1 |
Efeito de peptídeos do grão de amaranto (Amaranthus cruentus L.) sobre os mecanismos de absorção e síntese de colesterol / Effect of amaranth grain peptides (Amaranthus cruentus L.) on the mechanisms of absorption and synthesis of cholesterolMenezes, Amanda Caroline Cardoso Corrêa Carlos 04 October 2018 (has links)
Introdução: Doenças cardiovasculares constituem importante causa de morte em todo mundo e a hipercolesterolemia está diretamente relacionada como fator agravante desta morbidade. A dieta desempenha papel importante neste processo e alguns alimentos como o amaranto, especialmente sua proteína, tem mostrado capacidade de redução do colesterol plasmático. Estudos sugerem que este efeito está relacionado a peptídeos formados durante a digestão da sua proteína, os quais desempenham um papel importante na regulação e modulação do metabolismo lipídico. Os efeitos hipocolesterolêmicos, já observados, indicam o uso da proteína do amaranto como um composto bioativo direcionado para a promoção da saúde. Considerando que os efeitos hipocolesterolêmicos destes peptídeos são complexos e há diversas hipóteses formuladas, torna-se importante a realização de estudos visando avaliar a interação dos peptídeos na absorção intestinal do colesterol e da sua modulação genética. Objetivos: Verificar os efeitos do hidrolisado da farinha do grão de amaranto na absorção de colesterol e modulação de genes ABCA1, ABCG1, NPC1L1, AMPK, HMGR e SREBP-2em células Caco-2, e modulação dos genes ABCG8, HMGR, SREBP-2 e AMPKem enterócitos de hamsters. Metodologia: O amaranto foi triturado, sua farinha desengordurada e sua proteína isolada, com posterior digestão in vitro e filtração dos peptídeos. Três experimentos in vitro foram conduzidos com as células: permeação de hidrolisado, permeação de colesterol e de efeito sob a expressão gênica. No primeiro, o hidrolisado proteico de amaranto foi permeado em culturas celulares de Caco-2 no tempo de 2 horas. O permeato foi coletado e analisado por LC/MS/MS. No segundo, o hidrolisado de amaranto foi incorporado a micelas de colesterol e incubados em culturas celulares, nas concentrações de 1,0 mg/ml, e 3,0 mg/ml em tempos de 2h. Também em concentrações de 3,0 mg/ml foi adicionado albumina e caseína para efeito comparativo. O conteúdo de colesterol na porção apical e basolateral foi analisado em HPLC. O terceiro experimento foi avaliaçãoda exposição do hidrolisado, em concentrações de 0,5 mg/ml, 1,0 mg/ml e 3,0 mg/ml, em tempos de 2h e 12h. Após este período, foi realizada a extração de RNA total, avaliação de rendimento e integridade do material; medida quantitativa de expressão de RNAm por RT-PCR e quantificação relativa da expressão por ?CT dos genes ABCA1, ABCG1, ABCG8, NPC1L1, AMP1, HMGR e SREBP-2das células Caco-2 e tecido intestinal de hamsters, coletados em ensaios anteriores. Resultados: Na permeação de colesterol não houve diferença entre as concentrações dos hidrolisados proteicos e controle, porém o hidrolisado de amaranto em 1,0 mg/ml demonstrou uma tendência em diminuir a absorção de colesterol (p = 0,05). Na exposição das células Caco-2 aos peptídeos por 2h, houve uma diminuição nas concentrações de RNAm dos genes ABCA1, NPC1L1, AMPK, HMGR e SREBP-2 nas concentrações de 3,0 mg/ml. O tempo de exposição de 12h apresentou resultados semelhantes ao tempo de 2h. Somente a expressão gênica de ABCG8foi influenciada pelo isolado proteico de amaranto no experimento in vivo. Conclusão: A partir do exposto, podemos concluir que os peptídeos do grão de amaranto influenciam o metabolismo de colesterol por mecanismos genéticos. Portanto, torna-se uma alternativa a ser introduzida na dieta de indivíduos saudáveis e em pacientes com hipercolesterolemia, visando a prevenção