• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 38
  • 24
  • 19
  • 16
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 190
  • 138
  • 31
  • 28
  • 26
  • 23
  • 17
  • 17
  • 17
  • 17
  • 16
  • 16
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Effects of translocation on kokako (Callaeas cinerea wilsoni) song and its application to management : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Conservation Biology at Massey University, Palmerston North, New Zealand

Van Herpt, Sarah Michelle January 2009 (has links)
This thesis fills a research gap in our knowledge of kokako song by looking at how song evolves in multi-dialect areas. Kokako only exist in small remnant populations separated by large tracts of unsuitable land. Kokako are very poor flyers, only able to fly for approximately 100 metres at a time. In order to prevent inbreeding and a loss of genetic diversity in the remaining kokako populations, managers are carrying out translocations to establish new populations, maintain gene flow and prevent inbreeding. However, these translocations have the potential to be unsuccessful because kokako exhibit macrogeographic variation in their dialects, and tend not to breed with individuals who do not share the same dialect as them. If the purpose of the translocation is to enhance genetic diversity by having kokako from different areas breed then song is an important factor that must be dealt with. Song is extremely important to kokako for a number of reasons. Chiefly, it is hypothesised that song is their primary means of territory defence. A kokako gains all its resources from its territory, so it is imperative that they successfully defend it. Their duet song functions in territory defence, but also acts to form and maintain pair bonds. In order to try and address the problem that song causes in translocations I studied if and how song evolves in a multiple dialect area. I conducted research at Pukaha Mount Bruce, where there is a population of kokako originating from two different source populations, and thus two different dialects, Northern Mapara and Mangatutu. I looked at the Northern Mapara dialect, and recorded kokako belonging to three groups; kokako currently living in the source population, kokako that were translocated to Pukaha and kokako that were born at Pukaha. In order to determine how the song may be changing I looked at element repertoires, the levels of sharing between groups, the number of unique elements in repertoires and the syntactical and temporal characteristics of phrases. This study shows that translocation into multiple dialect areas can affect kokako song. Translocation did not affect the size of the kokako repertoire, but it seemed to affect the amount of sharing within and between different groups of kokako. Currently the level of sharing within the groups at Pukaha is lower than the level of sharing within the source Mapara population, indicating that the song may be diverging. There also seem to be more unique elements found at Pukaha, which in part explains the lack of sharing. There appears to be microgeographic variation at Pukaha, with birds clustered around the second (Mangatutu) dialect sharing less with the source population than do those kokako whose territories are lower down in the reserve. The phrases which are used are also evolving, with only one phrase truly shared among all groups. There are other phrases which show additions or deletions of elements, and so are evolving. The main change found in the phrases is the timing between elements, with six out of seven phrases examined showing changes. These results have repercussions for future kokako translocations, and the future of the Pukaha kokako. A low amount of phrase and element type sharing combined with changes of intra-phrase timing could lead to the Pukaha kokako’s inability to successfully defend their territories. This research shows how kokako song can give conservation managers information on the status of their populations in regards to interbreeding and raises questions which can be answered by further research, both at Pukaha and in other mixeddialect kokako populations.
162

Effects of translocation on kokako (Callaeas cinerea wilsoni) song and its application to management : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Conservation Biology at Massey University, Palmerston North, New Zealand

