321 |
Mechanical and Electrical Properties of Single-walled Carbon Nanotubes Synthesized by Chemical Vapor DepositionYang, Yuehai 17 May 2013 (has links)
Despite the tremendous application potentials of carbon nanotubes (CNTs) proposed by researchers in the last two decades, efficient experimental techniques and methods are still in need for controllable production of CNTs in large scale, and for conclusive characterizations of their properties in order to apply CNTs in high accuracy engineering. In this dissertation, horizontally well-aligned high quality single-walled carbon nanotubes (SWCNTs) have been successfully synthesized on St-cut quartz substrate by chemical vapor deposition (CVD). Effective radial moduli (Eradial) of these straight SWCNTs have been measured by using well-calibrated tapping mode and contact mode atomic force microscopy (AFM). It was found that the measured Eradial decreased from 57 to 9 GPa as the diameter of the SWCNTs increased from 0.92 to 1.91 nm. The experimental results were consistent with the recently reported theoretical simulation data. The method used in this mechanical property test can be easily applied to measure the mechanical properties of other low-dimension nanostructures, such as nanowires and nanodots. The characterized sample is also an ideal platform for electrochemical tests. The electrochemical activities of redox probes Fe(CN)63-/4-, Ru(NH3)63+, Ru(bpy)32+ and protein cytochrome c have been studied on these pristine thin films by using aligned SWCNTs as working electrodes. A simple and high performance electrochemical sensor was fabricated. Flow sensing capability of the device has been tested for detecting neurotransmitter dopamine at physiological conditions with the presence of Bovine serum albumin. Good sensitivity, fast response, high stability and anti-fouling capability were observed. Therefore, the fabricated sensor showed great potential for sensing applications in complicated solution.
|
322 |
Engineering Properties of Transition Metal Halides via Cationic AlloyingJanuary 2020 (has links)
abstract: Transition metal di- and tri-halides (TMH) have recently gathered research attention owing to their intrinsic magnetism all the way down to their two-dimensional limit. 2D magnets, despite being a crucial component for realizing van der Waals heterostructures and devices with various functionalities, were not experimentally proven until very recently in 2017. The findings opened up enormous possibilities for studying new quantum states of matter that can enable potential to design spintronic, magnetic memory, data storage, sensing, and topological devices. However, practical applications in modern technologies demand materials with various physical and chemical properties such as electronic, optical, structural, catalytic, magnetic etc., which cannot be found within single material systems. Considering that compositional modifications in 2D systems lead to significant changes in properties due to the high anisotropy inherent to their crystallographic structure, this work focuses on alloying of TMH compounds to explore the potentials for tuning their properties. In this thesis, the ternary cation alloys of Co(1-x)Ni(x)Cl(2) and Mo(1-x)Cr(x)Cl(3) were synthesized via chemical vapor transport at a various stoichiometry. Their compositional, structural, and magnetic properties were studied using Energy Dispersive Spectroscopy, Raman Spectroscopy, X-Ray Diffraction, and Vibrating Sample Magnetometry. It was found that completely miscible ternary alloys of Co(1-x)Ni(x)Cl(2) show an increasing Néel temperature with nickel concentration. The Mo(1-x)Cr(x)Cl(3) alloy shows potential magnetic phase changes induced by the incorporation of molybdenum species within the host CrCl3 lattice. Magnetic measurements give insight into potential antiferromagnetic to ferromagnetic transition with molybdenum incorporation, accompanied by a shift in the magnetic easy-axis from parallel to perpendicular. Phase separation was found in the Fe(1-x)Cr(x)Cl(3) ternary alloy indicating that crystallographic structure compatibility plays an essential role in determining the miscibility of two parent compounds. Alloying across two similar (TMH) compounds appears to yield predictable results in properties as in the case of Co(1-x)Ni(x)Cl(2), while more exotic transitions, as in the case of Mo(1-x)Cr(x)Cl(3), can emerge by alloying dissimilar compounds. When dissimilarity reaches a certain limit, as with Fe(1-x)Cr(x)Cl(3), phase separation becomes more favorable. Future studies focusing on magnetic and structural phase transitions will reveal more insight into the effect of alloying in these TMH systems. / Dissertation/Thesis / Masters Thesis Materials Science and Engineering 2020
|
323 |
The Synthesis and Electrocatalytic Activities of Molybdenum Sulfide for Hydrogen Evolution ReactionLi, Zhengxing 07 1900 (has links)
In the context of the future hydrogen economy, effective production of hydrogen (H2) from readily available and sustainable resources is of crucial importance. Hydrogen generation via water splitting by solar energy or electricity has attracted great attention in recent years. In comparison with photocatalytic water-splitting directly using solar light, which is ideal but the relevant technologies are not yet mature, electrolysis of water with catalyst is more practical at the current stage. The Pt-group noble metals are the most effective electrocatalysts for hydrogen evolution reaction (HER) from water, but their high costs limit their applications.