de agravos e como estratégia de terapia adicional no controle dos níveis de LDL-c plasmático. Contudo, mais experimentos in vivo e em humanos são necessários para estabelecer a dose efetiva para consumo. / Introduction: Cardiovascular diseases are an important cause of death worldwide and hypercholesterolemia is directly related as an aggravating factor of this morbidity. Diet plays an important role in this process and some foods such as amaranth, especially its protein, have shown ability to lower plasma cholesterol. Studies suggest that this effect is related to peptides formed during the digestion of their protein, which play an important role in the regulation and modulation of lipid metabolism. The hypocholesterolemic effects, already observed, indicate the use of amaranth protein as a bioactive compound aimed to promoting health. Considering that the hypocholesterolemic effects of these peptides are complex and there are several hypotheses formulated, it is important to carry out studies to evaluate the interaction of peptides in the intestinal absorption of cholesterol and its genetic modulation. Objectives: To verify the effects of amaranth grain flour hydrolyzate on cholesterol uptake and ABCA1, ABCG1, NPC1L1, AMPK, HMGR and SREBP-2 genes modulation in Caco-2 intestinal cells, and modulation of ABCG8, HMGR, SREBP-2 genes and AMPK in hamster intestinal cells. Methodology: Amaranth was crushed, the created flour was defatted and its protein isolated, with subsequent in vitro digestion and filtration of the peptides. Three in vitro experiments were conducted with the cells: hydrolyzate permeation, cholesterol permeation and genetic expression. In the first, the amaranth protein hydrolyzate was permeated in Caco-2 cell cultures in the time of 2 hours. The permeate was collected and analyzed by LC/MS/MS. In the second, the amaranth hydrolyzate was incorporated into cholesterol micelles and incubated in cell cultures at concentrations of 1.0 mg/ml and 3.0 mg/ml in times of 2 h. Also, at concentrations of 3.0 mg/ml albumin and casein were added for comparison. Cholesterol content in the apical and basolateral portion was analyzed by HPLC. The third experiment was to evaluate the exposure of the hydrolyzate at concentrations of 0.5 mg/ml, 1.0 mg/ml and 3.0 mg/ml, in times of 2 h and 12 h. After this period, the extraction of total RNA, evaluation of yield and integrity of the material was performed; quantitative measurement of mRNA expression by RT-PCR and relative quantification of ?CT expression of the ABCA1, ABCG1, ABCG8, NPC111, AMPK, HMGR and SREBP-2 genes from Caco-2 cells and hamster intestinal tissue, collected in previous assays, were finalized. Results: In cholesterol permeation there was no difference between the concentrations of the protein hydrolysates and control, but the amaranth hydrolyzate at 1.0 mg/ml showed a tendency to decrease the cholesterol absorption (p = 0.05). Exposure of Caco-2 cells to peptides for 2 h resulted in a decrease in ABCA1, NPC111, AMPK, HMGR and SREBP-2 mRNA levels at concentrations of 3.0 mg/ml. The exposure time of 12h presented results similar to the time of 2h. Only the gene expression of ABCG8 was influenced by the amaranth protein isolate in the in vivo experiment. Conclusion: From the above, we can conclude that amaranth peptides influence the metabolism of cholesterol by genetic mechanisms. Therefore, it becomes an alternative to be introduced in the diet of healthy individuals and in patients with hypercholesterolemia, aiming at the prevention of aggravations and as a strategy of additional therapy in the control of plasma LDL-c levels. However, more studies should bedone with animals and humans to define the dose-efficiency for diet.
