Spelling suggestions: "subject:"coenzyme."" "subject:"isoenzymes.""
171 |
Role of Endoplasmic Reticulum Stress Response Signaling in T Cells: A DissertationPino, Steven C. 08 July 2008 (has links)
T cells play a central role in cellular-mediated immunity and must become activated to participate as effector cells in the immune response. The activation process is highly intricate and involves stimulation of a number of downstream signaling pathways enabling T cells to proliferate and produce cytokines that are vital for proper effector function. This increase in protein production and protein folding activity adds to the normal physiological strain on cellular machinery. One cellular compartment that has generated a mechanism to mitigate the stress induced by increased protein production is the endoplasmic reticulum (ER).
In general, an increase in cellular production of proteins that overwhelms a cell’s protein folding capability can alter ER homeostasis and lead to ER stress. To counteract this stress, an adaptive cellular mechanism known as the ER stress response (ERSR) is initiated. The ERSR allows a cell to cope with normal physiological stress within the ER caused by increased protein translation. In this dissertation, we show that in vitro and in vivoT cell activation involving T cell receptor (TCR) ligation in the presence of costimulation initiates the physiological ERSR. Interestingly, the ERSR was also activated in T cells exposed only to TCR ligation, a treatment known to induce the ‘non-responsive’ states of anergy and tolerance. We further identified a key component of the downstream TCR signaling pathway, protein kinase C (PKC), as an initiator of physiological ERSR signaling, thus revealing a previously unknown role for this serine/threonine protein kinase in T cells. Therefore, induction of the physiological ERSR through PKC signaling may be an important ‘preparatory’ mechanism initiated during the early activation phase of T cells.
If ER stress is persistent and ER homeostasis is not reestablished, physiological ER stress becomes pathological and initiates cellular death pathways through ER stress-induced apoptotic signaling. We further present data demonstrating that absence of functional Gimap5, a putative GTPase implicated to play a role in TCR signaling and maintenance of overall T cell homeostasis, leads to pathological ER stress and apoptosis. Using the BioBreeding diabetes-prone (BBDP) rat, a model for type 1 diabetes (T1D), we link pathological ER stress and ER stress-induced apoptotic signaling to the observed T cell lymphopenic phenotype of the animal. By depleting the ER stress apoptotic factor CHOP with siRNA, we were able to protect Gimap5-/-BBDP rat T cells from ER stress-induced death. These findings indicate a direct relationship between Gimap5 and maintenance of ER homeostasis for T cell survival.
Overall, our findings suggest that the ERSR is activated by physiological and pathological conditions that disrupt T cell homeostasis. TCR signaling that leads to PKC activation initiates a physiological ERSR, perhaps in preparation for a T cell response to antigen. In addition, we also describe an example of pathological ERSR induction in T cells. Namely, we report that the absence of functional Gimap5 protein in T cells causes CHOP-dependent ER stress-induced apoptosis, perhaps initiated by deregulation of TCR signaling. This indicates a dual role for TCR signaling and regulation in the initiation of both the physiological and pathological ERSR. Future research that provides insights into the molecular mechanisms that govern ERSR induction in TCR signaling and regulation may lead to development of therapeutic modalities for treatment of immune-mediated diseases such as T1D.
|
172 |
Development of a Substrate with Photo-Modulatable Rigidity for Probing Spatial and Temporal Responses of Cells to Mechanical Signals: A DissertationFrey, Margo Tilley 01 July 2008 (has links)
Topographical and mechanical properties of adhesive substrates provide important biological cues that affect cell spreading, migration, growth, and differentiation. The phenomenon has led to the increased use of topographically patterned and flexible substrates in studying cultured cells. However, these studies may be complicated by various limitations. For example, the effects of ligand distribution and porosity are affected by topographical features of 3D biological constructs. Similarly, many studies of mechanical cues are compounded with cellular deformation from external forces, or limited by comparative studies of separate cells on different substrates. Furthermore, understanding cell responses to mechanical input is dependent upon reliable measurements of mechanical properties. This work addresses each of these issues.
To determine how substrate topography and focal adhesion kinase (FAK) affect cell shape and movement, I studied FAK-null (FAK -/-) and wild type mouse 3T3 fibroblasts on chemically identical polystyrene substrates with either flat surfaces or micron-sized pillars, I found that, compared to cells on flat surfaces, those on pillar substrates showed a more branched shape, an increased linear speed, and a decreased directional stability, which were dependent on both myosin-II and FAK.
