• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 2
  • 1
  • Tagged with
  • 15
  • 9
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Channel attribution modelling using clickstream data from an online store

Neville, Kevin January 2017 (has links)
In marketing, behaviour of users is analysed in order to discover which channels (for instance TV, Social media etc.) are important for increasing the user’s intention to buy a product. The search for better channel attribution models than the common last-click model is of major concern for the industry of marketing. In this thesis, a probabilistic model for channel attribution has been developed, and this model is demonstrated to be more data-driven than the conventional last- click model. The modelling includes an attempt to include the time aspect in the modelling which have not been done in previous research. Our model is based on studying different sequence length and computing conditional probabilities of conversion by using logistic regression models. A clickstream dataset from an online store was analysed using the proposed model. This thesis has revealed proof of that the last-click model is not optimal for conducting these kinds of analyses.
12

Predicting customer purchase behavior within Telecom : How Artificial Intelligence can be collaborated into marketing efforts / Förutspå köpbeteenden inom telekom : Hur Artificiell Intelligens kan användas i marknadsföringsaktiviteter

Forslund, John, Fahlén, Jesper January 2020 (has links)
This study aims to investigate the implementation of an AI model that predicts customer purchases, in the telecom industry. The thesis also outlines how such an AI model can assist decision-making in marketing strategies. It is concluded that designing the AI model by following a Recurrent Neural Network (RNN) architecture with a Long Short-Term Memory (LSTM) layer, allow for a successful implementation with satisfactory model performances. Stepwise instructions to construct such model is presented in the methodology section of the study. The RNN-LSTM model further serves as an assisting tool for marketers to assess how a consumer’s website behavior affect their purchase behavior over time, in a quantitative way - by observing what the authors refer to as the Customer Purchase Propensity Journey (CPPJ). The firm empirical basis of CPPJ, can help organizations improve their allocation of marketing resources, as well as benefit the organization’s online presence by allowing for personalization of the customer experience. / Denna studie undersöker implementeringen av en AI-modell som förutspår kunders köp, inom telekombranschen. Studien syftar även till att påvisa hur en sådan AI-modell kan understödja beslutsfattande i marknadsföringsstrategier. Genom att designa AI-modellen med en Recurrent Neural Network (RNN) arkitektur med ett Long Short-Term Memory (LSTM) lager, drar studien slutsatsen att en sådan design möjliggör en framgångsrik implementering med tillfredsställande modellprestation. Instruktioner erhålls stegvis för att konstruera modellen i studiens metodikavsnitt. RNN-LSTM-modellen kan med fördel användas som ett hjälpande verktyg till marknadsförare för att bedöma hur en kunds beteendemönster på en hemsida påverkar deras köpbeteende över tiden, på ett kvantitativt sätt - genom att observera det ramverk som författarna kallar för Kundköpbenägenhetsresan, på engelska Customer Purchase Propensity Journey (CPPJ). Den empiriska grunden av CPPJ kan hjälpa organisationer att förbättra allokeringen av marknadsföringsresurser, samt gynna deras digitala närvaro genom att möjliggöra mer relevant personalisering i kundupplevelsen.
13

Hierarkisk klustring av klickströmmar : En metodik för identifiering av användargrupper

Schorn, Björn January 2022 (has links)
Nasdaq utvecklar och tillhandahåller mjukvarulösningar för clearinghus. Det finns ett intresse för att utveckla en fördjupad förståelse för hur funktionaliteten av produkten används. En möjlighet för detta är att använda sig av hierarkisk klustring av klickströmmar från webbgränssnittet. Denna rapport utvecklar ett tillvägagångsätt för en sådan klustring och tillämpar den på ett redan befintligt dataset av klickströmsloggar. Att använda sig av ett euklidiskt avståndsmått kan fungera för enklare klustringar så som gruppering av produktsidor. För en djupare analys av användarbeteendet genom en klustring av sessioner ger dock Damerau-Levenshtein bättre resultat då det även tar hänsyn till i vilken ordningsföljd sidvisningarna för respektive session sker. / Nasdaq develops and provides software solutions for clearing houses. There is an interest in developing an in-depth understanding of how the functionality of this product is used. One possibility for this is to use hierarchical clustering of click streams from the web interface. This report develops a methodology for such clustering and applies it to an already existing dataset of clickstream logs. Using a Euclidean distance measure can work for simpler clusters such as grouping product pages. For a deeper analysis of user behavior through a clustering of sessions, however, Damerau–Levenshtein gives better results as it also takes into account the order of the pages visited within the sessions.
14

Evaluating Quality of Online Behavior Data

Berg, Marcus January 2013 (has links)
This thesis has two purposes; emphasizing the importance of data quality of Big Data, and identifying and evaluating potential error sources in JavaScript tracking (a client side on - site online behavior clickstream data collection method commonly used in web analytics). The importance of data quality of Big Data is emphasized through the evaluation of JavaScript tracking. The Total Survey Error framework is applied to JavaScript tracking and 17 nonsampling error sources are identified and evaluated. The bias imposed by these error sources varies from large to small, but the major takeaway is the large number of error sources actually identified. More work is needed. Big Data has much to gain from quality work. Similarly, there is much that can be done with statistics in web analytics.
15

Designing an Interactive tool for Cluster Analysis of Clickstream Data

Collin, Sara, Möllerberg, Ingrid January 2020 (has links)
The purpose of this study was to develop an interactive tool that enables identification of different types of users of an application based on clickstream data. A complex hierarchical clustering algorithm tool called Recursive Hierarchical Clustering (RHC) was used. RHC provides a visualisation of user types as clusters, where each cluster has its own distinguishing action pattern, i.e., one or several consecutive actions made by the user in the application. A case study was conducted on the mobile application Plick, which is an application for selling and buying second hand clothes. During the course of the project, the analysis and its result was discovered to be difficult to understand by the operators of the tool. The interactive tool had to be extended to visualise the complex analysis and its result in an intuitive way. A literature study of how humans interpret information, and how to present it to operators, was conducted and led to a redesign of the tool. More information was added to each cluster to enable further understanding of the clustering results. A clustering reconfiguration option was also created where operators of the tool got the possibility to interact with the analysis. In the reconfiguration, the operator could change the input file of the cluster analysis and thus the end result. Usability tests showed that the extra added information about the clusters served as an amplification and a verification of the original results presented by RHC. In some cases the original result presented by RHC was used as a verification to user group identification made by the operator solely based on the extra added information. The usability tests showed that the complex analysis with its results could be understood and configured without considerable comprehension of the algorithm. Instead it seemed like it could be successfully used in order to identify user types with help of visual clues in the interface and default settings in the reconfiguration. The visualisation tool is shown to be successful in identifying and visualising user groups in an intuitive way.

Page generated in 0.0386 seconds