SCPs should be studied comprehensively to improve the present understanding about the interdependency between molecular structure, material properties and charge transport. Therefore, the extensive research approaches focused on different key aspects of high charge carrier mobility polymers for organic transistors. The performed investigations comprised the impact of, first, novel design concepts, second, precise structural modifications and, third, synthetic and processing conditions and led to the major findings listed below. 1. The design concept of tuning the p-conjugation length allows to gradually modulate physical material properties and demonstrates that a strong localization of frontier molecular orbitals in combination with a high degree of thin-film ordering can provide a favorable platform for charge transport in p-conjugated semiconducting polymers.[1] 2. The replacement of thiophene units with thiazoles in naphthalene diimide-based p- conjugated polymers allows to increase interchain interactions and to lower frontier molecular orbitals. This compensates the potentially detrimental enhancement of backbone torsion and drives the charge transport to unipolar electron transport, whereas mobility values are partially comparable with those of the respective thiophene containing analogs. 3. p-Conjugated diketopyrrolo[3,4-c]pyrrole-based copolymers can be synthesized within fifteen minutes what, in combination with avoiding aqueous washings and optimizing processing conditions, allowed an increase in morphological and energetic order and, thus, improved the charge transport properties significantly. III) Conclusion The key findings of this doctoral thesis provide new significant insights into important aspects of designing, synthesizing and processing high charge carrier mobility polymers. By this, they can guide future research to further improve the performance of organic electronic devices - decisive for driving the development and fabrication of smart, functional and wearable next-generation electronics. References [1] T. Erdmann, S. Fabiano, B. Milián-Medina, D. Hanifi, Z. Chen, M. Berggren, J. Gierschner, A. Salleo, A. Kiriy, B. Voit, A. Facchetti, Advanced Materials 2016, 28 (41), 9169–9174, DOI:10.1002/adma.201602923. [2] Y. Karpov, T. Erdmann, I. Raguzin, M. Al-Hussein, M. Binner, U. Lappan, M. Stamm, K. L. Gerasimov, T. Beryozkina, V. Bakulev, D. V. Anokhin, D. A. Ivanov, F. Günther, S. Gemming, G. Seifert, B. Voit, R. Di Pietro, A. Kiriy, Advanced Materials 2016, 28 (28), 6003–6010, DOI:10.1002/adma.201506295. [3] A. Facchetti, Chemistry of Materials 2011, 23 (3), 733–758, DOI:10.1021/cm102419z. [4] A. J. Heeger, Chemical Society Reviews 2010, 39, 2354–2371, DOI:10.1039/B914956M. [5] H. Klauk, Chemical Society Reviews 2010, 39, 2643–2666, DOI:10.1039/B909902F. [6] S. G. Bucella, A. Luzio, E. Gann, L. Thomsen, C. R. McNeill, G. Pace, A. Perinot, Z. Chen, A. Facchetti, M. Caironi, Nature Communications 2015, 6, 8394, DOI:10.1038/ncomms9394. [7] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 2000, 290 (5499), 2123–2126, DOI:10.1126/science.290.5499.2123. [8] D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, H. Sirringhaus, Nature 2014, 515 (7527), 384–388, DOI:10.1038/nature13854. [9] S. Holliday, J. E. Donaghey, I. McCulloch, Chemistry of Materials 2014, 26 (1), 647–663, DOI: 10.1021/cm402421p.
20

Untersuchung des elektronischen Transports an 28nm MOSFETs und an Schottky-Barrieren FETs aus Silizium-Nanodrähten

Beister, Jürgen 19 January 2019 (has links)
As modern microelectronics advances, enormous challenges have to be overcome in order to further increase device performance, enabling highspeed and ultra-low-power applications. With progressive scaling of Silicon MOSFETs, charge carrier mobility has dropped significantly and became a critical device parameter over the last decade. Present technology nodes make use of strain engineering to partially recover this mobility loss. Even though carrier mobility is a crucial parameter for present technology nodes, it cannot be determined accurately by methods typically available in industrial environments. A major objective of this work is to study the magnetoresistance mobility μMR of strained VLSI devices based on a 28 nm ground rule. This technique allows for a more direct access to charge carrier mobility, compared to conventional current/ voltage and capacitance/ voltage mobility derivation methods like the effective mobility μeff, in which series resistance, inversion charge density and effective channel length are necessary to extract the mobility values of the short channel devices. Aside from providing an anchor for accurate μeff measurements in linear operation conditions, μMR opens the possibility to investigate the saturation region of the device, which cannot be accessed by μeff. Electron and hole mobility of nFET and pFET devices with various gate lengths are studied from linear to saturation region. In addition, the interplay between mobility enhancement due to strain improvement, and mobility degradation due to short channel effects with decreasing channel length is analyzed. As a concept device for future nanoelectronic building blocks, silicon nanowire Schottky field-effect transistors are investigated in the second part of this work. These devices exhibit an ambipolar behaviour, which gives the opportunity to measure both electron and hole transport on a single device. The temperature dependence of the source/drain current for specific gate and drain voltages is analyzed within the framework of voltage dependent effective barrier heights.:1. Einleitung 2. Theoretische Grundlagen 3. Charakterisierungsmethoden 4. Messaufbau 5. Ergebnisse der Untersuchungen an MOSFETs 6. Ergebnisse der Untersuchungen an SiNW Transistoren 7. Zusammenfassung Anhang Danksagungen

Page generated in 0.0826 seconds