• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 219
  • 32
  • 29
  • 23
  • 15
  • 9
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 402
  • 109
  • 61
  • 59
  • 58
  • 56
  • 44
  • 43
  • 40
  • 38
  • 30
  • 30
  • 29
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Modelagem da velocidade crítica de transporte de polpas minerais contendo partículas grossas. / Modeling critical velocity of transport for mineral slurries with coarse particles.

Pinto, Thiago César de Souza 29 May 2012 (has links)
O dimensionamento de sistemas de transporte hidráulico de polpas minerais exige especial atenção à medida que partículas grossas apresentam um comportamento de sedimentação no interior dos tubos. Dentro desta situação, a velocidade de transporte da polpa mineral deve ter magnitude suficiente para suspender e transportar os sólidos, evitando que os mesmos se depositem na base da tubulação. O bombeamento de polpas minerais em tubos horizontais contendo partículas grossas constituiu o objeto desta tese. Um levantamento sobre a literatura corrente foi realizado e, através de procedimentos experimentais, obteve-se um banco de dados para o modelamento da velocidade crítica (VC), isto é, a velocidade mínima em que ocorre a formação de um leito móvel na base do tubo, apresentando magnitude ligeiramente superior à velocidade de deposição VD, caracterizada pelo início da deposição das partículas na base dos dutos. Para a realização dos ensaios, foram construídas duas unidades experimentais de bombeamento de polpa mineral, onde foram estudadas as seguintes variáveis: i) gradiente de pressão por metro de tubo horizontal (\'delta\'P/L), ii) velocidade média do fluxo (V), iii) perfil de concentração de sólidos ao longo da seção transversal, iv) fator de forma através da função de esfericidade das partículas (\'psi\'), v) densidade do sólido e do líquido, vi) concentração volumétrica dapolpa mineral, vii) granulometria dos sólidos e viii) diâmetro da tubulação. A primeira unidade experimental foi montada com tubulação em PVC transparente de diâmetro interno de 25,4mm e a segunda unidade foi construída em PVC branco com um trecho de 2m em acrílico transparente, apresentando diâmetro interno de 50,8mm. A velocidade critica (VC) para cada condição estudada foi determinada visualmente, através das seções transparentes da tubulação. As amostras utilizadas neste trabalho foram: concentrados de apatita e hematita e o mineral quartzo. As frações granulométricas estudadas foram inseridas em duas classes de tamanho, sendo a primeira classe passante em 297µm e retida em 249µm e a segunda classe passante em 149µm e retida em 105µm. Os resultados permitiram determinar um novo modelo semiempírico para VC, alcançando desvios menores que 10% para as velocidades preditas em relação aos valores de velocidades observadas experimentalmente. / The design of hydraulic systems of slurry transport demands a special attention due to coarse particles present a settling behavior inside the pipes. In this situation, the transport velocity should have order of magnitude sufficient to promote the suspension and the transport of particles, avoiding the solids deposition at the bottom of pipe. The transport of mineral slurries containing coarse particles was the primary goal of the thesis. A survey of the available literature was done and through the experimental tests could be possible to raise a data bank in order to develop a new best fit correlation for the critical velocity (VC) which included the particle shape effect, through the sphericity function. VC could be defined as the minimum velocity where a moving bed of particles takes place at the bottom of the horizontal pipe and it is slightly above the deposition velocity VD, which could be characterized by a bed of stationary particles at the bottom of pipe. The research was conducted using two recirculating pipe test rigs with transparent PVC pipe of 25.4mm and 50.8mm internal diameter with slurry concentrations from 8% up to 27% by volume. The material used was apatite and hematite concentrates and quartz mineral, clustered in two classes of size range (-0.297+0.210mm; -0.149+0.105mm), where the variables were: i) Head losses per meter of horizontal pipe (\'delta\'P/L), ii) Mean transport velocity (V), iii) solids distribution profile, iv) particle shape effect, through the sphericity function (\'psi\'), v) density of particles and liquid, vi) Volumetric concentration of slurries, vii) particles size and viii) pipe diameter. The critical velocity (VC), for each studied condition, was visually determined through the transparent sections of the pipes. The results have yielded a new semi empirical model to predict the critical velocity, yielding a deviation of less than 10% from the observed values of experimental data for VC.
112

Controlled K-theory for groupoids and applications / K-théorie contrôlée pour les groupoïdes et applications