Due to the earth-abundance and low price, MoS2 is expected to be a good alternative of the Pt-group metals for HER. Plenty of researches have been conducted for improving the HER activities of MoS2 by optimizing its synthesis method. However, it remains challenging to prepare MoS2 catalysts with high and controllable activity, and more investigations are still needed to better understand the structure-performance correlation in this system.
In this thesis, we report a new strategy for fabricating MoS2 eletrocatalysts which gives rise to much improved HER performance and allows us to tune the electrocatalytic activity by varying the preparation conditions. Specifically, we sulfurized molybdenum oxide on the surface of a Ti foil electrode via a facile chemical vapor deposition (CVD) method, and directly used the electrode for HER testing. Depending on the CVD temperature, the MoO2-MoS2 nanocomposites show different HER activities. Under the optimal synthesis condition (400ºC), the resulting catalyst exhibited excellent HER activity: an onset potential (overpotential) of 0.095 V versus RHE and the Tafel slope of 40 mv/dec. Such a performance exceeds those of most reported MoS2 based HER electrocatalysts. We demonstrated that the CVD temperature has significant influence on the catalysts in crystallinity degree, particle size and dispersion, morphology, and density of the edge sites etc., and these factors in turn determine the HER activity.
|
324 |
On-surface synthesis of two-dimensional graphene nanoribbon networks / 二次元グラフェンナノリボンネットワークの表面合成Xu, Zhen 27 July 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第22709号 / エネ博第406号 / 新制||エネ||78(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 坂口 浩司, 教授 松田 一成, 教授 野平 俊之 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
|
325 |
Structural and Photoelectron Emission Properties of Chemical Vapor Deposition Grown Diamond FilmsAkwani, Ikerionwu Asiegbu 08 1900 (has links)
The effects of methane (CH4), diborone (B2H6) and nitrogen (N2) concentrations on the structure and photoelectron emission properties of chemical vapor deposition (CVD) polycrystalline diamond films were studied. The diamond films were grown on single-crystal Si substrates using the hot-tungsten filament CVD technique. Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) were used to characterize the different forms of carbon in the films, and the fraction of sp3 carbon to sp3 plus sp2 carbon at the surface of the films, respectively. Scanning electron microscopy (SEM) was used to characterize the surface morphology of the films. The photoelectron emission properties were determined by measuring the energy distributions of photoemitted electrons using ultraviolet photoelectron spectroscopy (UPS), and by measuring the photoelectric current as a function of incident photon energy.
|
326 |
Mechanické a elektrické vlastnosti tenkých vrstev mikrokrystalického křemíku / Mechanical and Electrical Properties of Microcrystalline Silicon Thin FilmsVetushka, Aliaksei January 2011 (has links)
Amorphous and nano- or micro- crystalline silicon thin films are intensively studied materials for photovoltaic applications. The films are used as intrinsic layer (absorber) in p-i-n solar cells. As opposed to crystalline silicon solar cells, the thin films contain about hundred times less silicon and can be deposited at much lower temperatures (typically around 200 0 C) which saves energy needed for production and makes it possible to use various low cost (even flexible) substrates. However, these films have a complex microstructure, which makes it difficult to measure and describe the electronic transport of the photogenerated carriers. Yet, the understanding of the structure and electronic properties of the material at nanoscale is essential on the way to improve the efficiency solar cells. One of the main aims of this work is the study of the structure and mechanical properties of the mixed phase silicon thin films of various thicknesses and structures. The key parameter of microcrystalline silicon is the crystallinity, i.e., the microcrys- talline volume fraction. It determines internal structure of the films which, in turn, decides about many other properties, including charge transport and mechanical sta- bility. Raman microspectroscopy is a fast and non-destructive method for probing the...
|
327 |
Processing and Properties of Encapsulated van der Waals Materials at Elevated TemperatureHua, Xiang January 2022 (has links)
Since the first successful isolation and subsequent characterization of graphene, the interest in two dimensional (2-D) materials has expanded exponentially. Despite the dozens of graphene-like van der Waals materials that have been found and their interesting properties, a significant obstacle in realizing their promise is their instability especially for monolayer and thin layers at elevated temperature. To overcome the obstacle of passivating the 2-D materials and study their properties at elevated temperature, we take advantage of the potential improvements afforded by assembling heterostructures by stacking the atomic thick 2-D materials together hexagonal boron nitride (ℎ-BN) which possess high chemical stability and thermal stability.