Van Herpt, Sarah Michelle January 2009 (has links)
This thesis fills a research gap in our knowledge of kokako song by looking at how song evolves in multi-dialect areas. Kokako only exist in small remnant populations separated by large tracts of unsuitable land. Kokako are very poor flyers, only able to fly for approximately 100 metres at a time. In order to prevent inbreeding and a loss of genetic diversity in the remaining kokako populations, managers are carrying out translocations to establish new populations, maintain gene flow and prevent inbreeding. However, these translocations have the potential to be unsuccessful because kokako exhibit macrogeographic variation in their dialects, and tend not to breed with individuals who do not share the same dialect as them. If the purpose of the translocation is to enhance genetic diversity by having kokako from different areas breed then song is an important factor that must be dealt with. Song is extremely important to kokako for a number of reasons. Chiefly, it is hypothesised that song is their primary means of territory defence. A kokako gains all its resources from its territory, so it is imperative that they successfully defend it. Their duet song functions in territory defence, but also acts to form and maintain pair bonds. In order to try and address the problem that song causes in translocations I studied if and how song evolves in a multiple dialect area. I conducted research at Pukaha Mount Bruce, where there is a population of kokako originating from two different source populations, and thus two different dialects, Northern Mapara and Mangatutu. I looked at the Northern Mapara dialect, and recorded kokako belonging to three groups; kokako currently living in the source population, kokako that were translocated to Pukaha and kokako that were born at Pukaha. In order to determine how the song may be changing I looked at element repertoires, the levels of sharing between groups, the number of unique elements in repertoires and the syntactical and temporal characteristics of phrases. This study shows that translocation into multiple dialect areas can affect kokako song. Translocation did not affect the size of the kokako repertoire, but it seemed to affect the amount of sharing within and between different groups of kokako. Currently the level of sharing within the groups at Pukaha is lower than the level of sharing within the source Mapara population, indicating that the song may be diverging. There also seem to be more unique elements found at Pukaha, which in part explains the lack of sharing. There appears to be microgeographic variation at Pukaha, with birds clustered around the second (Mangatutu) dialect sharing less with the source population than do those kokako whose territories are lower down in the reserve. The phrases which are used are also evolving, with only one phrase truly shared among all groups. There are other phrases which show additions or deletions of elements, and so are evolving. The main change found in the phrases is the timing between elements, with six out of seven phrases examined showing changes. These results have repercussions for future kokako translocations, and the future of the Pukaha kokako. A low amount of phrase and element type sharing combined with changes of intra-phrase timing could lead to the Pukaha kokako’s inability to successfully defend their territories. This research shows how kokako song can give conservation managers information on the status of their populations in regards to interbreeding and raises questions which can be answered by further research, both at Pukaha and in other mixeddialect kokako populations.
163

Effects of translocation on kokako (Callaeas cinerea wilsoni) song and its application to management : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Conservation Biology at Massey University, Palmerston North, New Zealand

Van Herpt, Sarah Michelle January 2009 (has links)
This thesis fills a research gap in our knowledge of kokako song by looking at how song evolves in multi-dialect areas. Kokako only exist in small remnant populations separated by large tracts of unsuitable land. Kokako are very poor flyers, only able to fly for approximately 100 metres at a time. In order to prevent inbreeding and a loss of genetic diversity in the remaining kokako populations, managers are carrying out translocations to establish new populations, maintain gene flow and prevent inbreeding. However, these translocations have the potential to be unsuccessful because kokako exhibit macrogeographic variation in their dialects, and tend not to breed with individuals who do not share the same dialect as them. If the purpose of the translocation is to enhance genetic diversity by having kokako from different areas breed then song is an important factor that must be dealt with. Song is extremely important to kokako for a number of reasons. Chiefly, it is hypothesised that song is their primary means of territory defence. A kokako gains all its resources from its territory, so it is imperative that they successfully defend it. Their duet song functions in territory defence, but also acts to form and maintain pair bonds. In order to try and address the problem that song causes in translocations I studied if and how song evolves in a multiple dialect area. I conducted research at Pukaha Mount Bruce, where there is a population of kokako originating from two different source populations, and thus two different dialects, Northern Mapara and Mangatutu. I looked at the Northern Mapara dialect, and recorded kokako belonging to three groups; kokako currently living in the source population, kokako that were translocated to Pukaha and kokako that were born at Pukaha. In order to determine how the song may be changing I looked at element repertoires, the levels of sharing between groups, the number of unique elements in repertoires and the syntactical and temporal characteristics of phrases. This study shows that translocation into multiple dialect areas can affect kokako song. Translocation did not affect the size of the kokako repertoire, but it seemed to affect the amount of sharing within and between different groups of kokako. Currently the level of sharing within the groups at Pukaha is lower than the level of sharing within the source Mapara population, indicating that the song may be diverging. There also seem to be more unique elements found at Pukaha, which in part explains the lack of sharing. There appears to be microgeographic variation at Pukaha, with birds clustered around the second (Mangatutu) dialect sharing less with the source population than do those kokako whose territories are lower down in the reserve. The phrases which are used are also evolving, with only one phrase truly shared among all groups. There are other phrases which show additions or deletions of elements, and so are evolving. The main change found in the phrases is the timing between elements, with six out of seven phrases examined showing changes. These results have repercussions for future kokako translocations, and the future of the Pukaha kokako. A low amount of phrase and element type sharing combined with changes of intra-phrase timing could lead to the Pukaha kokako’s inability to successfully defend their territories. This research shows how kokako song can give conservation managers information on the status of their populations in regards to interbreeding and raises questions which can be answered by further research, both at Pukaha and in other mixeddialect kokako populations.
164

