91 |
Hot-wire chemical vapor deposition of silicon nitride thin filmsAdams, Abdulghaaliq January 2013 (has links)
Magister Scientiae - MSc / Amorphous silicon nitride (a-SiN:H) thin films has a multitude of applications, stemming from the tunability of the material properties. Plasma enhanced chemical vapour deposition (PECVD) is the industrial workhorse for production of device quality a-SiN:H. However, this technique has drawbacks in terms of film quality, rooting from ion bombardment, which then results in undesirable oxidation. Hot wire chemical vapour deposition (HWCVD) has shown to be a viable competitor to its more costly counterpart, PECVD. A thin film produced by HWCVD lacks ion bombardment due to the deposition taking place in the absence of plasma. This study will focus on optimising the MVsystems ® HWCVD chamber at The University of the Western Cape, for production of device quality a-SiN:H thin films at low processing parameters. The effect of these parameters on the structural, optical and morphological properties was investigated, for reduction of production costs. The films were probed by heavy ion elastic recoil detection, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, atomic force microscopy, Xray diffraction, and ultraviolet visible spectroscopy. It was shown that silicon rich, device quality a-SiN:H thin films could be produced by HWCVD at wire temperatures as low as
1400 °C and the films showed considerable resistance to oxidation in the bulk.
|
92 |
Optical properties of annealed hydrogenated amorphous silicon nitride (a-SiNx:H) thin films for photovoltaic applicationJacobs, Sulaiman January 2013 (has links)
Magister Scientiae - MSc / Technological advancement has created a market for large area electronics such as
solar cells and thin film transistors (TFT’s). Such devices now play an important
role in modern society. Various types of conducting, semiconducting and insulating thin films of the order of hundreds, or even tens of nanometres are combined in strata to form stacks to create interactions and phenomena that can be exploited and employed in these devices for the benefit of mankind. One such is for the generation of energy via photovoltaic devices that use thin film technology; these are known as second and third generation solar cells. Silicon and its alloys such as silicon germanium (SiGex), silicon oxide (SiOx), silicon carbide (SiCx) and silicon nitride (SiNx) play an important role in these devices due to the fact that each material in its different structures, whether amorphous, micro or nano-crystalline or completely crystalline, has its own range of unique optical, mechanical and electrical properties. These structures and their material properties can thus exert a huge influence over the overall device performance. viii Chemical vapour deposition (CVD) techniques are most widely used in industry to obtain thin films of silicon and silicon alloys. Source gases are decomposed by the external provision of energy thereby allowing for the growth of a thin solid film on a substrate. In this study a variant of CVD, namely Hot Wire Chemical Vapour Deposition (HWCVD) will be used to deposit thin films of silicon nitride by the decomposition of silane (SiH4), hydrogen (H2) and ammonia (NH3) on a hot tantalum filament (~1600 C). Hydrogenated amorphous silicon nitride (a-SiNx:H) has great potential for application in optoelectronic devices. In commercial solar cell production its potential for use as anti-reflection coatings are due to its intermediate refractive index combined with low light absorption. An additional benefit is the passivation of interface and crystal defects due to the bonded hydrogen. This can lead to better photon conversion efficiency. Its optical properties including optical band gap, Urbach tail, and wavelength-dependent optical constants such as absorption coefficient and refractive index are crucial for the design and application in the relevant optoelectronic device. The final firing step in the production of micro-crystalline silicon solar cells, allows hydrogen to effuse into the solar cell from the a-SiNx:H, and drives bulk passivation of the grain boundaries. We therefore propose the exploration of annealing effects on the thin film structure. The study undertakes a comparison of optical and bonding structure of the as deposited thin film compared to that of the annealed thin film which would have undergone changes due to high temperature annealing under vacuum. However, it is difficult to simultaneously obtain all of these important ix optical parameters for a-SiNx:H thin films. Ultraviolet visible (UV-vis) spectroscopy will be the method of choice to investigate the optical properties. Infrared (IR) spectroscopy is a source of useful information on the microstructure of the material. In particular, the local atomic bonding configurations involving Si, N, and H atoms in a-SiNx:H films can be obtained by Fourier Transform Infrared Spectroscopy (FTIR). Therefore, this study will attempt to establish a relationship between film microstructure of a-SiNx:H thin films and their macroscopic optical properties.
