21 |
Caracterização dos mecanismos de ação da proteína CspC na manutenção da viabilidade e na resposta de Caulobacter crescentus a estresses. / Characterization of the mechanisms of CspC action in Caulobacter crescentus cell viability and stress response.Santos, Juliana da Silva 05 April 2016 (has links)
As mutações pontuais nos dois domínios de CspC proporcionam fenótipos mais severos que a falta de cspC. Nenhuma CSP de C. crescentus é capaz de complementar o fenótipo de sensibilidade ao frio de E. coli BX04. Entretanto, os domínios de choque frio de CspC de C. crescentus individualmente são capazes de complementar este fenótipo. Uma análise transcricional global mostrou que a ausência de cspC afeta a transcrição de 11 genes na fase exponencial e 60 genes na fase estacionária. A meia vida dos genes sciP, aceA e CC0682 se mostrou menor no mutante cspC, sugerindo que é possível que CspC desempenhe uma regulação pós-transcricional. / Point mutations in the CspC CSDs caused a more severe phenotype than that of the null strain. None of the C. crescentus CSPs complemented the cold sensitivity of E. coli BX04 mutant. However, the individual CSDs of C. crescentus CspC complemented this phenotype. A microarray global transcriptional profiling showed the absence of cspC affected the transcription of 11 genes at exponential phase and 60 genes at stationary phase. mRNA decay experiments showed that the sciP, aceA e CC0682 mRNAs were less stable in the cspC mutant, indicating that its effect could be at least partially due to posttranscriptional regulation.
|
22 |
Análise do papel do gene cspC de Caulobacter crescentus e de sua regulação. / Study of the role cspC gene from Caulobacter crescentus and its regulation.Balhesteros, Heloise 31 August 2009 (has links)
O choque frio em bactérias causa a indução de proteínas de choque frio de baixo peso molecular (CSPs), que desestabilizam estruturas secundárias do mRNA, permitindo sua tradução. Caulobacter crescentus possui quatro genes codificando CSPs: cspA e cspB são induzidos sob choque frio, e cspC e cspD, na fase estacionária. Neste trabalho, foi determinada uma nova seqüência para o gene cspC, revelando que a proteína CspC possui dois domínios CSD, como CspD. O mutante nulo para cspC apresentou sensibilidade em baixa temperatura e menor viabilidade em fase estacionária, com alterações na morfologia. A região regulatória foi mapeada por fusões de transcrição, e uma região ativadora da expressão foi identificada, mostrando uma regulação transcricional. Algumas condições nutricionais que disparam a indução do gene foram determinadas, indicando que sua expressão é influenciada pela ausência de glicose no meio, mas não pela ausência de nitrogênio. Este perfil de indução não depende da região ativadora, que, por sua vez, é necessária para os máximos níveis de expressão. / The cold shock response in bacteria involves the expression of cold shock proteins (CSPs), which destabilize secondary structures on mRNAs, allowing their translation. Caulobacter crescentus possesses four genes encoding CSPs: cspA and cspB are induced upon cold shock, while cspC and cspD are induced at stationary phase. In this work, a new sequence for the coding region of the cspC gene was determined, revealing that CspC contains two cold shock domains, like CspD. A null cspC mutant was sensitive to low temperature, presented reduced viability at stationary phase, and altered morphology. The regulatory region of cspC was mapped by transcriptional fusions, identifying a region responsible for activation of cspC expression, suggesting a transcriptional regulation. Some nutritional conditions triggering cspC induction were determined, indicating that its expression is influenced by glucose starvation, but not by nitrogen starvation. This expression profile was not dependent on the activation region, which, in turn, was required for maximum levels of expression.
