• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 138
  • 29
  • 11
  • 6
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 255
  • 255
  • 116
  • 93
  • 84
  • 46
  • 36
  • 36
  • 35
  • 30
  • 28
  • 28
  • 24
  • 23
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

First Order Mobility Independent ASIC for a Point-of-Care In-Vitro Diagnostic Device

Ramasamy, Lakshminarayanan 20 April 2012 (has links)
No description available.
172

Development of a distributed design system for integrated circuit design using VAX 11/750 and scaldsystem computers

Nobles, Robert Stratton, II January 1986 (has links)
No description available.
173

Adaptive techniques for analog and mixed signal integrated circuits

Fayed, Ayman Adel 01 December 2004 (has links)
No description available.
174

Circuit Design Methods with Emerging Nanotechnologies

Zheng, Yexin 28 December 2009 (has links)
As complementary metal-oxide semiconductor (CMOS) technology faces more and more severe physical barriers down the path of continuously feature size scaling, innovative nano-scale devices and other post-CMOS technologies have been developed to enhance future circuit design and computation. These nanotechnologies have shown promising potentials to achieve magnitude improvement in performance and integration density. The substitution of CMOS transistors with nano-devices is expected to not only continue along the exponential projection of Moore's Law, but also raise significant challenges and opportunities, especially in the field of electronic design automation. The major obstacles that the designers are experiencing with emerging nanotechnology design include: i) the existing computer-aided design (CAD) approaches in the context of conventional CMOS Boolean design cannot be directly employed in the nanoelectronic design process, because the intrinsic electrical characteristics of many nano-devices are not best suited for Boolean implementations but demonstrate strong capability for implementing non-conventional logic such as threshold logic and reversible logic; ii) due to the density and size factors of nano-devices, the defect rate of nanoelectronic system is much higher than conventional CMOS systems, therefore existing design paradigms cannot guarantee design quality and lead to even worse result in high failure ratio. Motivated by the compelling potentials and design challenges of emerging post-CMOS technologies, this dissertation work focuses on fundamental design methodologies to effectively and efficiently achieve high quality nanoscale design. A novel programmable logic element (PLE) is first proposed to explore the versatile functionalities of threshold gates (TGs) and multi-threshold threshold gates (MTTGs). This PLE structure can realize all three- or four-variable logic functions through configuring binary control bits. This is the first single threshold logic structure that provides complete Boolean logic implementation. Based on the PLEs, a reconfigurable architecture is constructed to offer dynamic reconfigurability with little or no reconfiguration overhead, due to the intrinsic self-latching property of nanopipelining. Our reconfiguration data generation algorithm can further reduce the reconfiguration cost. To fully take advantage of such threshold logic design using emerging nanotechnologies, we also developed a combinational equivalence checking (CEC) framework for threshold logic design. Based on the features of threshold logic gates and circuits, different techniques of formulating a given threshold logic in conjunctive normal form (CNF) are introduced to facilitate efficient SAT-based verification. Evaluated with mainstream benchmarks, our hybrid algorithm, which takes into account both input symmetry and input weight order of threshold gates, can efficiently generate CNF formulas in terms of both SAT solving time and CNF generating time. Then the reversible logic synthesis problem is considered as we focus on efficient synthesis heuristics which can provide high quality synthesis results within a reasonable computation time. We have developed a weighted directed graph model for function representation and complexity measurement. An atomic transformation is constructed to associate the function complexity variation with reversible gates. The efficiency of our heuristic lies in maximally decreasing the function complexity during synthesis steps as well as the capability to climb out of local optimums. Thereafter, swarm intelligence, one of the machine learning techniques is employed in the space searching for reversible logic synthesis, which achieves further performance improvement. To tackle the high defect-rate during the emerging nanotechnology manufacturing process, we have developed a novel defect-aware logic mapping framework for nanowire-based PLA architecture via Boolean satisfiability (SAT). The PLA defects of various types are formulated as covering and closure constraints. The defect-aware logic mapping is then solved efficiently by using available SAT solvers. This approach can generate valid logic mapping with a defect rate as high as 20%. The proposed method is universally suitable for various nanoscale PLAs, including AND/OR, NOR/NOR structures, etc. In summary, this work provides some initial attempts to address two major problems confronting future nanoelectronic system designs: the development of electronic design automation tools and the reliability issues. However, there are still a lot of challenging open questions remain in this emerging and promising area. We hope our work can lay down stepstones on nano-scale circuit design optimization through exploiting the distinctive characteristics of emerging nanotechnologies. / Ph. D.
175