Dell'Aiera, Clément 12 July 2017 (has links)
Dans leur article de 2015 intitulé "On quantitative operator K-theory", H. Oyono-Oyono et G. Yu introduisent un raffinement de la K-théorie opératorielle adapté au cadre desC*-algèbres filtrées, appelé K-théorie quantitative ou contrôlée. Dans cette thèse, nous généralisons la notion de filtration de C_-algèbres. Nous montrons ensuite que ce cadre contient celui déjà traité par G. Yu et H. Oyono-Oyono, tout en se révélant assez souple pour traiter les produits croisés de groupoïdes étalés et de groupes quantiques discrets. Nous construisons ensuite des applications d'assemblage _a valeurs dans les groupes de K-théorie contrôlée associés, pour les C*-algèbres de Roe à coefficients et les produits croisés de groupoïdes étalés. Nous montrons que ces applications factorisent les applications d'assemblage usuelles de Baum-Connes. Nous prouvons ensuite ce que nous appelons des énoncés quantitatifs, et nous montrons qu'une version contrôlée de la conjecture de Baum-Connes est vérifiée pour une large classe de groupoïdes étalés. La fin de la thèse est consacrée à plusieurs applications de ces résultats. Nous montrons que l'application d'assemblage contrôlée coarse est équivalente à son analogue à coefficients pour le groupoïde coarse introduit par G. Skandalis, J-L. Tu et G. Yu. Nous donnons ensuite une preuve que les espaces coarses qui admettent un plongement hilbertien fibré vérifient la version maximale de la conjecture de Baum-Connes coarse contrôlée. Enfin nous étudions les groupoïdes étalés dont toutes les actions propres sont localement induites par des sous-groupoïdes compacts ouverts, dont un exemple est donné par les groupoïdes amples introduits par J. Renault. Nous développons un principe de restriction pour cette classe de groupoïdes, et prouvons que, sous des hypothèses raisonnables, leurs produits croisés vérifient la formule de Künneth en K-théorie contrôlée / In their paper entitled "On quantitative operator K-theory", H. Oyono-Oyono and G. Yu introduced a refinement of operator K-theory, called quantitative or controlled K-theory, adapted to the setting of filtered C_-algebras. In this thesis, we generalize filtration of C*-algebras. We show that this setting contains the theory developed by H. Oyono-Oyono and G. Yu, and is general enough to be applied to the setting of crossed products by étale groupoids and discrete quantum groups. We construct controlled assembly maps with values into this controlled K-groups, for Roe C*-algebras and crossed products by étale groupoids. We show that these controlled assembly maps factorize the usual Baum-Connes and coarse Baum-Connes assembly maps. We prove statements called quantitative statements, and we show that a controlled version of the Baum-Connes conjecture is satisfied for a large class of étale groupoids. The end of the thesis is devoted to several applications of these results. We show that the controlled coarse assembly map is equivalent to its analog with coefficients for the coarse groupoid introduced by G. Skandalis, J-L. Tu and G. Yu. We give a proof that coarse spaces which admit a _bred coarse embedding into Hilbert space satisfy the maximal controlled coarse Baum-Connes conjecture. Finally, we study étale groupoids whose proper actions are locally induced by compact open subgroupoids, e.g. ample groupoids introduced by J. Renault. We develop a restriction principle for these groupoids, and prove that under suitable assumptions, their crossed products satisfy the controlled Künneth formula
113

Architecture and Programming Model Support for Reconfigurable Accelerators in Multi-Core Embedded Systems / Architecture et modèle de programmation pour accélérateurs reconfigurables dans les systèmes embarqués multi-coeurs