|
2 |
Intestin et défauts métaboliques dans la résistance à l'insulineGrenier, Émilie 12 1900 (has links)
En lien avec l’augmentation constante de l’obésité, de plus en plus de personnes sont atteintes de résistance à l’insuline ou de diabète de type 2. Ce projet doctoral s’est surtout intéressé à l’une des conséquences majeures des pathologies cardiométaboliques, soit la dyslipidémie diabétique. À cet égard, les gens présentant une résistance à l’insuline ou un diabète de type 2 sont plus à risque de développer des perturbations lipidiques caractérisées essentiellement par des taux élevés de triglycérides et de LDL-cholestérol ainsi que de concentrations restreintes en HDL-cholestérol dans la circulation. Les risques de maladies cardiovasculaires sont ainsi plus élevés chez ces patients. Classiquement, trois organes sont connus pour développer l’insulino-résistance : le muscle, le tissu adipeux et le foie. Néanmoins, certaines évidences scientifiques commencent également à pointer du doigt l’intestin, un organe critique dans la régulation du métabolisme des lipides postprandiaux, et qui pourrait, conséquemment, avoir un impact important dans l’apparition de la dyslipidémie diabétique. De façon très intéressante, des peptides produits par l’intestin, notamment le GLP-1 (glucagon-like peptide-1), ont déjà démontré leur potentiel thérapeutique quant à l’amélioration du statut diabétique et leur rôle dans le métabolisme intestinal lipoprotéinique. Une autre évidence est apportée par la chirurgie bariatrique qui a un effet positif, durable et radical sur la perte pondérale, le contrôle métabolique et la réduction des comorbidités du diabète de type 2, suite à la dérivation bilio-intestinale. Les objectifs centraux du présent programme scientifique consistent donc à déterminer le rôle de l’intestin dans (i) l’homéostasie lipidique/lipoprotéinique en réponse à des concentrations élevées de glucose (à l’instar du diabète) et à des peptides gastro-intestinaux tels que le PYY (peptide YY); (ii) la coordination du métabolisme en disposant de l’AMPK (AMP-activated protein kinase) comme senseur incontournable permettant l’ajustement précis des besoins et disponibilités énergétiques cellulaires; et (iii) l’ajustement de sa capacité d’absorption des graisses alimentaires en fonction du gain ou de la perte de sa sensibilité à l’insuline démontrée dans les spécimens intestinaux humains prélevés durant la chirurgie bariatrique.
Dans le but de confirmer le rôle de l’intestin dans la dyslipidémie diabétique, nous avons tout d’abord utilisé le modèle cellulaire intestinal Caco-2/15. Ces cellules ont permis de démontrer qu’en présence de hautes concentrations de glucose en basolatéral, telle qu’en condition diabétique, l’intestin absorbe davantage de cholestérol provenant de la lumière intestinale par l’intermédiaire du transporteur NPC1L1 (Niemann Pick C1-like 1). L’utilisation de l’ezetimibe, un inhibiteur du NPC1L1, a permis de contrecarrer cette augmentation de l’expression de NPC1L1 tout comme l’élévation de l’absorption du cholestérol, prouvant ainsi que le NPC1L1 est bel et bien responsable de cet effet.
D’autre part, des travaux antérieurs avaient identifié certains indices quant à un rôle potentiel du peptide intestinal PYY au niveau du métabolisme des lipides intestinaux. Toutefois, aucune étude n’avait encore traité cet aspect systématiquement. Pour établir définitivement l’aptitude du PYY à moduler le transport et le métabolisme lipidique dans l’intestin, nous avons utilisé les cellules Caco-2/15. Notre étude a permis de constater que le PYY incubé du côté apical est capable de réduire significativement l’absorption du cholestérol et le transporteur NPC1L1.