Effects of translocation on kokako (Callaeas cinerea wilsoni) song and its application to management : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Conservation Biology at Massey University, Palmerston North, New Zealand

Van Herpt, Sarah Michelle January 2009 (has links)
This thesis fills a research gap in our knowledge of kokako song by looking at how song evolves in multi-dialect areas. Kokako only exist in small remnant populations separated by large tracts of unsuitable land. Kokako are very poor flyers, only able to fly for approximately 100 metres at a time. In order to prevent inbreeding and a loss of genetic diversity in the remaining kokako populations, managers are carrying out translocations to establish new populations, maintain gene flow and prevent inbreeding. However, these translocations have the potential to be unsuccessful because kokako exhibit macrogeographic variation in their dialects, and tend not to breed with individuals who do not share the same dialect as them. If the purpose of the translocation is to enhance genetic diversity by having kokako from different areas breed then song is an important factor that must be dealt with. Song is extremely important to kokako for a number of reasons. Chiefly, it is hypothesised that song is their primary means of territory defence. A kokako gains all its resources from its territory, so it is imperative that they successfully defend it. Their duet song functions in territory defence, but also acts to form and maintain pair bonds. In order to try and address the problem that song causes in translocations I studied if and how song evolves in a multiple dialect area. I conducted research at Pukaha Mount Bruce, where there is a population of kokako originating from two different source populations, and thus two different dialects, Northern Mapara and Mangatutu. I looked at the Northern Mapara dialect, and recorded kokako belonging to three groups; kokako currently living in the source population, kokako that were translocated to Pukaha and kokako that were born at Pukaha. In order to determine how the song may be changing I looked at element repertoires, the levels of sharing between groups, the number of unique elements in repertoires and the syntactical and temporal characteristics of phrases. This study shows that translocation into multiple dialect areas can affect kokako song. Translocation did not affect the size of the kokako repertoire, but it seemed to affect the amount of sharing within and between different groups of kokako. Currently the level of sharing within the groups at Pukaha is lower than the level of sharing within the source Mapara population, indicating that the song may be diverging. There also seem to be more unique elements found at Pukaha, which in part explains the lack of sharing. There appears to be microgeographic variation at Pukaha, with birds clustered around the second (Mangatutu) dialect sharing less with the source population than do those kokako whose territories are lower down in the reserve. The phrases which are used are also evolving, with only one phrase truly shared among all groups. There are other phrases which show additions or deletions of elements, and so are evolving. The main change found in the phrases is the timing between elements, with six out of seven phrases examined showing changes. These results have repercussions for future kokako translocations, and the future of the Pukaha kokako. A low amount of phrase and element type sharing combined with changes of intra-phrase timing could lead to the Pukaha kokako’s inability to successfully defend their territories. This research shows how kokako song can give conservation managers information on the status of their populations in regards to interbreeding and raises questions which can be answered by further research, both at Pukaha and in other mixeddialect kokako populations.
165

