• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 14
  • 14
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modelling and simulation of large-scale complex networks

Luo, Hongwei, Hongwei.luo@rmit.edu.au January 2007 (has links)
Real-world large-scale complex networks such as the Internet, social networks and biological networks have increasingly attracted the interest of researchers from many areas. Accurate modelling of the statistical regularities of these large-scale networks is critical to understand their global evolving structures and local dynamical patterns. Traditionally, the Erdos and Renyi random graph model has helped the investigation of various homogeneous networks. During the past decade, a special computational methodology has emerged to study complex networks, the outcome of which is identified by two models: the Watts and Strogatz small-world model and the Barabasi-Albert scale-free model. At the core of the complex network modelling process is the extraction of characteristics of real-world networks. I have developed computer simulation algorithms for study of the properties of current theoretical models as well as for the measurement of two real-world complex networks, which lead to the isolation of three complex network modelling essentials. The main contribution of the thesis is the introduction and study of a new General Two-Stage growth model (GTS Model), which aims to describe and analyze many common-featured real-world complex networks. The tools we use to create the model and later perform many measurements on it consist of computer simulations, numerical analysis and mathematical derivations. In particular, two major cases of this GTS model have been studied. One is named the U-P model, which employs a new functional form of the network growth rule: a linear combination of preferential attachment and uniform attachment. The degree distribution of the model is first studied by computer simulation, while the exact solution is also obtained analytically. Two other important properties of complex networks: the characteristic path length and the clustering coefficient are also extensively investigated, obtaining either analytically derived solutions or numerical results by computer simulations. Furthermore, I demonstrate that the hub-hub interaction behaves in effect as the link between a network's topology and resilience property. The other is called the Hybrid model, which incorporates two stages of growth and studies the transition behaviour between the Erdos and Renyi random graph model and the Barabasi-Albert scale-free model. The Hybrid model is measured by extensive numerical simulations focusing on its degree distribution, characteristic path length and clustering coefficient. Although either of the two cases serves as a new approach to modelling real-world large-scale complex networks, perhaps more importantly, the general two-stage model provides a new theoretical framework for complex network modelling, which can be extended in many ways besides the two studied in this thesis.
12

Synthetic notions of curvature and applications in graph theory

Shiping, Liu 11 January 2013 (has links) (PDF)
The interaction between the study of geometric and analytic aspects of Riemannian manifolds and that of graphs is a very amazing subject. The study of synthetic curvature notions on graphs adds new contributions to this topic. In this thesis, we mainly study two kinds of synthetic curvature notions: the Ollivier-Ricci cuvature on locally finite graphs and the combinatorial curvature on infinite semiplanar graphs. In the first part, we study the Ollivier-Ricci curvature. As known in Riemannian geometry, a lower Ricci curvature bound prevents geodesics from diverging too fast on average. We translate this Riemannian idea into a combinatorial setting using the Olliver-Ricci curvature notion. Note that on a graph, the analogue of geodesics starting in different directions, but eventually approaching each other again, would be a triangle. We derive lower and upper Ollivier-Ricci curvature bounds on graphs in terms of number of triangles, which is sharp for instance for complete graphs. We then describe the relation between Ollivier-Ricci curvature and the local clustering coefficient, which is an important concept in network analysis introduced by Watts-Strogatz. Furthermore, positive lower boundedness of Ollivier-Ricci curvature for neighboring vertices imply the existence of at least one triangle. It turns out that the existence of triangles can also improve Lin-Yau\'s curvature dimension inequality on graphs and then produce an implication from Ollivier-Ricci curvature lower boundedness to the curvature dimension inequality. The existence of triangles prevents a graph from being bipartite. A finite graph is bipartite if and only if its largest eigenvalue equals 2. Therefore it is natural that Ollivier-Ricci curvature is closely related to the largest eigenvalue estimates. We combine Ollivier-Ricci curvature notion with the neighborhood graph method developed by Bauer-Jost to study the spectrum estimates of a finite graph. We can always obtain nontrivial estimates on a non-bipartite graph even if its curvature is nonpositive. This answers one of Ollivier\'s open problem in the finite graph setting. In the second part of this thesis, we study systematically infinite semiplanar graphs with nonnegative combinatorial curvature. Unlike the previous Gauss-Bonnet formula approach, we explore an Alexandrov approach based on the observation that the nonnegative combinatorial curvature on a semiplanar graph is equivalent to nonnegative Alexandrov curvature on the surface obtained by replacing each face by a regular polygon of side length one with the same facial degree and gluing the polygons along common edges. Applying Cheeger-Gromoll splitting theorem on the surface, we give a metric classification of infinite semiplanar graphs with nonnegative curvature. We also construct the graphs embedded into the projective plane minus one point. Those constructions answer a question proposed by Chen. We further prove the volume doubling property and Poincare inequality which make the running of Nash-Moser iteration possible. We in particular explore the volume growth behavior on Archimedean tilings on a plane and prove that they satisfy a weak version of relative volume comparison with constant 1. With the above two basic inequalities in hand, we study the geometric function theory of infinite semiplanar graphs with nonnegative curvature. We obtain the Liouville type theorem for positive harmonic functions, the parabolicity. We also prove a dimension estimate for polynomial growth harmonic functions, which is an extension of the solution of Colding-Minicozzi of a conjecture of Yau in Riemannian geometry.
13