Development of the capability of testing the accuracy of thermal CAD software for electronic circuit design

MacQuarrie, Stephen W. January 1987 (has links)
The capability of measuring surface temperatures of hybrid circuits at the Virginia Tech Hybrid Microelectronics Laboratory has been established. This capability provides a quantitative method for effectively evaluating thermal design software. Surface operating temperatures were measured and predicted for an operating hybrid circuit. The temperatures were measured using an infrared thermal imaging system, which measures surface temperatures by detecting the infrared radiation emitted and reflected. The accuracy of the measurements has been quantified for variations in surface emissivity, convective cooling condition, and operating temperature range. The most accurate temperature measurement of a one-resistor circuit was compared to the operating temperature predicted by a lumped-parameter one-dimensional heat transfer analysis. The comparison agreed within the expected limits for this simple analysis and identified areas for possible improvement both of the model and the experimental technique. Thermal design of a circuit is critical because excessive temperatures are a common cause of circuit failure. Circuit designers rely on computer programs to predict circuit component temperatures because of the high cost of prototype experimentation. Accurate thermal design software that is currently available is too complicated for occasional use by circuit designers. Simple, yet accurate, thermal design software is essential for this type of design, so that circuit layouts can be quickly and easily optimized. / M.S.
176

Design and Optimization of Temporal Encoders using Integrate-and-Fire and Leaky Integrate-and-Fire Neurons

Anderson, Juliet Graciela 05 October 2022 (has links)
As Moore's law nears its limit, a new form of signal processing is needed. Neuromorphic computing has used inspiration from biology to produce a new form of signal processing by mimicking biological neural networks using electrical components. Neuromorphic computing requires less signal preprocessing than digital systems since it can encode signals directly using analog temporal encoders from Spiking Neural Networks (SNNs). These encoders receive an analog signal as an input and generate a spike or spike trains as their output. The proposed temporal encoders use latency and Inter-Spike Interval (ISI) encoding and are expected to produce a highly sensitive hardware implementation of time encoding to preprocess signals for dynamic neural processors. Two ISI and two latency encoders were designed using Integrate-and-Fire (IF) and Leaky Integrate-and-Fire (LIF) neurons and optimized to produce low area designs. The IF and LIF neurons were designed using the Global Foundries 180nm CMOS process and achieved an area of 186µm2 and 182µm2, respectively. All four encoders have a sampling frequency of 50kHz. The latency encoders achieved an average energy consumption per spike of 277nJ and 316pJ for the IF-based and LIF-based latency encoders, respectively. The ISI encoders achieved an average energy consumption per spike of 1.07uJ and 901nJ for the IF-based and LIF-based ISI encoders, respectively. Power consumption is proportional to the number of neurons employed in the encoder and the potential to reduce power consumption through layout-level simulations is presented. The LIF neuron is able to use a smaller membrane capacitance to achieve similar operability as the IF neuron and consumes less area despite having more components. This demonstrates that capacitor sizes are the main limitations of a small size in spiking neurons for SNNs. An overview of the design and layout process of the two presented neurons is discussed with tips for overcoming problems encountered. The proposed designs can result in a fast neuromorphic process by employing a frequency higher than 10kHz and by providing a hardware implementation that is efficient in multiple sectors like machine learning, medical implementations, or security systems since hardware is safer from hacks. / Master of Science / As Moore's law nears its limit, a new form of signal processing is needed. Moore's law anticipated that transistor sizes will decrease exponentially as the years pass but CMOS technology is reaching physical limitations which could mean an end to Moore's prediction. Neuromorphic computing has used inspiration from biology to produce a new form of signal processing by mimicking biological neural networks using electrical components. Biological neural networks communicate through interconnected neurons that transmit signals through synapses. Neuromorphic computing uses a subdivision of Artificial Neural Networks (ANNs) called Spiking Neural Networks (SNNs) to encode input signals into voltage spikes to mimic biological neurons. Neuromorphic computing reduces the preprocessing step needed to process data in the digital domain since it can encode signals directly using analog temporal encoders from SNNs. These encoders receive an analog signal as an input and generate a spike or spike trains as their output. The proposed temporal encoders use latency and Inter-Spike Interval (ISI) encoding and are expected to produce a highly sensitive hardware implementation of time encoding to preprocess signals for dynamic neural processors. Two ISI and two latency encoders were designed using Integrate-and-Fire (IF) and Leaky Integrate-and-Fire (LIF) neurons and optimized to produce low area designs. All four encoders have a sampling frequency of 50kHz. The latency encoders achieved an average energy consumption per spike of 277nJ and 316pJ for the IF-based and LIF-based latency encoders, respectively. The ISI encoders achieved an average energy consumption per spike of 1.07uJ and 901nJ for the IF-based and LIF-based ISI encoders, respectively. Power consumption is proportional to the number of neurons employed in the encoder and the potential to reduce power consumption through layout-level simulations is presented. The LIF neuron is able to use a smaller membrane capacitance to achieve similar operability which consumes less area despite having more components than the IF neuron. This demonstrates that capacitor sizes are the main limitations of small size in neurons for spiking neural networks. An overview of the design and layout process of the two presented neurons is discussed with tips for overcoming problems encountered. The proposed designs can result in a fast neuromorphic process by employing a frequency higher than 10kHz and by providing a hardware implementation that is efficient in multiple sectors like machine learning, medical implementations, or security systems since hardware is safer from hacks.
177