|
23 |
Identificação e caracterização de genes codificantes de proteínas ricas em glicina ligantes de RNA em soja (Glycine max (L.) Merril)Poersch, Liane Balvedi January 2011 (has links)
A soja constitui uma das culturas mais importantes mundialmente, tanto social quanto economicamente. Consequentemente, informações moleculares sobre processos de desenvolvimento, bem como conhecimento detalhado das interações entre condições estressoras e a resposta da planta a fatores ambientais são necessários. A identificação e caracterização de genes que respondem a condições ambientais específicas constituem um passo inicial no entendimento dos processos adaptativos. Proteínas ricas em glicina (GRPs) são polipeptídeos contendo um grande número do aminoácido glicina em sua estrutura primária. Os genes codificantes de GRPs são regulados ao longo do desenvolvimento e regulados por auxina, ABA, frio, ferimentos, luz, ritmo circadiano, salinidade, seca, patógenos e encharcamento. Entretanto, há pouca informação sobre GRPs de plantas e seus papéis no desenvolvimento e resposta a estresses. As GRPs podem ser divididas em quatro classes (I, II, III, IV) de acordo com sua estrutura primária e presença de domínios característicos. A classe IV é composta por proteínas ligantes de RNA. Domínios adicionais permitem dividir a classe IV de GRPs em quatro subclasses (IVa, IVb, IVc, IVd). A subclasse IVc é representada por proteínas contendo um cold-schock domain (CSD) e dedos de zinco CCHC tipo retrovirais. O objetivo do presente estudo foi: (i) identificar e caracterizar os genes codificantes de classe IV de GRPs, (ii) verificar a padrão de expressão dos genes codificantes da subclasse IVc de GRPs e (iii) produzir plantas de soja transgênicas expressando o gene AtGRP2, o qual foi mostrado estar envolvido na floração e desenvolvimento da semente em Arabidopsis, e também poderia desempenhar um papel na aclimatação ao frio. Um total de 47 genes codificantes da classe IV de GRPs foi identificado no genoma da soja: 19 da subclasse IVa, sete da IVb, seis da IVc e 15 da IVd. Análises in silico indicaram uma expressão preferencial de todos os genes codificantes da subclasse IVc em tecidos em desenvolvimento. Análises de RT-qPCR revelaram que plantas jovens e maduras exibem uma expressão mais alta em folhas do que em outros órgãos, com exceção dos genes GRP2L_4/5 que tiveram expressão mais alta em sementes. GRP2L_4/5 e GRP2L_2 foram induzidos em resposta a baixas temperaturas. Sob estresse com ABA a expressão de todos os genes foi reprimida em folhas e/ou raízes, com exceção do gene GRP2L_2 que foi induzido em raízes. Em resposta a infecção com Phakopsora pachyrhizi, a expressão de GRP2L_2 e GRP2L_3 foi mais alta e precoce no genótipo suscetível quando comparada com o resistente, enquanto que a resposta de GRP2L_4/5 e GRP2L_6 foi mais tardia no genótipo resistente. Ainda, embriões somáticos secundários das cultivares Bragg, IAS-5 e BRSMG 68 Vencedora de soja foram usados para introduzir o gene AtGRP2 no genoma da soja por bombardeamento e sistema bombardeamento/Agrobacterium. Seis eventos de transformação independentes foram confirmados por PCR. No presente momento as plantas estão em desenvolvimento em frascos de vidro. No presente estudo a classe IV de GRPs em soja foi identificada e caracterizada. Este é o primeiro passo para elucidar o papel destas proteínas em plantas. / Molecular information on plant developmental process, as well as detailed knowledge of the interaction between stress conditions and plant response to environmental factors are essential for understanding the adaptive response. Glycine-Rich Proteins (GRP) have the amino acid glycine well represented in their primary structure. The genes encoding GRPs are developmentally regulated and induced by auxin, ABA, cold, wound, light, circadian rhythm, salinity, drought, pathogens, and flooding. However, there is scarce information about plant GRPs and its role on development and stress response. The GRPs can be divided into four classes (I, II, II and IV) according to their primary structure and the presence of characteristic domains. Class IV is composed by RNA-binding proteins. Additional domains permit to split class IV GRPs into four subclasses (IVa, IVb, IVc and IVd). Subclass IVc is represented by proteins containing a Cold-Shock Domain (CSD) and retroviral-like CCHC zinc fingers. The goal of the present study was: (i) to