Vliv parcelačního atlasu na kvalitu klasifikace pacientů s neurodegenerativním onemocněním / Influence of parcellation atlas on quality of classification in patients with neurodegenerative dissease

Montilla, Michaela January 2018 (has links)
The aim of the thesis is to define the dependency of the classification of patients affected by neurodegenerative diseases on the choice of the parcellation atlas. Part of this thesis is the application of the functional connectivity analysis and the calculation of graph metrics according to the method published by Olaf Sporns and Mikail Rubinov [1] on fMRI data measured at CEITEC MU. The application is preceded by the theoretical research of parcellation atlases for brain segmentation from fMRI frames and the research of mathematical methods for classification as well as classifiers of neurodegenerative diseases. The first chapters of the thesis brings a theoretical basis of knowledge from the field of magnetic and functional magnetic resonance imaging. The physical principles of the method, the conditions and the course of acquisition of image data are defined. The third chapter summarizes the graph metrics used in the diploma thesis for analyzing and classifying graphs. The paper presents a brief overview of the brain segmentation methods, with the focuse on the atlas-based segmentation. After a theoretical research of functional connectivity methods and mathematical classification methods, the findings were used for segmentation, calculation of graph metrics and for classification of fMRI images obtained from 96 subjects into the one of two classes using Binary classifications by support vector machines and linear discriminatory analysis. The data classified in this study was measured on patiens with Parkinson’s disease (PD), Alzheimer’s disease (AD), Mild cognitive impairment (MCI), a combination of PD and MCI and subjects belonging to the control group of healthy individuals. For pre-processing and analysis, the MATLAB environment, the SPM12 toolbox and The Brain Connectivity Toolbox were used.
14

Synthetic notions of curvature and applications in graph theory

Shiping, Liu 20 December 2012 (has links)
The interaction between the study of geometric and analytic aspects of Riemannian manifolds and that of graphs is a very amazing subject. The study of synthetic curvature notions on graphs adds new contributions to this topic. In this thesis, we mainly study two kinds of synthetic curvature notions: the Ollivier-Ricci cuvature on locally finite graphs and the combinatorial curvature on infinite semiplanar graphs. In the first part, we study the Ollivier-Ricci curvature. As known in Riemannian geometry, a lower Ricci curvature bound prevents geodesics from diverging too fast on average. We translate this Riemannian idea into a combinatorial setting using the Olliver-Ricci curvature notion. Note that on a graph, the analogue of geodesics starting in different directions, but eventually approaching each other again, would be a triangle. We derive lower and upper Ollivier-Ricci curvature bounds on graphs in terms of number of triangles, which is sharp for instance for complete graphs. We then describe the relation between Ollivier-Ricci curvature and the local clustering coefficient, which is an important concept in network analysis introduced by Watts-Strogatz. Furthermore, positive lower boundedness of Ollivier-Ricci curvature for neighboring vertices imply the existence of at least one triangle. It turns out that the existence of triangles can also improve Lin-Yau\''s curvature dimension inequality on graphs and then produce an implication from Ollivier-Ricci curvature lower boundedness to the curvature dimension inequality. The existence of triangles prevents a graph from being bipartite. A finite graph is bipartite if and only if its largest eigenvalue equals 2. Therefore it is natural that Ollivier-Ricci curvature is closely related to the largest eigenvalue estimates. We combine Ollivier-Ricci curvature notion with the neighborhood graph method developed by Bauer-Jost to study the spectrum estimates of a finite graph. We can always obtain nontrivial estimates on a non-bipartite graph even if its curvature is nonpositive. This answers one of Ollivier\''s open problem in the finite graph setting. In the second part of this thesis, we study systematically infinite semiplanar graphs with nonnegative combinatorial curvature. Unlike the previous Gauss-Bonnet formula approach, we explore an Alexandrov approach based on the observation that the nonnegative combinatorial curvature on a semiplanar graph is equivalent to nonnegative Alexandrov curvature on the surface obtained by replacing each face by a regular polygon of side length one with the same facial degree and gluing the polygons along common edges. Applying Cheeger-Gromoll splitting theorem on the surface, we give a metric classification of infinite semiplanar graphs with nonnegative curvature. We also construct the graphs embedded into the projective plane minus one point. Those constructions answer a question proposed by Chen. We further prove the volume doubling property and Poincare inequality which make the running of Nash-Moser iteration possible. We in particular explore the volume growth behavior on Archimedean tilings on a plane and prove that they satisfy a weak version of relative volume comparison with constant 1. With the above two basic inequalities in hand, we study the geometric function theory of infinite semiplanar graphs with nonnegative curvature. We obtain the Liouville type theorem for positive harmonic functions, the parabolicity. We also prove a dimension estimate for polynomial growth harmonic functions, which is an extension of the solution of Colding-Minicozzi of a conjecture of Yau in Riemannian geometry.

Page generated in 0.135 seconds