Das, Satyajit 04 June 2018 (has links)
La complexité des systèmes embarqués et des applications impose des besoins croissants en puissance de calcul et de consommation énergétique. Couplé au rendement en baisse de la technologie, le monde académique et industriel est toujours en quête d'accélérateurs matériels efficaces en énergie. L'inconvénient d'un accélérateur matériel est qu'il est non programmable, le rendant ainsi dédié à une fonction particulière. La multiplication des accélérateurs dédiés dans les systèmes sur puce conduit à une faible efficacité en surface et pose des problèmes de passage à l'échelle et d'interconnexion. Les accélérateurs programmables fournissent le bon compromis efficacité et flexibilité. Les architectures reconfigurables à gros grains (CGRA) sont composées d'éléments de calcul au niveau mot et constituent un choix prometteur d'accélérateurs programmables. Cette thèse propose d'exploiter le potentiel des architectures reconfigurables à gros grains et de pousser le matériel aux limites énergétiques dans un flot de conception complet. Les contributions de cette thèse sont une architecture de type CGRA, appelé IPA pour Integrated Programmable Array, sa mise en œuvre et son intégration dans un système sur puce, avec le flot de compilation associé qui permet d'exploiter les caractéristiques uniques du nouveau composant, notamment sa capacité à supporter du flot de contrôle. L'efficacité de l'approche est éprouvée à travers le déploiement de plusieurs applications de traitement intensif. L'accélérateur proposé est enfin intégré à PULP, a Parallel Ultra-Low-Power Processing-Platform, pour explorer le bénéfice de ce genre de plate-forme hétérogène ultra basse consommation. / Emerging trends in embedded systems and applications need high throughput and low power consumption. Due to the increasing demand for low power computing and diminishing returns from technology scaling, industry and academia are turning with renewed interest toward energy efficient hardware accelerators. The main drawback of hardware accelerators is that they are not programmable. Therefore, their utilization can be low is they perform one specific function and increasing the number of the accelerators in a system on chip (SoC) causes scalability issues. Programmable accelerators provide flexibility and solve the scalability issues. Coarse-Grained Reconfigurable Array (CGRA) architecture consisting of several processing elements with word level granularity is a promising choice for programmable accelerator. Inspired by the promising characteristics of programmable accelerators, potentials of CGRAs in near threshold computing platforms are studied and an end-to-end CGRA research framework is developed in this thesis. The major contributions of this framework are: CGRA design, implementation, integration in a computing system, and compilation for CGRA. First, the design and implementation of a CGRA named Integrated Programmable Array (IPA) is presented. Next, the problem of mapping applications with control and data flow onto CGRA is formulated. From this formulation, several efficient algorithms are developed using internal resources of a CGRA, with a vision for low power acceleration. The algorithms are integrated into an automated compilation flow. Finally, the IPA accelerator is augmented in PULP - a Parallel Ultra-Low-Power Processing-Platform to explore heterogeneous computing.
114

Geometry of actions, expanders and warped cones

Vigolo, Federico January 2018 (has links)
In this thesis we introduce a notion of graphs approximating actions of finitely generated groups on metric and measure spaces. We systematically investigate expansion properties of said graphs and we prove that a sequence of graphs approximating a fixed action ρ forms a family of expanders if and only if ρ is expanding in measure. This enables us to rely on a number of known results to construct numerous new families of expander (and superexpander) graphs. Proceeding in our investigation, we show that the graphs approximating an action are uniformly quasi-isometric to the level sets of the associated warped cone. The existence of such a relation between approximating graphs and warped cones has twofold advantages: on the one hand it implies that warped cones arising from actions that are expanding in measure coarsely contain families of expanders, on the other hand it provides a geometric model for the approximating graphs allowing us to study the geometry of the expander thus obtained. The rest of the work is devoted to the study of the coarse geometry of warped cones (and approximating graphs). We do so in order to prove rigidity results which allow us to prove that our construction is flexible enough to produce a number of non coarsely equivalent new families of expanders. As a by-product, we also show that some of these expanders enjoy some rather peculiar geometric properties, e.g. we can construct expanders that are coarsely simply connected.
115

Nanoscale structure and mechanical properties of a Soft Material

Salahshoor Pirsoltan, Hossein 05 August 2013 (has links)
"Recently, hydrogel have found to be promising biomaterials since their porous structure and hydrophilicity enables them to absorb a large amount of water. In this study the role of water on the mechanical properties of hydrogel are studied using ab-initio molecular dynamics (MD) and coarse-grained simulations. Condensed-Phased Optimized Molecular Potential (COMPASS) and MARTINI force fields are used in the all-atom atomistic models and coarse-grained simulations, respectively. The crosslinking process is modeled using a novel approach by cyclic NPT and NVT simulations starting from a high temperature, cooling down to a lower temperature to model the curing process. Radial distribution functions for different water contents (20%, 40%, 60% and 80%) have shown the crosslinks atoms are more hydrophilic than the other atoms. Diffusion coefficients are quantified in different water contents and the effect of crosslinking density on the water diffusion is studied. Elasticity parameters are computed by constant strain energy minimization in mechanical deformation simulations. It is shown that an increase in the water content results in a decrease in the elastic. Finally, continuum hyper elastic model of contact lens is studied for three different loading scenarios using Finite Element Model. "
116

A Mayer-Vietoris Spectral Sequence for C*-Algebras and Coarse Geometry

Naarmann, Simon 10 September 2018 (has links)
No description available.
117

Understanding biopharmaceutical aggregation using minimalist models based on square-well potential