Total ionizing dose mitigation by means of reconfigurable FPGA computing

Smith, Farouk 12 1900 (has links)
Thesis (PhD (Electric and Electronic Engineering))--University of Stellenbosch, 2007. / There is increasing use of commercial components in space technology and it is important to recognize that the space radiation environment poses the risk of permanent malfunction due to radiation. Therefore, the integrated circuits used for spacecraft electronics must be resistant to radiation. The effect of using the MOSFET device in a radiation environment is that the gate oxide becomes ionized by the dose it absorbs due to the radiation induced trapped charges in the gate-oxide. The trapped charges in the gate-oxide generate additional space charge fields at the oxide-substrate interface. After a sufficient dose, a large positive charge builds up, having the same effect as if a positive voltage was applied to the gate terminal. Therefore, the transistor source to drain current can no longer be controlled by the gate terminal and the device remains on permanently resulting in device failure. There are four processes involved in the radiation response of MOS devices. First, the ionizing radiation acts with the gate oxide layer to produce electron-hole pairs. Some fraction of the electron-hole pairs recombine depending on the type of incident particle and the applied gate to substrate voltage, i.e. the electric field. The mobility of the electron is orders of magnitude larger than that of the holes in the gate oxide, and is swept away very quickly in the direction of the gate terminal. The time for the electrons to be swept away is on the order of 1ps. The holes that escape recombination remain near their point of origin. The number of these surviving holes determines the initial response of the device after a short pulse of radiation. The cause of the first process, i.e. the presence of the electric field, is the main motivation for design method described in this dissertation. The second process is the slow transport of holes toward the oxide-silicon interface due to the presence of the electric field. When the holes reach the interface, process 3, they become captured in long term trapping sites and this is the main cause of the permanent threshold voltage shift in MOS devices. The fourth process is the buildup of interface states in the substrate near the interface The main contribution of this dissertation is the development of the novel Switched Modular Redundancy (SMR) method for mitigating the effects of space radiation on satellite electronics. The overall idea of the SMR method is as follows: A charged particle is accelerated in the presence of an electric field. However, in a solid, electrons will move around randomly in the absence of an applied electric field. Therefore if one averages the movement over time there will be no overall motion of charge carriers in any particular direction. On applying an electric field charge carriers will on average move in a direction aligned with the electric field, with positive charge carriers such as holes moving in the direction of field, and negative charge carriers moving in the opposite direction. As is the case with process one and two above. It is proposed in this dissertation that if we apply the flatband voltage (normaly a zero bias for the ideal NMOS transistor) to the gate terminal of a MOS transistor in the presence of ionizing radiation, i.e. no electric field across the gate oxide, both the free electrons and holes will on average remain near their point of origin, and therefore have a greater probability of recombination. Thus, the threshold voltage shift in MOS devices will be less severe for the gate terminal in an unbiased condition. The flatband conditions for the real MOS transistor is discussed in appendix E. It was further proposed that