To study the dynamic responses to changes in substrate stiffness without other confounding effects, I developed a UV-modulatable substrate that softens upon UV irradiation. As atomic force microscopy (AFM) proved inadequate to detect microscale changes in stiffness, I first developed and validated a microsphere indentation method that is compatible with fluorescence microscopy. The results obtained with this method were comparable to those obtained with AFM. The UV-modulatable substrates softened by ~20-30% with an intensity of irradiation that has no detectable effect on 3T3 cells on control surfaces. Cells responded to global softening of the substrate with an initial retraction followed by a gradual reduction in spread area. Precise spatial control of softening is also possible - while there was little response to posterior softening, anterior softening elicited a pronounced retraction and either a reversal of cell polarity or a significant decrease in spread area if the cells move into the softened region.
In conclusion, these techniques provide advances in gaining mechanistic insight into cellular responses to topographical and mechanical cues. Additionally, there are various other potential applications of the novel UV-softening substrate, particularly in regenerative medicine and tissue engineering.
|
173 |
Regulation of DNA Replication Origins in Fission Yeast: A DissertationKommajosyula, Naveen 03 August 2009 (has links)
Cells need to complete DNA replication in a timely and error-free manner. To ensure that replication is completed efficiently and in a finite amount of time, cells regulate origin firing. To prevent any errors from being transmitted to the next generation, cells have the checkpoint mechanism.
The S-phase DNA damage slows replication to allow the cell to repair the damage. The mechanism of replication slowing by the checkpoint was not clear in fission yeast, Schizosaccharomyces pombe, at the start of my thesis. The downstream targets of the DNA damage checkpoint in fission yeast were also unclear. I worked on identifying the downstream targets for the checkpoint by studying if Cdc25, a phosphatase, is a target of the checkpoint.
Work from our lab has shown that origin firing is stochastic in fission yeast. Origins are also known to be inefficient. Inefficient origins firing stochastically would lead to large stretches of chromosome where no origins may fire randomly leading to long replication times, an issue called the random gap problem. However, cells do not take a long time to complete replication and the process of replication itself is efficient. I focused on understanding the mechanism by which cells complete replication and avoid the random gap problem by attempting to measure the firing efficiency of late origins.
Genome-wide origin studies in fission yeast have identified several hundred origins. However, the resolution of these studies can be improved upon.
I began a genome-wide origin mapping study using deep sequencing to identify origins at a greater resolution compared to the previous studies. We have extended our origin search to two other Schizosaccharomyces species- S. octosporus and S. japonicus.There have been no origin mapping studies on these fission yeasts and identifying origins in these species will advance the field of replication.
My thesis research shows that Cdc25 is not a target of the S-phase DNA damage checkpoint. I showed that DNA damage checkpoint does not target Cdc2-Y15 to slow replication. Based on my preliminary observation, origin firing might be inhibited by the DNA damage checkpoint as a way to slow replication. My efforts to measure the firing efficiency of a late replicating sequence were hindered by potentially unidentified inefficient origins firing at a low rate and replicating the region being studied. Studying the origin efficiency was maybe further complicated by neighboring origins being able to passively replicate the region. To identify origins in recently sequenced Schizosaccharomyces species, we initiated the genome-wide origin mapping. The mapping was also done on S. pombe to identify inefficient origins not mapped by other mapping studies. My work shows that deep sequencing can be used to map origins in other species and provides a powerful tool for origin studies.
|
174 |
Hsp90-Mediated Maturation of Kinases and Nuclear Steroid Hormone Receptors: A DissertationPursell, Natalie W. 28 April 2011 (has links)
Among heat shock proteins, Hsp90 is unusual because it is not required for the proper folding of most cellular proteins but rather is disproportionally linked to the activation of signal transduction proteins including over forty kinases and many steroid hormone receptors. Mutated forms of many Hsp90 clients are causative agents in cancer, making Hsp90 a promising pharmacological target. Many small molecular inhibitors have been identified that competitively bind to the ATP binding site of Hsp90, some of which are in clinical trials as anticancer agents. Although the activation of kinase and hormone receptor clients by Hsp90 and its co-chaperones has been extensively studied, the molecular mechanism of client protein activation is poorly understood.