Hormetic UV treatments for control of plant diseases on protected edible crops

Scott, George January 2017 (has links)
Hormesis is a dose response phenomenon where low doses of a stress bring about a positive response in the organism undergoing treatment. UV-C hormesis has been known for over three decades and has a broad range of benefits on postharvest produce. Benefits include increased nutritional content, delayed chlorophyll degradation and disease resistance. The beneficial effects have been observed on many varieties of fresh produce including climacteric and non-climacteric fruit, tubers, salads and brassicas. The majority of previous studies have used low-intensity (LIUV) UV-C sources. LIUV sources require lengthy treatment times, which are in the region of 6 minutes for tomato fruit. This has, in part, prevented the commercial application of this technique. High-intensity, pulsed polychromatic light (HIPPL) sources, however, have recently been developed. HIPPL sources may have the potential to drastically reduce treatment times and increase their commercial viability. It was shown, here, that the use of HIPPL can control disease (reduce disease progression) caused by Botrytis cinerea and Penicillium expansum and also delay ripening on tomato fruit. Both disease control and delayed ripening were at similar levels for LIUV and HIPPL treatments on mature green fruit. The HIPPL treatments used in these studies can reduce treatment times for tomato fruit by 97.3%. Both HIPPL and LIUV treatments elicit local responses irrespective of the treatment orientation and tomato fruit, therefore, require full surface irradiation. Furthermore, UV-C in the HIPPL source is not required for disease control or delayed ripening. It does, however, contribute approximately 50% towards the total observed effects. Investigations into the mechanisms underpinning postharvest HIPPL and LIUV hormesis, on tomato fruit, identified that the expression of genes involved in plant hormone biosynthesis, defence, secondary metabolism and ripening were affected. This indicates that disease control is achieved through induced resistance. Changes to expression, following treatment, were highly similar for both HIPPL and LIUV treatments and were mediated by salicylic acid, jasmonic acid and ethylene. This may lead to broad range resistance against necrotrophic and biotrophic pathogens as well as abiotic stresses and herbivorous pests. Recently, the exposure of foliage to UV-C has been shown to induce resistance against B. cinerea on Arabidopsis thaliana. The horticultural applications of such treatments, however, have not been explored. Pre-harvest treatments of lettuce in the glasshouse showed variation in damage threshold and optimal treatment to control disease following LIUV and HIPPL treatment. Further sources of variation included the cultivar, pathogen of interest and the point that treatment was applied during the year. Using a controlled environment allowed seasonal variation to be mitigated and both HIPPL and LIUV treatments controlled disease against B. cinerea. For pre-harvest treatments to be a success in the glasshouse, further studies into how both biotic and abiotic factors influence treatment is required. To circumvent the problems associated with pre-harvest treatments and environmental variation in the glasshouse, LIUV seed treatments were performed on tomato. Control of B. cinerea was established with an approximately 10% reduction in incidence and disease progression with a 4 kJ/m2 treatment. When monitoring the effect of treatment on germination and early seedling development it was also identified that an 8 kJ/m2 treatment led to biostimulation of germination and root and shoot growth.
166

Vliv potravy na úspěšnost vývoje vybraných druhů švábů. / Effect of food on the success of development of selected species of cockroaches.

ŠIŠKOVÁ, Žaneta January 2012 (has links)
The aim of this thesis was to find out whether selected types of food substrates affect the adult´s productivity, the weight of newborn nymphs and laid oothecas and whether changes in adult´s productivity and the weight of nymphs occur due to one source of food during the experiment. In this experiment, the Blaptica dubia, Nauphoeta cinerea and Schelfordella tartara species were used. The reason for selection of those species was their high rate of reproduction, undemanding breeding and a short period of growth. The experiment was conducted in six types of feed substrates. The cockroaches were kept at a room temperature. The scales accurate to 0,2 g were used for the determination of the weight (AVINET). The Blaptica dubia species proved the dependence of its adults´ productivity and nymphs´ weight on the month of observation and the dependence of nymphs´ growth on a feed. The Nauphoeta cinerea species proved the dependence of nymphs´ growth on a feed. The Schelfordella tartara species proved the dependence of its adults´ productivity and oothecas´ weight on a feed and on the month of observation. The results of this thesis could emphasize the importance of the influence of a feed on the life of cockroaches breeded in captivity and help breeders to their better results with regard to the selection of a suitable food.
167

Examining the interaction between droplet density, leaf wettability and leaf surface properties on fungicide efficacy.