Puisque le rôle de l'AMPK dans l'intestin demeure inexploré, il est important non seulement de définir sa structure moléculaire, sa régulation et sa fonction dans le métabolisme des lipides, mais aussi d'examiner l'impact de l’insulino-résistance et du diabète de type 2 (DT2) sur son statut et son mode d’action gastro-intestinal. En employant les cellules Caco-2/15, nous avons été capables de montrer (i) la présence de toutes les sous-unités AMPK (α1/α2/β1/β2/γ1/γ2/γ3) avec une différence marquée dans leur abondance et une prédominance de l’AMPKα1 et la prévalence de l’hétérotrimère α1/β2/γ1; (ii) l’activation de l’AMPK par la metformine et l’AICAR, résultant ainsi en une phosphorylation accrue de l’enzyme acétylCoA carboxylase (ACC) et sans influence sur l'HMG-CoA réductase; (iii) la modulation négative de l’AMPK par le composé C et des concentrations de glucose élevées avec des répercussions sur la phosphorylation de l’ACC. D’autre part, l’administration de metformine au Psammomys obesus, un modèle animal de diabète et de syndrome métabolique, a conduit à (i) une régulation positive de l’AMPK intestinale (phosphorylation de l’AMPKα-Thr172); (ii) la réduction de l'activité ACC; (iii) l’augmentation de l’expression génique et protéique de CPT1, supportant une stimulation de la β-oxydation; (iv) une tendance à la hausse de la sensibilité à l'insuline représentée par l’induction de la phosphorylation d'Akt et l’inactivation de la phosphorylation de p38; et (v) l’abaissement de la formation des chylomicrons ce qui conduit à la diminution de la dyslipidémie diabétique. Ces données suggèrent que l'AMPK remplit des fonctions clés dans les processus métaboliques de l'intestin grêle.
La preuve flagrante de l’implication de l’intestin dans les événements cardiométaboliques a été obtenue par l’examen des spécimens intestinaux obtenus de sujets obèses, suite à une chirurgie bariatrique. L’exploration intestinale nous a permis de constater chez ceux avec un indice HOMA élevé (marqueur d’insulinorésistance) (i) des défauts de signalisation de l'insuline comme en témoigne la phosphorylation réduite d'Akt et la phosphorylation élevée de p38 MAPK; (ii) la présence du stress oxydatif et de marqueurs de l'inflammation; (iii) la stimulation de la lipogenèse et de la production des lipoprotéines riches en triglycérides avec l’implication des protéines clés FABP, MTP et apo B-48.
En conclusion, l'intestin grêle peut être classé comme un tissu insulino-sensible et répondant à plusieurs stimuli nutritionnels et hormonaux. Son dérèglement peut être déclenché par le stress oxydatif et l'inflammation, ce qui conduit à l'amplification de la lipogenèse et la synthèse des lipoprotéines, contribuant ainsi à la dyslipidémie athérogène chez les patients atteints du syndrome métabolique et de diabète de type 2. / In relation with the constant increase in obesity, more and more people suffer from insulin resistance and type 2 diabetes (DT2). This doctoral research program especially emphasizes lipid disorders, one of the major consequences of cardiometabolic diseases. In this respect, people with insulin resistance or DT2 are at higher risk of developing lipid disturbances characterized mainly by high levels of triglycerides and LDL-cholesterol concentrations and HDL cholesterol in the blood circulation. The risks of cardiovascular disease are higher in these patients.
Classically, three organs are known to develop insulin resistance: muscle, adipose tissue and liver. Nevertheless, important studies begin to point out the small intestine as a major organ in the regulation of postprandial lipids, which may have a significant impact on the development of diabetic dyslipidemia. In addition, the intestine produces peptides, including GLP-1 (glucagon-like peptide-1), that have already demonstrated their therapeutic potential with regard to diabetic status and intestinal lipoprotein metabolism. Further evidence is also is provided by the advent of bariatric surgery that has a positive effect on radical and sustainable weight loss, metabolic control and reduction of comorbidities of DT2, following biliopancreatic diversion.
The central objectives of this scientific program are therefore to determine the role of the intestine in (i) lipid/ lipoprotein homeostasis in response to high concentrations of glucose (mimicking diabetes) and to gastrointestinal peptides such as PYY; (ii) the coordination of metabolism by involving AMPK (AMP-activated protein kinase) as an essential sensor for fine tuning of cellular energy needs; and (iii) adjusting absorption capacity of dietary fat in the gain or loss of insulin sensitivity demonstrated in intestinal specimens collected during bariatric surgery.