by adding redundancy and applying a resting policy, one can significantly prolong the useful life of MOS components in space. The fact that the rate of the threshold voltage shift in MOS devices is dependant on the bias voltage applied to the gate terminal is a very important phenomenon that can be exploited, since we have direct control and access to the voltage applied to the gate terminal. If for example, two identical gates were under the influence of radiation and the gate voltage is alternated between the two, then the two gates should be able to withstand more total dose radiation than using only one gate. This redundancy could be used in a circuit to mitigate for total ionizing dose. The SMR methodology would be to duplicate each gate in a circuit, then selectively only activating one gate at a time allowing the other to anneal during its off cycle. The SMR algorithm was code in the “C” language. In the proposed design methodology, the design engineer need not be concerned about radiation effects when describing the hardware implementation in a hardware description language. Instead, the design engineer makes use of conventional design techniques. When the design is complete, it is synthesized to obtain the gate level netlist in edif format. The edif netlist is converted to structural VHDL code during synthesis. The structural VHDL netlist is fed into the SMR “C” algorithm to obtain the identical redundant circuit components. The resultant file is also a structural VHDL netlist. The generated VHDL netlist or SMR circuit can then be mapped to a Field Programmable Gate Array (FPGA). Spacecraft electronic designers increasingly demand high performance microprocessors and FPGAs, because of their high performance and flexibility. Because FPGAs are reprogrammable, they offer the additional benefits of allowing on-orbit design changes. Data can be sent after launch to correct errors or to improve system performance. System including FPGAs covers a wide range of space applications, and consequently, they are the object of this study in order to implement and test the SMR algorithm. We apply the principles of reconfigurable computing to implement the Switched Modular Redundancy Algorithm in order to mitigate for Total Ionizing Dose (TID) effects in FPGA’s. It is shown by means of experimentation that this new design technique provides greatly improved TID tolerance for FPGAs. This study was necessary in order to make the cost of satellite manufacturing as low as possible by making use of Commercial off-the-shelf (COTS) components. However, these COTS components are very susceptible to the hazards of the space environment. One could also make use of Radiation Hard components for the purpose of satellite manufacturing, however, this will defeat the purpose of making the satellite manufacturing cost as low as possible as the cost of the radiation hard electronic components are significantly higher than their commercial counterparts. Added to this is the undesirable fact that the radiation hard components are a few generations behind as far as speed and performance is concerned, thus providing even greater motivation for making use of Commercial components. Radiation hardened components are obtained by making use of special processing methods in order to improve the components radiation tolerance. Modifying the process steps is one of the three ways to improve the radiation tolerance of an integrated circuit. The two other possibilities are to use special layout techniques or special circuit and system architectures. Another method, in which to make Complementary Metal Oxide Silicon (CMOS) circuits tolerant to ionizing radiation is to distribute the workload among redundant modules (called Switched Modular Redundancy above) in the circuit. This new method will be described in detail in this thesis.
178