Hsp90 is a dimeric chaperone containing three domains: the N-terminal (N) and middle (M) domains contribute directly to ATP binding and hydrolysis and the C-terminal (C) domain mediates dimerization. At physiological concentration, Hsp90 predominantly forms dimers, but the possibility that full-length monomers might also function in cells has not been tested. In Chapter 3, we used a single-chain strategy to design a full-length Hsp90 monomer (NMCC). The resulting construct was predominantly monomeric at physiological concentration and did not function to support yeast viability as the sole Hsp90. NMCC Hsp90 was also defective at ATP hydrolysis and the activation of kinase and steroid hormone receptor clients in yeast cells. The ability to support yeast growth was rescued by the addition of a coiled-coil dimerization domain, indicating that the parental single-chain construct is functionally defective because it is monomeric.
After finding that a full-length Hsp90 monomer containing only one ATPase site was unable to support yeast viability or activate Hsp90 clients, we set out to further explore the role of ATPase activity in client protein activation. Approximately 10 % of the yeast proteome binds to Hsp90 making it important to study Hsp90 function in the cellular environment where all binding partners are present. In Chapter 4, we observed that co-expression of different Hsp90 subunits in Saccharomyces cerevisiae caused unpredictable synthetic growth defects due to cross-dimerization. We engineered super-stabilized Hsp90 dimers that resisted cross-dimerization with endogenous Hsp90 and alleviated the synthetic growth defect. We utilized these super-stabilized dimers to analyze the ability of ATPase mutant homodimers to activate known Hsp90 client proteins in yeast cells. We found that ATP binding and hydrolysis by Hsp90 are both required for the efficient maturation of the glucocorticoid hormone receptor (GR) and v-src confirming the critical role of ATP hydrolysis in the maturation of steroid hormone receptors and kinases in vivo.
In addition to its role in the activation of signal transduction client proteins, Hsp90 has been shown to suppress the in vitro aggregation of numerous hard-to-fold proteins. In Chapter 5, we examine the role of charge in Hsp90 anti-aggregation activity. The charge on Hsp90 is largely concentrated in two highly acidic regions. We found that deletion of both charge-rich regions dramatically impaired Hsp90 anti-aggregation activity. Addition of an acid-rich region with a distinct amino acid sequence to our double-deleted Hsp90 construct rescued the anti-aggregation activity of Hsp90 indicating that the net charge contributes to its anti-aggregation activity.
The in vitro anti-aggregation activity of Hsp90 studied in Chapter 5 occurs in the absence of ATP. However, all of the biologically important functions of Hsp90 in cells identified to date, including the maturation of kinases and nuclear steroid hormone receptors, clearly require ATP hydrolysis. Why does Hsp90 robustly hinder the aggregation of hard-to-fold proteins without ATP in vitro, but in vivo uses ATP hydrolysis for all of its essential functions? By utilizing separation of function Hsp90 variants (that specifically lack in vitro anti-aggregation activity) we have begun to address this question. We find that anti-aggregation deficient Hsp90 is unable to support yeast growth under stressful conditions, potentially due to reduced cellular expression. Interestingly, the ATP-independent anti-aggregation activity of Hsp90 has no measureable impact on cellular function. Thus, hindering the aggregation of most hard-to- fold proteins by Hsp90 (independent of ATP hydrolysis) does not appear to be important for cell function. These results suggest a cellular model where the Hsp40/60/70 machinery is responsible for hindering the aggregation of most hard-to-fold proteins while Hsp90 assists in the maturation of a select set of clients in an ATP-dependent fashion, potentially aided by its inherent anti-aggregation properties.
|
175 |
Quantitative Analysis of Novel Chemical and shRNA Based Methods to Increase Survival of Motor Neuron Protein LevelsEvans, Matthew C. 20 June 2011 (has links)
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder that is the leading genetic cause of infantile death. SMA is caused by homozygous deletion or mutation of the survival of motor neuron 1 gene (SMN1). The SMN2 gene is nearly identical to SMN1, however is alternatively spliced. The close relationship to SMN1 results in SMN2 being a very power genetic modifier of SMA disease severity and a target for therapies. In this study we attempt to characterize novel chemical compounds identified as potential activators of the SMN2 gene. Additionally, we sought to determine the regulatory role individual HDAC proteins use to control expression of full length protein from the SMN2 gene.