In order to confirm the role of the intestine in diabetic dyslipidemia, we first used the intestinal Caco-2/15 cell model. The use of this epithelial cell line has shown a marked stimulation of cholesterol uptake via the transporter NPC1L1 (Niemann-Pick C1-like 1) in the presence of high glucose concentrations (as is the case in diabetic conditions) in basolateral compartment (compared to apical). The use of ezetimibe, an inhibitor of NPC1L1, helped to counteract this elevation of cholesterol absorption, thus proving that NPC1L1 is indeed behind this effect.
If previous reports have identified some clues as to the potential role of intestinal PYY (peptide YY) in lipid metabolism disorders, no study has yet addressed this issue systematically. To definitively establish the ability of PYY to modulate lipid transport and metabolism in the intestine, we have used Caco-2/15 cells. Our recent investigation has shown that PYY (administered in the apical compartment) is able to significantly reduce cholesterol absorption via NPC1L1 transporter.
Since the role of AMPK in the intestine remains unexplored, it is important to define not only its molecular structure, regulation and function in lipid metabolism, but also its impact on insulin resistance and T2D on its status and mode of action in the gastrointestinal tract. Using Caco-2/15 cells, we have been able to show (i) the presence of all AMPK subunits (α1/α2/β1/β2/γ1/γ2/γ3) with a marked difference in their abundance, but with a predominance of AMPKα1 and the prevalence of α1/β2/γ1 heterotrimer; (ii) the activation of AMPK by metformin and AICAR, resulting in increased phosphorylation of the downstream target acetylCoA carboxylases (ACC) without no influence on HMG-CoA reductase; (iii) the negative modulation of AMPK by compound C and glucose concentrations with high impact on ACC phosphorylation. On the other hand, administration of metformin to Psammomys obesus with insulin resistance and T2D led to (a) an upregulation of intestinal AMPK signaling pathway essentially typified by ascending AMPKα-Thr172 phosphorylation; (b) a reduction in ACC activity; (c) an elevation in the gene and protein expression of CPT1, supporting a stimulation of β-oxidation; (d) a trend of increase in insulin sensitivity portrayed by augmentation of Akt and GSK3β phosphorylation; (e) an inactivation of the stress-responsive p38-MAPK and /ERK1/2 exemplified by their phosphorylation lessening; and (f) a decrease in diabetic dyslipidemia following lowering of intracellular events that govern lipoprotein assembly. Therefore these data suggest that AMPK fulfills key functions in metabolic processes in the small intestine.
The clear evidence for the involvement of the gut in cardiometabolic events has been obtained through the scrutiny of intestinal specimens obtained from obese subjects after bariatric surgery. Intestine of insulin-resistant subjects shows defects in insulin signaling as demonstrated by reduced Akt phosphorylation but increased p38 MAPK phosphorylation. These defects were accompanied with increased oxidative stress and inflammation markers in intestine of insulin-resistant subjects. Enhanced de novo lipogenesis rate and apo B-48 biogenesis along with increased triglyceride-rich lipoprotein production was also observed in the intestine of insulin-resistant subjects. Concomitantly, fatty acid binding proteins (FABP) and microsomal transfer protein (MTP) expression was increased in the intestine of insulin-resistant subjects. In conclusion, the small intestine may be classified as an insulin-sensitive tissue. Its deregulation, possibly triggered by oxidative stress and inflammation, may lead to amplification of lipogenesis and lipoprotein synthesis and may therefore represent a key mechanism for atherogenic dyslipidemia in patients with metabolic syndrome and T2D.