Eastyn Lyn Newsome (15359707) 28 April 2023 (has links)
<p>The management of gray mold, caused by the fungus <em>Botrytis cinerea</em>, on ornamental plants relies heavily on fungicide applications. To improve fungicide efficacy, the manipulation of nozzle type, spray volume, and pressure influence droplet size (µm) and density (droplets/cm2) on the leaf’s surface. However, leaf wettability dictates how well the application droplets adhere and spread across the surface. When leaf surfaces are waxy (hydrophobic) or hairy (tomentose), droplets fail to adhere, impacting fungicide sorption.</p> <p>The goal of this research was to evaluate how the interaction of droplet density and leaf wettability impact the efficacy of chemical and biological fungicides against <em>Botrytis cinerea</em>. Leaf surfaces vary between species, within species, leaf age, and leaf sides (abaxial or adaxial). Hydrophobic leaf surfaces influence fungicide efficacy by reducing fungicide droplet spread compared to the wettable and hydrophilic leaf surfaces. The presence of trichomes on the leaf surface can inhibit droplets from reaching the surface.</p> <p>To quantify droplet density, a fine and coarse spray of fungicide treatments was applied with a yellow fluorescent dye. After application, <em>Begonia</em> x <em>hybrida</em> ‘Dragon wing’ leaves were placed on black, blackout curtains below a blacklight. Images were analyzed by ImageJ, using an image processing method. The number of lesions, disease incidence, were counted to observe fungicide efficacy. Results show there was no interaction between the actual droplet density within treatments applied with fine and coarse sprays. However, the interaction between spray type (fine and coarse) and treatments can have a significant effect on disease incidence. Disease incidence was significantly different between the systemic and contact fungicides for fine and coarse sprays. However, the systemic fungicide treatment had the highest disease incidence compared to the contact fungicide.</p> <p>To assess leaf wettability impact on fungicide efficacy, five <em>Begonia </em>species (<em>B. scharffii, B. erythrophylla, B. </em>x<em> hybrida ‘</em>Dragon Wing’<em>, B. epipsila, and B. goldingiana</em>) were used based on their observed leaf surface type. A contact angle goniometer was used to take pictures of a droplet on <em>Begonia</em> leaf surfaces. The quantification of the leaf surface took place by using the ImageJ program ‘Drop-Snake’ within the plugin ‘Drop Analysis’. The number of lesions, an indicator of disease incidence, were counted to observe fungicide efficacy. Results showed the contact angles were different between the <em>Begonia</em> species. There was a significant interaction between the <em>Begonia</em> species and treatments, where <em>Begonia</em> ‘hairy’ and ‘waxy’ leaf surfaces can influence fungicide efficacy. However, there was no significance for the interaction between <em>Begonia</em> species’ contact angles and treatments.</p> <p>These studies advance our understanding of how droplet density and leaf surfaces influence fungicide efficacy, thus improving our ability to manage <em>Botrytis</em> for diverse ornamental plants. </p>
168

COMPARATIVE SILVICS OF BUTTERNUT HYBRIDS IN AFFORESTATION AND REFORESTATION PLANTINGS

Caleb E Kell (15361801) 27 April 2023 (has links)
<p>Thesis submission for Caleb Kell</p>
169

Non chemical alternatives for pest management: Entomopathogenic nematodes and UV-C light

Higginbotham, Matthew Travis 10 November 2021 (has links)
The primary objectives of this research are to determine effective biological and alternative control strategies of insect and disease pests in order to reduce harsh chemical use during greenhouse crop production and transport s. This research includes two separate studies: 1) testing the practical viability of rearing and storing four species of entomopathogenic nematode (EPN), Steinernema feltiae, Steinernema carpocapsae, Heterorhabditis bacteriophora, Heterorhabditis indica; and, 2) the efficacy of UV-C radiation applied, pre-transport, as a preventative disease control strategy against Botrytis cinerea. A study was conducted testing EPN infectious juvenile (IJ) rearing production counts and IJ viability after a six-day storage period. When all four species are compared, S. feltiae had a greater number of infectious juveniles emerge from the wax moth cadavers and S. carpocasae had the least. All four species survived the six day storage period but EPN infectious juvenile counts were significantly different among species. Our second study tested the efficacy of UV-C radiation as an alternative control to traditional fungicides to deactivate B. cinerea in vitro and to determine plant tolerance to UV-C. The crops tested were poinsettia (Euphorbia pulcherrima) and primula (Primula vulgaris). All the UV-C doses, 1.0, 2.8, 3.7 or 4 W/m2, significantly decreased B. cinerea conidial germination in vitro and resulted in zero percent damage on poinsettia bracts. However, all UV-C doses during both replications caused minor damage, 15% or less, to primula flowers. / Master of Science in Life Sciences / Entomopathogenic nematodes (EPN) shows promise in being non-chemical and environmentally friendly solution for greenhouse pest and disease control. These can also be referred to as Biological Controls (Biocontrols). Entomopathogenic nematodes are used widely to control multiple greenhouse plant pests which include both Lycoriella spp., Fungus Gnats, and Frankliniella spp., Western Flower Thrips. However, there are challenges with EPN viability and storage from the manufacture to the greenhouse producer. We studied four EPN species, Steinernema feltiae, Steinernema carpocapsae, Heterorhabditis bacteriophora, Heterorhabditis indica, which were reared and stored to determine differences in production viability between species. Results show that the EPN species do not respond the same to storage and produce different amounts of infectious juveniles during rearing when conditions are the same. Separate from, but just as concerning as greenhouses plant pests are plant diseases. Ultraviolet radiation in the C spectra is known to be germicidal due to its narrow wavelengths. Because of this, UV-C has been shown to deactivate many different plant pathogens on contact and is being considered as a possible Biocontrol alternative to harsh traditional fungicides and bactericides. One disease that is known to contribute to the highest volume of annual crop losses is Botrytis cinerea. Botrytis cinerea is a plant disease that impacts floricultural crops to vegetables during propagation through the production supply chain to shipping and storage. We evaluated UV-C radiation at different doses, to determine if it could be used to replace a traditional fungicide before plants are shipped to reduce B. cinerea infection during transport. We found that UV-C successfully deactivated B. cinerea in vitro, but the viability of the application to plant tissue before transport has yet to be proven successful as a practical method of reducing B. cinerea during transport.
170