We used quantitative PCR to determine the effects of novel compounds and shRNA silencing of individual HDACs on the steady state levels of a SMN2-luciferase reporter transcripts. We determined that the compounds identified in multiple reporter high throughput screens increased SMN protein levels via transcriptional activation of the SMN2 gene. Other compounds identified in the same screen functioned post-transcriptionally, possibly stabilizing the SMN protein itself by decreasing degradation. Furthermore, we determined that reduction of individual HDAC proteins was sufficient to increase SMN protein levels in a transgenic reporter system. Knockdown of class I HDAC proteins preferentially activated the reporter by increased promoter transcription.
Silencing of class II HDAC proteins maintained transcriptional activity; however silencing of HDAC 5 and 6 also appeared to enhance inclusion of an alternatively spliced exon. This collective work defines a quantitative RNA based protocol to determine mechanism of SMN reporter increase in response to any chosen treatment method. Additionally, this work highlights HDAC proteins 2 and 6 as excellent investigative targets. These data are important to the basic understanding of SMN expression regulation and the refinements of current therapeutic compounds as well as the development of novel SMA therapeutics.
|
176 |
Catalytic Mechanisms in Sec7 and Vps9 Domain Exchange Factors for Arf and Rab GTPases: A DissertationLee, Meng-Tse 10 May 2012 (has links)
Vesicle budding, membrane trafficking, and lipid metabolism depend on the switching of Arf and Rab GTPases from the inactive GDP bound state to the active GTP bound state. However, Arf and Rab GTPases have intrinsic rates of GDP to GTP exchange that are much slower (hours to days) than the time scale of the relevant trafficking processes (seconds or less). In cells, the activation of Arf and Rab GTPases is tightly regulated by guanine nucleotide exchange factors (GEFs) with Sec7 or Vps9 domains, respectively.
Full length Cytohesins, which have a domain architecture consisting of heptad repeats, a Sec7 domain, a pleckstrin homology (PH) domain, and a polybasic motif, have 100-fold lower exchange activity than the isolated Sec7 domain. Insights into the low exchange activity were obtained by structural, biochemical and kinetic analyses. It was found that the Sec7-PH domain linker and a C-terminal amphipathic helix physically block the docking sites for the switch regions of Arf GTPases. Mutations within either element result in partial or complete relief of autoinhibition. Autohibition is also strongly relieved by phosphorylation of protein kinase C (PKC) sites in the polybasic motif of Cytohesin-1 or by phosphoinositide head group-dependent binding of active Arf6.
Despite unrelated folds, Sec7 and Vps9 domains engage cognate GTPases in a strikingly similar manner and supply a critical acidic residue that interacts with an invariant lysine residues from phosphate binding (P) loop of the GTPase in the nucleotide free complex. The key acidic residues have also been proposed to disrupt the Mg2+ binding site; however, it is not known whether disruption of Mg2+ binding contributes to the rate limiting step for nucleotide release. To investigate the kinetic mechanism for catalysis of nucleotide exchange in the absence of autoinhibitory interactions, a detailed stopped flow kinetic analysis of the intrinsic and GEF mediated exchange reactions was conducted for the isolated catalytic cores. Using three different fluorescence methods to monitor Mg2+ dissociation, formation of the nucleotide free intermediate, and subsequent nucleotide binding, the catalytic cores of Cytohesin-1 and Rabex-5 were found to robustly accelerate nucleotide exchange on Arf1 and Rab5, respectively, by at least 105- fold at physiological concentrations of Mg2+. The acceleration of nucleotide exchange was reduced by roughly an order of magnitude at sub-micromolar concentrations of Mg2+. In addition, the Cytohesin-1 and Rabex-5 catalytic cores have similarly high catalytic efficiencies (kcat/KM) as well as high lower limits on both the rate (kcat) and steady state (KM) constants for GDP release at physiological as well as low Mg2+ concentration. The limits on kcat and KM are comparable to the highest values reported for other well characterized GEFs and likely reflect dual requirements of membrane targeting and autoregulatory mechanisms for tight control of catalytic output. These results provide a solid structural and mechanistic foundation for future experiments to investigate the spatial-temporal dynamics of Cytohesin and Rabex-5 activation in cellular contexts.