|
93 |
Development And Synthesis Of Metalorganic Complexes Of Zr, Hf, And Cr For Application To The CVD And Sol-Gel Synthesis Of Oxide Thin FilmsDharmaprakash, M S 07 1900 (has links) (PDF)
No description available.
|
94 |
Thermodynamics and Kinetics of Nucleation and Growth of Silicon NanowiresShakthivel, Dhayalan January 2014 (has links) (PDF)
Si nanowires have potential applications in a variety of technologies such as micro and nanoelectronics, sensors, electrodes and photovoltaic applications due to their size and specific surface area. Au particle-assisted vapour-liquid-solid or VLS growth method remains the dominant process for Si nanowire growth. A comprehensive kinetic model that addresses all experimental observations and provides a physico-chemical model of the VLS growth method is thus essential. The work done as part of this research is divided into two sections.
A steady state kinetic model was first developed for the steady state growth rate of Si nanowires using SiCl4 and SiH4 as precursors. The steady state refers to a balance between the rates of injection and ejection of Si into the Au droplet. This balance results in a steady state supersaturation under which wire growth proceeds. In particular evaporation and reverse reaction of Si from the Au droplet and modes of crystal growth for wire growth have been considered in detail for the first time. The model is able to account for both, the radius independent and radius dependent growth rates reported in the literature. It also shows that the radius dependence previously attributed to purely thermodynamic considerations could also as well be explained just by steady state kinetics alone. Expressions have been derived for the steady state growth rate that require the desolvation energy, activation energy for precursor dissociation and supersaturation prevalent in the particle as inputs for calculation.
In order to evaluate this model the incubation and growth of Si nanowires were studied on sapphire substrates in an indigenously built automated MOCVD reactor. Sapphire was chosen as the substrate, as opposed to Si which is commonly used, so as to ensure that the vapour phase is the only source of Si. A classical incubation period for nucleation, of the order of 4-8 minutes, was experimentally observed for the first time.
Using the change in this incubation period with temperature a value of 15kT was determined to be the desolvation energy for growth using SiH4. The steady state growth rate of Si nanowires were measured and compared with the predictions of the model using the values of activation energies so determined.
The thesis based on the current research work is organized as follows:
Chapter 1 introduces the research area followed by a brief outline of the overall work
Chapter 2 provides a summary of current literature, and puts the research described in this thesis in perspective. The diameter dependent growth rate of NWs which was initially solely attributed to the Gibbs-Thomson effect is first summarized. Experimental observations to the contrary are then highlighted. These contradictions provided the incentive for the research described in this thesis. Following a summary of the growth rate theories, the experimental observations on incubation available in the literature are summarized. All the other variants of the VLS method are also discussed.
Chapter 3 describes the design, construction and working of an indigenously built semi- automated CVD reactor. This CVD reactor was used to conduct the Si NW growth experiments over sapphire substrates.
Chapter 4 develops the physical chemistry model for Au catalyzed Si nanowire growth using SiCl4 and SiH4 precursors. The model originated from the contradictions present in the literature over the rate limiting step of the VLS growth mechanism and the steady state growth rate dependence on wire diameter. The development starts with explaining the thermodynamics of the steady state VLS process. The significance of the model lies in the detailed analysis of the all the atomistic process occurring during the VLS growth. In particular the evaporation and reverse reaction of Si from Au-Si droplet is explained in detail and possibly for the first time. Expressions for steady state growth rate by various modes, such as layer by layer growth (LL), by multilayer growth (ML) and growth by movement of a rough interface at the L-S growth interface are derived and presented.
Chapter 5 discusses the results which emerge out the kinetic model from the previous chapter. Under a single framework of equations, the model is successful in explaining both the diameter independent and diameter dependent growth of NWs. As one of the major outcomes of the model, the growth rates of Si NWs are predicted and trends in growth rate are found to agree with those experimentally observed. Growth rate dependencies on pressure and temperature are implicitly included in the equations derived. An estimate of supersaturation has been extracted for the first time using the framework of equations.
Chapter 6 contains the experimental results of the Si NW growth over sapphire substrates. An incubation period in the order of 3-8 minutes has been observed for Si NW growth on sapphire. The data has been compared with existing literature data and interpreted using classical transient nucleation theory. The incubation period data has been utilized to extract the kinetic parameter, QD, which is the desolvation enegy. These parameters and the measured steady state growth rates have been used to estimate the supersaturation existing in the droplet using the framework developed in chapters 4 and 5.