Bacillus pumilus et Bacillus subtilis pour lutter contre la pourriture grise chez la tomate et le concombre de serre

Bouchard-Rochette, Mathieu 21 March 2024 (has links)
Cette étude s’inscrit dans le cadre d’un programme de recherche destiné à évaluer le potentiel d’utilisation en horticulture des bactéries Bacillus pumilus souche PTB180 et Bacillus subtilis souche PTB185. Elle avait pour objectifs (1) d’évaluer in vitro l’activité antagoniste contre Botrytis cinerea des souches PTB180 et PTB185, (2) d’estimer leur capacité à survivre sur la phyllosphère de la tomate et du concombre et 3) d’évaluer leur effet sur le développement de la pourriture grise (B. cinerea) sur des plants de tomate et de concombre cultivés en serre. L'activité antagoniste de PTB180 et PTB185 a été évaluée en boîtes de Pétri sur géloses, sur tissus foliaires de tomate et de concombre et sur fruits de tomate. Les deux souches ont inhibé très fortement la croissance mycélienne et la germination des spores de B. cinerea sur géloses. Sur feuilles de tomate et sur disques foliaires de concombre, PTB185 et le mélange (1:1) des deux souches ont réduit significativement (p ≤ 0,01) la croissance mycélienne de B. cinerea comparativement aux témoins. PTB180 a réprimé significativement la croissance mycélienne de B. cinerea sur les fruits de tomate. Afin d'estimer la survie de PTB180 et PTB185 sur la phyllosphère, des plants de tomate et de concombre ont été pulvérisés jusqu'à ruissellement avec une suspension (1×107 unités formatrices de colonies [UFC]/mL) de PTB180, PTB185 ou d'un mélange (1:1) des deux souches. Les populations de chaque souche ont ensuite été suivies au cours du temps sur les feuilles. Les résultats obtenus montrent que les souches survivent au moins 21 jours sur les plants de tomate et de concombre avec un taux de survie variant de 43% à 100%. De plus, pratiquement aucune variation dans les proportions de chaque souche n'a été observée au fil du temps lorsque PTB180 et PTB185 étaient appliquées en mélange. Enfin, l’application foliaire de PTB180, PTB185 et du mélange (1:1) des deux souches a permis une réduction significative de l’incidence et de la sévérité de la pourriture grise chez des plants de tomate et de concombre inoculés avec B. cinerea et cultivés en serre. Les souches PTB180 et PTB185 ont montré au cours de cette étude une forte activité antagoniste envers B. cinerea, la capacité de survivre sur la phyllosphère de plants de tomate et de concombre et de réprimer le développement de la pourriture grise chez ces derniers. Ces souches pourraient éventuellement être utilisées comme agents de lutte biologique contre la pourriture grise du concombre et de la tomate de serre.

Page generated in 0.0627 seconds