Modeling and optimization to connect layout with silicon for nanoscale IC

Shi, Xiaokang 04 June 2010 (has links)
With continuous and aggressive scaling in semiconductor technology, there is an increasing gap between design expectation and manufactured silicon data. Research on DFM (Design for manufacturability), MFD (Manufacturing for Design) and statistical analysis have been investigated in recent years to bridge design and manufacturing. Fundamentally, layout is the final output from the design side and the input to the manufacturing side. It is also the last chance to dramatically modify the design efficiently and economically. In this dissertation, I present the modeling and optimization work on bridging the gap between design expectation and reality, improving performance and enhancing manufacturing yield. I investigate several stages of semiconductor design development including manufacturing process, device, interconnect, and circuit level. In the manufacturing process stage, a novel inverse lithography technology (ILT) is proposed for sub-wavelength lithography resolution enhancement. New intuitive transformations enable the method to gradually converge to the optimal solution. A highly efficient method for gradient calculation is derived based on partially coherent optical models. Dose variation is considered within the ILO process with the min-max optimization method and the computation overhead on dose process variation could be omitted. The methods are implemented in state-of-the-art industrial 32nm lithography environment. After the work in the lithography process stage provides both mask optimization and post-layout silicon image simulation, my work on the first non-rectangular device modeling card extends the post-layout lithography to post-litho electrical calibration. Based on the lithography simulation results, the non-rectangular gate shapes are extracted and their effect is investigated by the proposed non-rectangular device modeling card and post-litho circuit simulation flow. This work is not only the first non-rectangular device modeling card but also compatible with industry standard device models and the parameter extraction flow. Interconnect plays a more critical role in the nanometer scale IC design especially because of its impact on delay. The scattering effect that occurs in nanoscale wires is modeled and different methods of wire sizing/shaping are discussed. Based on closed-form resistivity model for nanometer scale Cu interconnect, new interconnect delay model and wire sizing/shaping strategies are developed. Based on the advanced modeling of process, device and interconnect, circuit level investigation is focused on statistical timing analysis with a new latch delay model. For the first time, both combinational logic and clock distribution circuits are integrated together through statistical timing of latch outputs. This dissertation studies the new phenomena of nanometer scale IC design and manufacture. Starting from the designed layout, through modeling, optimization and simulation, the work moves ahead to the mask pattern and silicon image, calibrates electrical properties of devices as well as circuits. Through above process, we can better connect layout with silicon data to reach design and manufacturing closure. / text
179

FUNCTIONAL LEVEL SIMULATOR FOR UNIVERSAL AHPL.

Al-Sharif, Massoud Mohammed. January 1983 (has links)
No description available.
180

Projeto de uma fonte de tensão de referência CMOS usando programação geométrica. / CMOS voltage reference source design via geometric programming.

Juan José Carrillo Castellanos 10 December 2010 (has links)
Nesta dissertação é apresentada a aplicação da programação geométrica no projeto de uma fonte de tensão de referência de baixa tensão de alimentação que pode ser integrada em tecnologias padrões CMOS. Também são apresentados os resultados experimentais de um projeto da fonte de bandgap feito por um método de projeto convencional, cuja experiência motivou e ajudou ao desenvolvimento da formulação do programa geométrico proposta neste trabalho. O programa geométrico desenvolvido nesta dissertação otimiza o desempenho da fonte de bandgap e agiliza seu tempo de projeto. As expressões matemáticas que descrevem o funcionamento e as principais especificações da fonte de bandgap foram geradas e adaptadas ao formato de um programa geométrico. A compensação da temperatura, o PSRR, o consumo de corrente, a área, a tensão de saída e a sua variação por causa da tensão de offset do OTA, e a estabilidade são as principais especificações deste tipo de fonte de tensão de referência e fazem parte do programa geométrico apresentado neste trabalho. Um exemplo do projeto usando o programa geométrico formulado neste trabalho, mostra a possibilidade de projetar a fonte de bandgap em alguns minutos com erros baixos entre os resultados do programa geométrico e de simulação. / This work presents the application of geometric programming in the design of a CMOS low-voltage bandgap voltage reference source. Test results of a bandgap voltage reference designed via a conventional method are showed, this design experience motivated and helped to formulate the geometric program developed in this work. The geometric program developed in this work optimizes the bandgap source performance and speeds up the design time. The mathematical expressions that describe the bandgap source functioning and specifications were developed and adapted in the geometric program format. The temperature compensation, the PSRR, the current consumption, the area, the output voltage and its variations under the operational tranconductance amplifier offset voltage, and the stability are the main specifications of this type of bandgap reference source and they are included into the geometric program presented in this work. An example of the design using the geometric program formulated in this work, shows the possibility of designing the bandgap source in a few minutes with low errors between the geometric program results and the simulation results.

Page generated in 0.0546 seconds