Chapter 7 summarizes the outcome of the current research and highlights the future directions for the research problem addressed in this thesis.
|
95 |
Multicomponent catalysts for methanol electro-oxidation processes synthesized using organometallic chemical vapourde position techniqueNaidoo, Qiling Ying January 2011 (has links)
Philosophiae Doctor - PhD / In this study, the OMCVD method is demonstrated as a powerful, fast, economic and environmental friendly method to produce a set of PGMelectrocatalysts with different supports, metal content and metal alloys in one step and without the multiple processing stages of impregnation, washing, drying, calcinationsand activation. / South Africa
|
96 |
Příprava grafenu metodou CVD / The preparation of Grafen by method CVDProcházka, Pavel January 2012 (has links)
This diploma thesis is mainly focused on the fabrication of graphene layers on the copper foil by the Chemical Vapor Deposition (CVD). For this purpose the high-temperature chamber for the production of the graphene was completed and fully automated. The production of the high area graphene on the copper foil was experimentally achieved. The Raman microscopy and X-ray photoelectron spectroscopy measurements proved that the produced graphene is mostly a monolayer. Graphene layer was transferred on non-conductive substrate.
|
97 |
Phosphane and Phosphite Silver(I) Complexes: Synthesis, Reaction Chemistry and their Use as CVD PrecursorsDjiele Ngameni, Patrice 27 January 2005 (has links)
Silver(I) complexes of type LnAgX (X = organic ligand, such as carboxylates, dicarboxylates, Schiff-base; L = Lewis-bases, e. g. PnBu3, P(OMe)3, P(OEt)3; n = 1, 2, 3) have been synthesized and characterized with respect to their suitability for the Chemical Vapour Deposition (CVD) of silver thin films. For some of these compounds single crystal could be obtained. Their solid-state structure was determined by single crystal X-ray diffraction. The volatility, thermal stability, and gas phase decomposition mechanism of selected compounds were studied using temperature-programmed and in-situ mass spectrometry. CVD experiments were performed according to the results of the gas phase analysis. Silver films could be grown by using a cold-wall CVD reactor. The morphology of the latter films was determined. / Silber(I) Komplexe LnAgX (X = organische Ligand, Z. B. Carboxylate, Dicarboxylate, Schiff Base; L = Lewis-Base, Z. B. PnBu3, P(OMe)3, P(OEt)3; n = 1, 2, 3) wurden Bezug auf ihre Eignung für die chemische Gasphasenabscheidung von Silberfilmen synthetisiert und charakterisiert. Von einigen dieser Verbindung konnten Einkristalle erhalten werden. Der Bau dieser Verbindungen wurde mittels Röntgeneinkristallographie ermittelt. Ausgewählten Verbindungen wurden mit Temperatur-programmierter und in-situ Massenspektrometrie analysiert. Gasphasenabscheidungs- mechanismen für einige Prekursoren sind vorgestellt. CVD-Abscheidungsexperimente wurden entsprechend den Ergebnissen der Gasphaseanalyse durchgeführt. Silber Schichten konnten mit einen Kaltwand CVD-Reaktor erzeugt werden, deren Oberflächenmorphologie wurde untersucht.
|
98 |
Growth and field emission characteristics of MWCNTs on different substratesUmmethala, Raghunandan 17 November 2014 (has links)
The first comprehensive discovery of carbon nanotubes (CNTs) by S. Iijima in 1991 sparked a huge scientific interest in investigating its unique structure and attractive properties. A multitude of potential applications of CNTs in modern science and technology has been envisaged very early after their discovery. While a few applications are realized on a commercial scale, many are still constrained to laboratory investigations for a constant improvement to meet the service needs. Moreover, some studies are still aimed at further understanding the very growth mechanism.
The work reported in this thesis deals with two main topics: The first part of the thesis was aimed at investigating the influence of various supported catalyst precursors on the growth morphology of multiwalled CNTs (MWCNTs) by low-temperature thermal CVD (chemical vapour deposition). The results were explained with the help of thermodynamic calculations of equilibrium phases formed during the reduction reactions inside the CVD reactor. Striking an equilibrium between the respective oxide phase and the metallic phase of the active catalyst species forms the basis for a vertically aligned growth of CNTs. A new class of supported catalysts based on manganese oxide (MnO) was developed. It has been shown that such a method of thermodynamic analysis paves the way for a theoretical assessment of CNT growth morphology. Second part of the thesis is devoted to the growth and field emission characterization of large-array MWCNTs on diverse substrate materials.