In this dissertation, several experiments are described in detail in which we utilized h-BN encapsulation to passivate atomically-thin transition metal dichalcogenide and studied their properties at elevated temperature. In the first project we demonstrated that chemical vapor deposition (CVD)-grown flakes of high-quality monolayers of WS₂ can be stabilized at elevated temperatures by encapsulation with only top ℎ-BN layers in the presence of ambient air, N₂ or forming gas. The best passivation occurs for ℎ-BN covered samples with flowing N₂. In the second project, we demonstrated that encapsulating monolayer MoSe₂ and WS₂ with top and bottom ℎ-BN can improve their thermal stability at high temperature and increase their photoluminescence (PL). The increased PL likely occurs because impurities are laterally expelled from the TMD stack during heating.
In the third project, we demonstrated the passivation of different modes of ℎ-BN encapsulation on thin layer FeSe sample by using temperature dependent Raman scattering. The complete encapsulation showed the best protection of thin layer FeSe. Finally, we utilized the temperature dependence of the Raman mode of thin-layer FeSe with complete encapsulation and applied a noncontact method to measure the thermal conductivity of the thin-layer FeSe.
|
328 |
Exploration of the Cold-Wall CVD Synthesis of Monolayer MoS2 and WS2January 2019 (has links)
abstract: A highly uniform and repeatable method for synthesizing the single-layer transition metal dichalcogenides (TMDs) molybdenum disulfide, MoS2, and tungsten disulfide, WS2, was developed. This method employed chemical vapor deposition (CVD) of precursors in a custom built cold-wall reaction chamber designed to allow independent control over the growth parameters. Iterations of this reaction chamber were employed to overcome limitations to the growth method. First, molybdenum trioxide, MoO3, and S were co-evaporated from alumina coated W baskets to grow MoS2 on SiO2/Si substrates. Using this method, films were found to have repeatable coverage, but unrepeatable morphology. Second, the reaction chamber was modified to include a pair of custom bubbler delivery systems to transport diethyl sulfide (DES) and molybdenum hexacarbonyl (MHC) to the substrate as a S and Mo precursors. Third, tungsten hexacarbonyl (WHC) replaced MHC as a transition metal precursor for the synthesis of WS2 on Al2O3, substrates. This method proved repeatable in both coverage and morphology allowing the investigation of the effect of varying the flow of Ar, varying the substrate temperature and varying the flux of DES to the sample. Increasing each of these parameters was found to decrease the nucleation density on the sample and, with the exception of the Ar flow, induce multi-layer feature growth. This combination of precursors was also used to investigate the reported improvement in feature morphology when NaCl is placed upstream of the substrate. This was found to have no effect on experiments in the configurations used. A final effort was made to adequately increase the feature size by switching from DES to hydrogen sulfide, H2S, as a source of S. Using H2S and WHC to grow WS2 films on Al2O3, it was found that increasing the substrate temperature and increasing the H2S flow both decrease nucleation density. Increasing the H2S flow induced bi-layer growth. Ripening of synthesized WS2 crystals was demonstrated to occur when the sample was annealed, post-growth, in an Ar, H2, and H2S flow. Finally, it was verified that the final H2S and WHC growth method yielded repeatability and uniformity matching, or improving upon, the other methods and precursors investigated. / Dissertation/Thesis / Doctoral Dissertation Physics 2019
|
329 |
Crystalline properties of gallium oxide thin films epitaxially grown by mist chemical vapor deposition / ミスト化学気相法によるエピタキシャル成長酸化ガリウム薄膜の結晶特性に関する研究Lee, Sam-Dong 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19721号 / 工博第4176号 / 新制||工||1644(附属図書館) / 32757 / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 藤田 静雄, 教授 髙岡 義寛, 准教授 須田 淳 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
330 |
Optoelectronic Properties of Wide Band Gap SemiconductorsSaadatkia, Pooneh 06 August 2019 (has links)
No description available.
|
Page generated in 0.0698 seconds