Javar Magnier, Hamza January 2016 (has links)
Protein misfolding and aggregation are the cause of many problems within the biopharmaceutical industry and medical fields. Although many experimental studies have been implemented in vivo in order to understand this process, the mechanism occurs in time and length scales inaccessible to conventional experiments. On the other hand, computational studies have shown significant improvement in elucidating key aspects of the aggregation pathways and gain insights to the folding behavior of the proteins. Consequently, this makes computational modeling an ideal complement to experiment in understanding the generic behavior and mechanisms of aggregation. This study is concerned with DynamO, a coarse-grained, off-lattice, general event-driven discontinuous molecular-dynamics simulation package. This simulator offers a unique opportunity to gain insight into the process of protein aggregation by displaying the optimal O(N) asymptotic scaling of the computational cost with the number of particles N, rather than O(NlogN) scaling found in most standard algorithms. The study was split into two loosely related projects: in the first project, a computer model was developed in which the effect of model parameters on folding behavior and characteristics of isolated peptides is investigated. The model parameters include chain stiffness (an overlap parameter defined as the ratio of the hard-core diameter to bond length 'sigma/l'), range of interaction potential 'Gamma', sequence, and chains length 'N '. Based on the model chosen from systems of isolated chains, aggregation in multichain systems is studied. In another project, we simulate various square-well fluid systems with different ranges of interaction potential in order to understand the phase behavior of proteins due to its relevance to aggregation and many bioprocessing events. Changing the model parameters shows different folding behaviors. The model-chains with 64 residues, Gamma equal to 1.1 and sigma/l equal to 1.9 is the least computationally expensive model displaying all the characteristics found in real proteins. We introduce a new order parameter which divides the conformational space into folded and unfolded ensemble-structures, this order parameter corresponds to a transition in the folding behavior of the chains. We define a native state ensemble as an ensemble of structures with small deviation in contact maps for spheres inaccessible to the solvent defined as the core of the chain. This native ensemble corresponds to the structures exhibiting low-temperature fluctuations simulating the 'breathing motions' of real proteins which is considered responsible for their catalytic activities. On the other hand, the non-native ensemble unfolds at higher temperatures, which increases the propensity for aggregation by forming intermolecular contacts, and therefore reproduce the behavior of proteins under severe solution conditions which occurs in bio- processing (this includes high concentration, temperature, pressure, pH ...). The behavior of multichain systems shows that it is possible to correlate the aggregation propensity of chains at room temperature from the behavior of chains in isolated system at the collapse temperature, which in turn correlate with the stability of the low-T ensemble. In the second project, we developed a more efficient way of calculating the critical temperature in SW fluids even for strongly short-ranged systems which are especially difficult to simulate. In the supercritical region, every isotherm obeys the linear equation for the pressure with a high precision within the bounds of uncertainty. The linear equation pm = p0 + Rm with Rm being the constant isothermal rigidity (dp/d)T . The constant rigidity can be used to estimate directly a critical temperature (Tc) and critical pressure (pc), respectively, and also to obtain the pressures and densities of the percolation loci based on an empirical quadratic nature of change in pressure with densities outside the percolation loci. Identifying the critical temperature and how it depends on the pair potential is very important in formulations with a growing need to predict when the solution will go opalescent.
118

Interactions et structures dans les suspensions polydisperses de colloïdes chargés sphériques / Interactions and structures in polydisperse suspensions of charged spherical colloids