One of the burgeoning areas of research involves the application of CNTs as electron field emitters in x-ray computed tomography or display technologies. Although several research groups investigated the field emission behaviour of CNTs on different substrate materials, those studies carry at least two important drawbacks:
Firstly, a vast majority of the publications report the emission characteristics of individual CNT or an individual vertically aligned CNT (VACNT) bundle. By measuring so, the electric field shielding effects between various CNTs in an array would not be accounted for.
Therefore, in this work, large-area emitters grown on stainless steel, copper, molybdenum and silicon substrates were subjected to emission measurements under similar pulsed operation mode, so that a direct comparison would be possible. Entangled CNTs on stainless steel showed a poor emission current density, but a long-term stable emission of 10 mA for more than 96 hours (4 days). The emission current density of CNTs on Cu and Mo was further low, but the threshold field (ETh) on the former was desirably low (~2 V µm-1).
Secondly, the existing literature concerning emission characteristics of large-area CNT emitters reports either a high emission current density (Jmax) or a good long-term stability, but fails to demonstrate both simultaneously. It was shown in this work that VACNTs grown on a specific patterned Si substrate displayed an excellent combination of emission current density (5.78 A cm-2) along with a long-term stable emission of 40 mA current for ~730 hours at 10% duty cycle (effective emission time: 73 hours). Based on these results, a hypothesis emphasizing a new parameter, the ratio of the cumulative area of the CNTs to that of the substrate (ACNTs/Asubstrate), was put forth to explain the emission efficiency of large-area emitters. This hypothesis needs further verification by means of simulations. / Iijimas Publikation über Kohlenstoffnanoröhren (CNT) im Jahre 1991 löste ein großes wissenschaftliches Interesse daran aus, die einzigartige Struktur von CNTs und deren attraktive Eigenschaften zu untersuchen. Schon kurz nach der Entdeckung von CNTs wurde das große Potential von CNTs für die moderne Naturwissenschaft und vielfältige Anwendungen erkannt. Einige solcher Anwendungen wurden bereits verwirklicht, viele andere sind gegenwärtig noch im Entwicklungstadium. Auch die Wachstumsmechanismen von CNTs werden momentan weiter untersucht.
Die hier vorgelegte Doktorarbeit behandelt zwei Hauptthemen: Der erste Teil widmet sich der Untersuchung des Wachstums von mehrwandigen Kohlenstoffnanoröhren (MWCNTs) durch thermische chemische Gasphasenabscheidung (CVD) bei niedrigen Temperaturen, wobei besonders der Einfluss verschiedener Katalysatormaterialien auf die Nanoröhren-Morphologie im Mittelpunkt steht. Die Ergebnisse können erklärt werden mit Hilfe von thermodynamischen Berechnungen der Gleichgewichtsphasen, die sich während der Reduktionsreaktionen im CVD-Reaktor bilden. Ein Wachstum von senkrecht ausgerichteten CNTs hängt ab von einem Gleichgewicht zwischen der Oxidphase und der metallischen Phase der aktiven Katalysatorkomponenten. Im Rahmen dieser Arbeit wurde eine neue Klasse von Zweikomponenten-Katalysatoren auf der Grundlage von Manganoxid (MnO) entwickelt. Es kann gezeigt werden, dass eine thermodynamische Analyse als Grundlage für eine theoretische Beurteilung des CNT-Wachstumsmechanismus dienen kann.
Der zweite Teil der Doktorarbeit ist dem Wachstum von ausgedehnten MWCNT-Anordnungen sowie der Untersuchung der Feldemissionscharakteristik dieser Proben gewidmet, wobei verschiedene Substratmaterialien berücksichtigt wurden. Die Anwendung von CNTs als Elektronen-Feldemitter für Computertomographie und für Bildschirme ist ein attraktives und wachsendes Forschungsgebiet. Zwar wurde das Feldemissionsverhalten von CNTs auf verschiedenen Substraten bereits von mehreren Forschergruppen untersucht, jedoch sind mit diesen Studien Unzulänglichkeiten verbunden:
Erstens behandelt die Mehrzahl der Publikationen die Emissionscharakteristik von individuellen CNTs oder von individuellen senkrecht ausgerichteten CNT-Bündeln. Dabei wurden allerdings elektrostatische Abschirmeffekte durch benachbarte CNTs nicht berücksichtigt. Daher wurden im Rahmen dieser Arbeit großflächige Emitter auf Edelstahl-, Kupfer-, Molybdän- und Siliziumsubstraten hergestellt und hinsichtlich ihrer Emissionscharakteristik im gepulsten Regime untersucht, so dass ein direkter Vergleich zwischen den Proben auf verschiedenen Substraten möglich ist.