|
3 |
Intestin et défauts métaboliques dans la résistance à l'insulineGrenier, Émilie 12 1900 (has links)
En lien avec l’augmentation constante de l’obésité, de plus en plus de personnes sont atteintes de résistance à l’insuline ou de diabète de type 2. Ce projet doctoral s’est surtout intéressé à l’une des conséquences majeures des pathologies cardiométaboliques, soit la dyslipidémie diabétique. À cet égard, les gens présentant une résistance à l’insuline ou un diabète de type 2 sont plus à risque de développer des perturbations lipidiques caractérisées essentiellement par des taux élevés de triglycérides et de LDL-cholestérol ainsi que de concentrations restreintes en HDL-cholestérol dans la circulation. Les risques de maladies cardiovasculaires sont ainsi plus élevés chez ces patients. Classiquement, trois organes sont connus pour développer l’insulino-résistance : le muscle, le tissu adipeux et le foie. Néanmoins, certaines évidences scientifiques commencent également à pointer du doigt l’intestin, un organe critique dans la régulation du métabolisme des lipides postprandiaux, et qui pourrait, conséquemment, avoir un impact important dans l’apparition de la dyslipidémie diabétique. De façon très intéressante, des peptides produits par l’intestin, notamment le GLP-1 (glucagon-like peptide-1), ont déjà démontré leur potentiel thérapeutique quant à l’amélioration du statut diabétique et leur rôle dans le métabolisme intestinal lipoprotéinique. Une autre évidence est apportée par la chirurgie bariatrique qui a un effet positif, durable et radical sur la perte pondérale, le contrôle métabolique et la réduction des comorbidités du diabète de type 2, suite à la dérivation bilio-intestinale. Les objectifs centraux du présent programme scientifique consistent donc à déterminer le rôle de l’intestin dans (i) l’homéostasie lipidique/lipoprotéinique en réponse à des concentrations élevées de glucose (à l’instar du diabète) et à des peptides gastro-intestinaux tels que le PYY (peptide YY); (ii) la coordination du métabolisme en disposant de l’AMPK (AMP-activated protein kinase) comme senseur incontournable permettant l’ajustement précis des besoins et disponibilités énergétiques cellulaires; et (iii) l’ajustement de sa capacité d’absorption des graisses alimentaires en fonction du gain ou de la perte de sa sensibilité à l’insuline démontrée dans les spécimens intestinaux humains prélevés durant la chirurgie bariatrique.
Dans le but de confirmer le rôle de l’intestin dans la dyslipidémie diabétique, nous avons tout d’abord utilisé le modèle cellulaire intestinal Caco-2/15. Ces cellules ont permis de démontrer qu’en présence de hautes concentrations de glucose en basolatéral, telle qu’en condition diabétique, l’intestin absorbe davantage de cholestérol provenant de la lumière intestinale par l’intermédiaire du transporteur NPC1L1 (Niemann Pick C1-like 1). L’utilisation de l’ezetimibe, un inhibiteur du NPC1L1, a permis de contrecarrer cette augmentation de l’expression de NPC1L1 tout comme l’élévation de l’absorption du cholestérol, prouvant ainsi que le NPC1L1 est bel et bien responsable de cet effet.
D’autre part, des travaux antérieurs avaient identifié certains indices quant à un rôle potentiel du peptide intestinal PYY au niveau du métabolisme des lipides intestinaux. Toutefois, aucune étude n’avait encore traité cet aspect systématiquement. Pour établir définitivement l’aptitude du PYY à moduler le transport et le métabolisme lipidique dans l’intestin, nous avons utilisé les cellules Caco-2/15. Notre étude a permis de constater que le PYY incubé du côté apical est capable de réduire significativement l’absorption du cholestérol et le transporteur NPC1L1.