|
177 |
Investigating the Roles of NEDD4.2s and Nef in the Release and Replication of HIV-1: A DissertationWeiss, Eric R. 13 September 2012 (has links)
Replication of HIV-1 requires the assembly and release of mature and infectious viral particles. In order to accomplish this goal, HIV-1 has evolved multiple methods to interact with the host cell. HIV-1 recruits the host cell ESCRT machinery to facilitate the release of nascent viral particles from the host cell membrane. Recruitment of these cellular factors is dependent on the presence of short motifs in Gag referred to as Late-domains. Deletion or mutation of these domains results in substantial decrease in the release of infectious virions. However, previously published work has indicated that over-expression of the E3 ubiquitin ligase, NEDD4.2s is able to robustly rescue release of otherwise budding-defective HIV-1 particles. This rescue is specific to the NEDD4.2s isoform as related E3 ubiquitin ligases display no ability to rescue particle release. In addition, rescue of particle release is dependent on the presence of the partial C2 domain and a catalytically active HECT domain of NEDD4.2s. Here I provide evidence supporting the hypothesis that a partial C2 domain of NEDD4.2s constitutes a Gag interacting module capable of targeting the HECT domains of other E3 ubiquitin ligases to HIV-1 Gag. Also, by generating chimeras between HECT domains shown to form poly-ubiquitin chains linked through either K48 or K63 of ubiquitin, I demonstrate that the ability of NEDD4.2s to catalyze the formation of K63-polyubiquitin chains is required for its stimulation of HIV-1 L-domain mutant particle release. In addition, I present findings from on-going research into the role of the HIV-1 accessory protein Nef during viral replication using the culture T-cell line, MOLT3. My current findings indicate that downregulation of CD4 from the host cell membrane does not solely account for the dramatic dependence of HIV-1 replication on Nef expression in this system. In addition, I present evidence indicating that Nef proteins from diverse HIV-1 Groups and strains are capable of enhancing HIV-1 replication in this system. Analysis of a range of mutations in Nef known to impact interaction with cellular proteins suggest that the observed replication enhancement requires Nef targeting to the host cell membrane and may also require the ability to interact with select Src-kinases. Lastly, we find that the ability of Nef to enhance replication in this system is separate from any increase in viral particle infectivity, in agreement with current literature.
|
178 |
Pharmacological Chaperoning in Fabry DiseaseRogich, Jerome 01 January 2011 (has links) (PDF)
Fabry Disease is an X-‐linked lysosomal storage disorder characterized by a variety of symptoms including hypohydrosis, seizures, cardiac abnormalities, skin lesions, and chronic pain. These symptoms stem from a lack of functional endogenous α-‐ Galactosidase A (α-GAL), which leads to an accrual of its natural substrate. The severity of the disease symptoms can be directly correlated with the amount of residual enzyme activity. It has been shown that an imino sugar, 1-deoxygalactonojirimycin (DGJ), can increase enzymatic activity and clear excess substrate. This pH-‐dependent chaperoning phenomenon is believed to arise from the presence of aspartic acid 170 in the active site. This key residue may become protonated at lower pH, preventing a buried salt bridge from being formed. We mutated this residue to an alanine, abolishing activity, and making traditional assays impractical. We have measured the KD of chaperone for this modified active site through crystallography. Previous crystallographic studies on this enzyme have also shown a preliminary second binding site on the surface of α-Galactosidase that prefers the β-Galactose anomer. When β-Galactose binds it buries a greater surface area than when α‐Galactose binds to the active site. Binding of this site by a small molecule should stabilize the native state of the enzyme, but would be sterically occluded from inhibiting active site. We have probed this second site by soaking crystals of α‐Galactosidase with a small library of compounds.