Gegenseitig umschlungene CNTs auf Edelstahl zeigten eine geringe Emissionsstromdichte, dafür war die Emission jedoch langzeitstabil mit 10 mA über mehr als 96 Stunden (vier Tage). Die Emissionsstromdichte von CNTs auf Cu und Mo war ebenfalls niedrig, allerdings im Falle von Cu-Substraten verbunden mit einem vorteilhaft niedrigen Feldschwellwert (ETh) von etwa 2 V µm-1. Zweitens berichtet die vorhandene Literatur über großflächige CNT-Emitter mit einer hohen Emissionsstromdichte (Jmax) oder einer guten Langzeitstabilität, beides gleichzeitig wird allerdings in diesen Arbeiten nicht gezeigt.
In der vorliegenden Arbeit werden senkrecht ausgerichtete CNTs auf speziellen strukturierten Si-Substraten vorgestellt, die eine ausgezeichnete Kombination von Emissionsstromdichte (5,78 A/cm2) und einem über 730 Stunden langzeitstabilen Emissionsstrom von 40 mA aufweist, wobei die Arbeitsphase 10 % und damit die effektive Emissionszeit 73 Stunden beträgt. Auf Grundlage dieser Ergebnisse kann ein neuer Erklärungsansatz vorgestellt werden: Das Verhältnis von aufsummierter CNT-Fläche zur Substratfläche (ACNTs/Asubstrate) wird als neuer Parameter eingeführt und zur Erklärung der Emissionseffizienz von großflächigen Emittern verwendet. Diese Arbeitshypothese sollte durch Simulationsrechnungen verifiziert werden.
|
99 |
Chemical vapor deposition of ruthenium-based layers by a single-source approachJeschke, Janine, Möckel, Stefan, Korb, Marcus, Rüffer, Tobias, Assim, Khaybar, Melzer, Marcel, Herwig, Gordon, Georgi, Colin, Schulz, Stefan E., Lang, Heinrich 06 March 2017 (has links)
A series of ruthenium complexes of the general type Ru(CO)2(P(n-Bu)3)2(O2CR)2 (4a, R = Me; 4b, R = Et; 4c, R = i-Pr; 4d, R = t-Bu; 4e, R = CH2OCH3; 4f, R = CF3; 4g, R = CF2CF3) was synthesized by a single-step reaction of Ru3(CO)12 with P(n-Bu)3 and the respective carboxylic acid. The molecular structures of 4b, 4c and 4e–g in the solid state are discussed. All ruthenium complexes are stable against air and moisture and possess low melting points. The physical properties including the vapor pressure can be adjusted by modification of the carboxylate ligands. The chemical vapor deposition of ruthenium precursors 4a–f was carried out in a vertical cold-wall CVD reactor at substrate temperatures between 350 and 400 °C in a nitrogen atmosphere. These experiments show that all precursors are well suited for the deposition of phosphorus-doped ruthenium layers without addition of any reactive gas or an additional phosphorus source. In the films, phosphorus contents between 11 and 16 mol% were determined by XPS analysis. The obtained layers possess thicknesses between 25 and 65 nm and are highly conformal and dense as proven by SEM and AFM studies. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
100 |
Prinzipien der Syntheseplanung in der anorganischen Festkörperchemie: Analyse der Phasenbildung in Systemen M/P/Te, M = Ti,Ce,SiPhilipp, Frauke 07 January 2009 (has links)
Die ternären Systeme Ti/P/Te, Ce/P/Te und Si/P/Te wurden in der vorliegenden Dissertation hinsichtlich der Existenz neuer Verbindungen untersucht. Diese Verbindungen wurden insbesondere in Bezug auf ihre thermochemischen Eigenschaften charakterisiert. Durch Kombination von experimentellen Untersuchungen und thermodynamischen Modellierungen der ablaufenden Festkörper-Gasphasen-Gleichgewichte konnten die Synthesen der neuen Verbindungen optimiert werden. Abschließend erfolgte zudem die physikalische und kristallographische Charakterisierung der gefundenen Phosphidtelluride.
|
Page generated in 0.079 seconds