Puisque le rôle de l'AMPK dans l'intestin demeure inexploré, il est important non seulement de définir sa structure moléculaire, sa régulation et sa fonction dans le métabolisme des lipides, mais aussi d'examiner l'impact de l’insulino-résistance et du diabète de type 2 (DT2) sur son statut et son mode d’action gastro-intestinal. En employant les cellules Caco-2/15, nous avons été capables de montrer (i) la présence de toutes les sous-unités AMPK (α1/α2/β1/β2/γ1/γ2/γ3) avec une différence marquée dans leur abondance et une prédominance de l’AMPKα1 et la prévalence de l’hétérotrimère α1/β2/γ1; (ii) l’activation de l’AMPK par la metformine et l’AICAR, résultant ainsi en une phosphorylation accrue de l’enzyme acétylCoA carboxylase (ACC) et sans influence sur l'HMG-CoA réductase; (iii) la modulation négative de l’AMPK par le composé C et des concentrations de glucose élevées avec des répercussions sur la phosphorylation de l’ACC. D’autre part, l’administration de metformine au Psammomys obesus, un modèle animal de diabète et de syndrome métabolique, a conduit à (i) une régulation positive de l’AMPK intestinale (phosphorylation de l’AMPKα-Thr172); (ii) la réduction de l'activité ACC; (iii) l’augmentation de l’expression génique et protéique de CPT1, supportant une stimulation de la β-oxydation; (iv) une tendance à la hausse de la sensibilité à l'insuline représentée par l’induction de la phosphorylation d'Akt et l’inactivation de la phosphorylation de p38; et (v) l’abaissement de la formation des chylomicrons ce qui conduit à la diminution de la dyslipidémie diabétique. Ces données suggèrent que l'AMPK remplit des fonctions clés dans les processus métaboliques de l'intestin grêle.
La preuve flagrante de l’implication de l’intestin dans les événements cardiométaboliques a été obtenue par l’examen des spécimens intestinaux obtenus de sujets obèses, suite à une chirurgie bariatrique. L’exploration intestinale nous a permis de constater chez ceux avec un indice HOMA élevé (marqueur d’insulinorésistance) (i) des défauts de signalisation de l'insuline comme en témoigne la phosphorylation réduite d'Akt et la phosphorylation élevée de p38 MAPK; (ii) la présence du stress oxydatif et de marqueurs de l'inflammation; (iii) la stimulation de la lipogenèse et de la production des lipoprotéines riches en triglycérides avec l’implication des protéines clés FABP, MTP et apo B-48.
En conclusion, l'intestin grêle peut être classé comme un tissu insulino-sensible et répondant à plusieurs stimuli nutritionnels et hormonaux. Son dérèglement peut être déclenché par le stress oxydatif et l'inflammation, ce qui conduit à l'amplification de la lipogenèse et la synthèse des lipoprotéines, contribuant ainsi à la dyslipidémie athérogène chez les patients atteints du syndrome métabolique et de diabète de type 2. / In relation with the constant increase in obesity, more and more people suffer from insulin resistance and type 2 diabetes (DT2). This doctoral research program especially emphasizes lipid disorders, one of the major consequences of cardiometabolic diseases. In this respect, people with insulin resistance or DT2 are at higher risk of developing lipid disturbances characterized mainly by high levels of triglycerides and LDL-cholesterol concentrations and HDL cholesterol in the blood circulation. The risks of cardiovascular disease are higher in these patients.
Classically, three organs are known to develop insulin resistance: muscle, adipose tissue and liver. Nevertheless, important studies begin to point out the small intestine as a major organ in the regulation of postprandial lipids, which may have a significant impact on the development of diabetic dyslipidemia. In addition, the intestine produces peptides, including GLP-1 (glucagon-like peptide-1), that have already demonstrated their therapeutic potential with regard to diabetic status and intestinal lipoprotein metabolism. Further evidence is also is provided by the advent of bariatric surgery that has a positive effect on radical and sustainable weight loss, metabolic control and reduction of comorbidities of DT2, following biliopancreatic diversion.