Bareigts, Guillaume 14 December 2018 (has links)
Les suspensions colloïdales se trouvent un peu partout autour de nous, dans les matériauxde constructions, en cosmétique, dans l'alimentation, en biologie. Elles sont composésde particules nanométriques ou micrométriques dispersés dans un gaz, un liquide ou unsolide.Cette thèse porte sur les suspensions colloïdales dans des solutions ioniques,où les colloïdes portent une charge électriques, par exemple des particules de silicedans une solution aqueuse de chlorure de sodium, à un pH basique. Les colloïdes,ici approximés par des sphères, peuvent varier significativement en taille,ce qui peut avoir un effet important sur le comportement de ces systèmes.Cette étude vise à améliorer la compréhension de ces suspensions colloïdales chargéespar des modèles théoriques résolus par des simulations numériques.Un des défis de ces simulations est le grand nombre de degrés de libertés. Pour chaque(micro-)ion il y a des centaines de molécules de solvant, et pour chaque colloïdedes centaines voire des milliers d'ions. Pour s'en sortir, nous avons calculéles interactions effectives à l'échelle colloïdale. Nous avons repris et développéplusieurs approches, présentant chacune un compromis en terme de temps de calcul etprécision.La variation en taille des colloïdes peut introduire des effets intéressants,observés expérimentalement, notamment le fractionnement des suspensions en plusieursphases cristallines quand on augmente la concentration en colloïdes.Des techniques de simulations Monte-Carlo simples associées aux interactions inter-colloïdescalculées précédemment ont permis d'obtenir des résultats en bon accord avec l'expérience. / Colloidal suspensions are found a bit everywhere around us, in construction materials,in cosmetics, in food, in biology. They are composed of nanometric or micrometric particlesdispersed in a gas, a liquid or sometimes a solid.This thesis is about colloidal suspensions in ionic solutions, where colloids bear anelectric charge, for example silica particles in an aqueous solution of sodium chloride,at a basic pH. The colloids, here approximated by spheres, can vary significantly in size,which can have an important effect on the behavior of these systems.This study aims at improving the understanding of these charged colloidal suspensionsby theoretical models solved by numerical simulations.of these charged colloidal suspensionsby theoretical models solved by numerical simulations.One of the challenge of theses simulations is the huge number of degrees of freedom.For each (micro-)ion there is hundreds of solvent molecules, and for each colloidthere is hundreds if not thousands of ions. To get away with it, we calculated theeffective interactions at the colloidal scale. We took and developed several approaches,each showing a trade-off in terms of computational time and accuracy.The size variation of colloids may introduce interesting effects, experimentallyobserved, notably the fractionation of suspensions in several crystalline phaseswhen the colloidal concentration is increased. Some simple Monte-Carlo simulationtechniques in combination with the inter-colloid interactions computed previouslyallowed us to obtain results in good agreement with experiments.
119

Caractérisation de composites polymères / nanoparticules de silice : une étude de dynamique moléculaire gros-grains / Investigating silica nanoparticles / polymer composites : a coarse-grained molecular dynamics study

Perrin, Elsa 02 July 2018 (has links)
La dynamique moléculaire gros-grain nous permet d'étudier l'interface polymère / silice. En particulier, nous comparons les comportements divergents du poly(acrylamide) (PAAm) et du poly(N,Ndimethylacrylamide) (PDMA) sur la surface de silice. Tout d'abord, nous montrons que les comportements macroscopiques du PAAm et du PDMA sont correctement représentés par un modèle contenant un solvant explicite. Nous utilisons ensuite la méthode d'énergie libre umbrella sampling afin d'examiner le détachement du PAAm et du PDMA de la surface de silice et d'étudier les caractéristiques importantes qui permettent ou non à la chaîne de polymère de rester adsorbée sur la surface de silice. Nous soulignons l'importance des interactions intra moléculaires au sein du polymère ainsi que les interactions polymère/surface qui déterminent l'adsorption du polymère sur la silice. De manière surprenante, les interactions solvant/polymère et solvant/surface ne sont pas des critères discriminants lors de l'adsorption des polymères sur la surface. Les polymères sont finalement contraints de s'adsorber sur deux surfaces de silice séparées de 200 Å. Ce système nous permet d'analyser l'évolution de la labilité des monomères ainsi que la force appliquée par les monomères sur la surface quand la distance entre les deux surfaces augmente. / Polymer/silica interface is investigated using coarse-grained molecular dynamics simulations. In particular, the different behavior of poly(acrylamide) (PAAm) and of poly(N,N-dimethylacrylamide) (PDMA) on the silica surface is compared. First, we show that the macroscopic behavior of PAAm and of PDMA is correctly represented by a model containing an explicit solvent. Then, the umbrella sampling free energy method is used to probe the detachment of PAAm and of PDMA from a silica surface and to investigate important features that allow - or not - the polymer chain to remain adsorbed on the silica surface. We proved that intramolecular interactions within the polymer and polymer/surface interactions are of first importance for the polymer chain to adsorb on silica. Surprisingly, solvent/polymer as well as solvent/surface interactions are not discriminating criteria. Polymer chains are finally constrained to a particular configuration where one chain is adsorbed on two silica surfaces that are 200 Å apart. This yields interesting insights into the evolution of the monomers lability and of the surface/polymer strength interaction when the two silica surfaces are moved apart.
120

Use Of passive samplers to characterize the spatial heterogeneity of coarse particle mass concentration and composition in Cleveland, OH