|
179 |
Probing Allosteric, Partial Inhibition of Thrombin Using Novel AnticoagulantsVerespy, Stephen S, III 01 January 2016 (has links)
Thrombin is the key protease that regulates hemostasis; the delicate balance between procoagulation and anticoagulation of blood. In clotting disorders, like deep vein thrombosis or pulmonary embolism, procoagulation is up-regulated, but propagation of clotting can be inhibited with drugs targeting the proteases involved, like thrombin. Such drugs however, have serious side effects (e.g., excessive bleeding) and some require monitoring during the course of treatment. The reason for these side effects is the mechanism by which the drugs’ act. The two major mechanisms are direct orthosteric and indirect allosteric inhibition, which will completely abolish the protease’s activity. Herein we sought an alternative mechanism called allosteric, partial inhibition, that has shown promise to truly regulate coagulation. Partial inhibition through allosteric mechanisms are well described for membrane-bound and oligomeric proteins. However proteases, specifically monomeric proteases (i.e., thrombin), have not shown this phenomenon until now. A small library of coumarin-based sulfated allosteric modulators (CSAMs) was synthesized to target a surface region called exosite 2; mainly composed of highly positively charged residues surrounded by hydrophobic patches. Studies revealed a non-competitive mechanism of binding with a range of IC50s between 0.2-58 µM combined with inhibitory efficacies (ΔY) between 22-73%; indicative of allosteric, partial inhibition. The KD was determined for the most potent compound (3g; IC50 = 0.2 µM, ΔY = 47%) at 0.15 µM. 3g was observed to bind at exosite 2 through unfractionated heparin competition and thrombin mutant studies. Additional computational studies were in agreement with the mutant and competition studies, showing the sulfate of 3g binding within a pocket containing R126 and R233. Fluorescence quenching and antithrombin inactivation rate studies described a conformational change to thrombin’s active site in the presence of 3g, supporting reduction of thrombin’s catalytic efficiency, without complete inhibition of thrombin’s proteolytic activities. Coupled enzyme assays and gel electrophoresis showed that in the presence of 3g, hydrolysis of fibrinogen (IC50 = 0.51 µM, ΔY = 94%) and protein C activation (IC50 = 1.7 µM, ΔY = 91%) is fully inhibited. Alternatively, FXIII activation was shown to be only partially inhibited by the presence of 3g, and FXI activation did not show any significant activation or inhibition. 3g was also shown to be active in human plasma and whole blood, but requiring much higher concentrations to induce an anticoagulant effect. Mice studies looking at the effects of 3g in vivo showed that even at high concentrations, showed no abnormal bleeding or any other irregularities. This work highlights a novel occurrence regarding thrombin’s allosteric functionality against multiple endogenous substrates. This library of compounds may be useful in the future development of allosteric inhibitors and probes that pose little to no risk of bleeding events by inducing partial inhibition.
|
180 |
TOWARD AN ENZYME-COUPLED, BIOORTHOGONAL PLATFORM FOR METHYLTRANSFERASES: PROBING THE SPECIFICITY OF METHIONINE ADENOSYLTRANSFERASESHuber, Tyler D. 01 January 2019 (has links)
Methyl group transfer from S-adenosyl-l-methionine (AdoMet) to various substrates including DNA, proteins, and natural products (NPs), is accomplished by methyltransferases (MTs). Analogs of AdoMet, bearing an alternative S-alkyl group can be exploited, in the context of an array of wild-type MT-catalyzed reactions, to differentially alkylate DNA, proteins, and NPs. This technology provides a means to elucidate MT targets by the MT-mediated installation of chemoselective handles from AdoMet analogs to biologically relevant molecules and affords researchers a fresh route to diversify NP scaffolds by permitting the differential alkylation of chemical sites vulnerable to NP MTs that are unreactive to traditional, synthetic organic chemistry alkylation protocols.
The full potential of this technology is stifled by several impediments largely deriving from the AdoMet-based reagents, including the instability, membrane impermeability, poor synthetic yield and resulting diastereomeric mixtures. To circumvent these main liabilities, novel chemoenzymatic strategies that employ methionine adenosyltransferases (MATs) and methionine (Met) analogs to synthesize AdoMet analogs in vitro were advanced. Unstable AdoMet analogs are simultaneously utilized in a one-pot reaction by MTs for the alkylrandomization of NP scaffolds. As cell membranes are permeable to Met analogs, this also sets the stage for cell-based and, potentially, in vivo applications.
In order to further address the instability of AdoMet and analogs thereof, MAT-catalyzed reactions utilizing Met and ATP isosteres generated highly stable AdoMet isosteres that were capable of downstream utilization by MTs. Finally, the development, use, and results of a high-throughput screen identified mutant-MAT/Met-analog pairs suitable for postliminary bioorthogonal applications.
|
Page generated in 0.0559 seconds