The central objectives of this scientific program are therefore to determine the role of the intestine in (i) lipid/ lipoprotein homeostasis in response to high concentrations of glucose (mimicking diabetes) and to gastrointestinal peptides such as PYY; (ii) the coordination of metabolism by involving AMPK (AMP-activated protein kinase) as an essential sensor for fine tuning of cellular energy needs; and (iii) adjusting absorption capacity of dietary fat in the gain or loss of insulin sensitivity demonstrated in intestinal specimens collected during bariatric surgery.
In order to confirm the role of the intestine in diabetic dyslipidemia, we first used the intestinal Caco-2/15 cell model. The use of this epithelial cell line has shown a marked stimulation of cholesterol uptake via the transporter NPC1L1 (Niemann-Pick C1-like 1) in the presence of high glucose concentrations (as is the case in diabetic conditions) in basolateral compartment (compared to apical). The use of ezetimibe, an inhibitor of NPC1L1, helped to counteract this elevation of cholesterol absorption, thus proving that NPC1L1 is indeed behind this effect.
If previous reports have identified some clues as to the potential role of intestinal PYY (peptide YY) in lipid metabolism disorders, no study has yet addressed this issue systematically. To definitively establish the ability of PYY to modulate lipid transport and metabolism in the intestine, we have used Caco-2/15 cells. Our recent investigation has shown that PYY (administered in the apical compartment) is able to significantly reduce cholesterol absorption via NPC1L1 transporter.
Since the role of AMPK in the intestine remains unexplored, it is important to define not only its molecular structure, regulation and function in lipid metabolism, but also its impact on insulin resistance and T2D on its status and mode of action in the gastrointestinal tract. Using Caco-2/15 cells, we have been able to show (i) the presence of all AMPK subunits (α1/α2/β1/β2/γ1/γ2/γ3) with a marked difference in their abundance, but with a predominance of AMPKα1 and the prevalence of α1/β2/γ1 heterotrimer; (ii) the activation of AMPK by metformin and AICAR, resulting in increased phosphorylation of the downstream target acetylCoA carboxylases (ACC) without no influence on HMG-CoA reductase; (iii) the negative modulation of AMPK by compound C and glucose concentrations with high impact on ACC phosphorylation. On the other hand, administration of metformin to Psammomys obesus with insulin resistance and T2D led to (a) an upregulation of intestinal AMPK signaling pathway essentially typified by ascending AMPKα-Thr172 phosphorylation; (b) a reduction in ACC activity; (c) an elevation in the gene and protein expression of CPT1, supporting a stimulation of β-oxidation; (d) a trend of increase in insulin sensitivity portrayed by augmentation of Akt and GSK3β phosphorylation; (e) an inactivation of the stress-responsive p38-MAPK and /ERK1/2 exemplified by their phosphorylation lessening; and (f) a decrease in diabetic dyslipidemia following lowering of intracellular events that govern lipoprotein assembly. Therefore these data suggest that AMPK fulfills key functions in metabolic processes in the small intestine.
The clear evidence for the involvement of the gut in cardiometabolic events has been obtained through the scrutiny of intestinal specimens obtained from obese subjects after bariatric surgery. Intestine of insulin-resistant subjects shows defects in insulin signaling as demonstrated by reduced Akt phosphorylation but increased p38 MAPK phosphorylation. These defects were accompanied with increased oxidative stress and inflammation markers in intestine of insulin-resistant subjects. Enhanced de novo lipogenesis rate and apo B-48 biogenesis along with increased triglyceride-rich lipoprotein production was also observed in the intestine of insulin-resistant subjects. Concomitantly, fatty acid binding proteins (FABP) and microsomal transfer protein (MTP) expression was increased in the intestine of insulin-resistant subjects. In conclusion, the small intestine may be classified as an insulin-sensitive tissue. Its deregulation, possibly triggered by oxidative stress and inflammation, may lead to amplification of lipogenesis and lipoprotein synthesis and may therefore represent a key mechanism for atherogenic dyslipidemia in patients with metabolic syndrome and T2D.
|
Page generated in 0.3067 seconds