Sawvel, Eric J. 01 December 2013 (has links)
The overall goals of this dissertation are: 1) to better quantify the spatial heterogeneity of coarse particulate matter (PM10-2.5) and its chemical composition; and 2) to evaluate the performance (accuracy and precision) of passive samplers analyzed by computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy (CCSEM-EDS) for PM10-2.5. For these goals, field studies were conducted over multiple seasons in Cleveland, OH and were the source of data for this dissertation. To achieve the first goal, we characterized spatial variability in the mass and composition of PM10-2.5 in Cleveland, OH with the aid of inexpensive passive samplers. Passive samplers were deployed at 25 optimized sites for three week-long intervals in summer 2008 to characterize spatial variability in components of PM10-2.5. The size and composition of individual particles were determined using CCSEM-EDS. For each sample, this information was used to estimate PM10-2.5 mass and aerosol composition by particle class. The highest PM10-2.5 means were observed at three central industrial urban sites (35.4 Μg m-3, 43.4 Μg m-3, and 47.6 Μg m-3), whereas lower means were observed to the west and east of this area with the lowest means observed at outskirt suburban background sites (12.9 Μg m-3 and 14.7 Μg m-3). Concentration maps for PM10-2.5 and some compositional components of PM10-2.5 (Fe oxide and Ca rich) show an elongated shape of high values stretching from Lake Erie south through the central industrial area, whereas those for other compositional components (e.g., Si/Al rich) are considerably less heterogeneous. The findings from the spatial variability of coarse particles by compositional class analysis, presented in Chapter II of this dissertation, show that the concentrations of some particle classes were substantially more spatially heterogeneous than others. The data suggest that industrial sources located in The Flats district in particular may contribute to the observed concentration variability and heterogeneity. Lastly, percent relative spatial heterogeneity (SH%) is more consistent with spatial heterogeneity as visualized in the concentration surface maps compared to the coefficient of divergence (COD). The second goal was achieved by assessing the performance of passive samplers analyzed by CCSEM-EDS to measure PM10-2.5 (Chapter III) and investigating potential sources of variability in the measurement of PM10-2.5 with passive samplers analyzed by CCSEM-EDS (Chapter IV). Data for these analyses were obtained in studies conducted in summer 2009 and winter 2010. The precision of PM10-2.5 measured with the passive samplers was highly variable and ranged from a low coefficient of variation (CV) of 2.1% to a high CV of 90.8%. Eighty percent of the CVs were less than 40%. This assessment showed the CV for passive samplers was greater than that recommended by the United States Environmental Protection Agency (EPA) guidelines for the Federal Reference Method (FRM). Several CV values were high, exceeding 40% indicating substantially dissimilar results between co-located passive samplers. The overall CV for the passive samplers was 41.2% in 2009 and 33.8% in 2010. The precision when high CVs > 40% (n = 5 of 25) were excluded from the analysis was 24.1% in 2009 and 18.2% for 2010. Despite issues with precision, PM10-2.5 measured with passive samplers agreed well with that measured with FRM samplers with accuracy approaching EPA Federal Equivalent Method (FEM) criteria. The intercept was 1.21 and not statistically significant (p = 3.88). The passive to FRM sampler comparison (1:1) line fell within the 95% confidence interval (CI) for the best-fit linear regression and was statistically significant (p < 0.05). However, several data points had large standard deviations resulting in high variability between co-located passive samplers (n = 3), which extend outside of the 95% CI's. The passive sampler limit of detection (LOD) for the CCSEM method was 2.8 Μg m-3. This study also showed certain samples had higher CVs and that further investigation was needed to better understand the sources of variability in the measurement of PM10-2.5 with passive samplers. Sources of variability observed in the measurement of PM10-2.5 with passive samplers analyzed by CCSEM were explored in Chapter IV of this dissertation. This research suggests mass concentrations greater than 20 Μg m-3 for week long samples are needed on the passive sampler substrate to obtain overall CVs by mass less than 15%. It also suggests that greater than 55 particle counts within a compositional class are needed to reduce analytical CVs to less than 15%. Another finding from this study was increasing the concentration from 6.2 to 10.6 Μg m-3 increases the CCSEM analytical precision by mass 38% and by number 75% for random orientation. Also certain compositional classes appeared problematical for precision of passive sampler measurements. For example, the presence of salt plus moisture introduces challenges for CCSEM analysis through the wetting of salt crystalline particles which dissolve creating a displaced dry deposition pattern of particles upon subsequent evaporation. This process can falsely elevate or reduce the particle count and alter its distribution on the sampling media.

Page generated in 0.0467 seconds