identify and characterize the genes encoding class IV GRPs, (ii) to verify the relative expression of genes encoding subclass IVc GRPs and (iii) to produce transgenic soybean plants expressing the AtGRP2 gene, which was shown to be involved in Arabidopsis flower and seed development, and can also play a role in cold acclimation. A total of 47 genes encoding class IV GRPs were found in the soybean genome: 19 from IVa, seven from IVb, six from IVc and 15 from IVd subclasses. In silico analyses indicated a preferential expression of all genes encoding subclass IVc GRPs in tissues under development. RT-qPCR analyses revealed that both young and mature plants exhibit relative higher expression of subclass IVc GRPs in leaves than in other organs, with exception of GRP2L_4/5 genes that have higher expression in seeds. The GRP2L_4/5 and GRP2L_2 were up-regulated in response to low temperatures. Under ABA stress the expression of all genes was down-regulated in leaves and roots, with exception of GRP2L_2 gene that was up-regulated in roots. In response to Phakopsora pachyrhizi infection, GRP2L_2 and GRP2L_3 expression was higher and earlier in the susceptible genotype when compared with that of the resistant one, while GRP2L_4/5 and GRP2_6 respond later in the resistant genotype. Furthermore, secondary somatic embryos of Bragg, IAS-5 and BRSMG 68 Vencedora soybean cultivars were used to introduce the AtGRP2 gene into the soybean genome by particle bombardment and bombardment/Agrobacterium system. Six independent Bragg transformation events were confirmed by PCR. In the present moment the plants are under development in glass flasks. In the present study the soybean class IV GRPs were identified and characterized. This is the first step to elucidate the role of these proteins in plants.
|
24 |
Identificação de fatores de transcrição e sinais celulares que regulam a expressão do gene cspC em Caulobacter crescentus. / Identification of transcription factors and cellular signals that regulate cspC gene expression from Caulobacter crescentus.Santos, Juliana da Silva 17 January 2012 (has links)
As proteínas de choque frio pertencem a uma família de proteínas com um domínio altamente conservado, denominado domínio de choque frio (CSD). Estão envolvidas em vários processos celulares, incluindo adaptação a baixas temperaturas, estresse nutricional e fase estacionária. Em C. crescentus, uma <font face=\"Symbol\">α-proteobacteria não patogênica, as proteínas CspC e CspD apresentam dois CSDs e seus níveis aumentam apenas durante a fase estacionária. Este trabalho tem como objetivo determinar os fatores de transcrição e sinais celulares envolvidos na regulação do gene cspC em C. crescentus. No presente trabalho, foi realizada a varredura de uma biblioteca de 4000 clones mutados pela inserção do transposon Tn5, onde foram identificados sete mutantes com expressão reduzida de cspC: CCNA03569 (proteína hipotética); CCNA02510 (deacetilase de oligossacarídeos); CCNA01594 (metiltransferase da proteína ribossomal L11); CCNA02186 (pequena subunidade da acetato lactato sintase); CCNA00084 (fosforibosil aminoimidazol carboxamida formiltransferase/ IMP ciclohidrase); CCNA03616 (sulfito redutase dependente de NADPH) e CCNA01448 (frutose-1,6-bisfosfatase). Através de ensaios de expressão na presença de um meio condicionado, verificou-se que cspC e cspD aparentemente não são induzidos em resposta ao aumento de densidade populacional. O fenótipo do mutante cspC na fase estacionária foi avaliado em relação a sua resistência a estresse oxidativo, e vimos que a linhagem <font face=\"Symbol\">DcspC é altamente sensível ao peróxido de hidrogênio e a superóxidos, mas não é sensível a hidroperóxido orgânico. A ausência de cspC provavelmente é compensada por dps, já que a expressão deste gene aumenta no mutante <font face=\"Symbol\">DcspC. Por outro lado, a transcrição de katG diminui, mas as atividades de KatG e SodB não são afetadas no mutante cspC. Em condições de estresses provocados por peróxido de hidrogênio, sacarose e sal a expressão de cspC não é afetada. Os fatores sigmas SigT e SigU e o regulador de transcrição Fur não estão envolvidos na regulação de cspC, mas no mutante <font face=\"Symbol\">DsigJ a expressão de cspC aumenta, e no mutante <font face=\"Symbol\">DoxyR ela é diminuída. Foi verificado também que cspC apresenta uma autoregulação positiva, que pode se dar por meio de estabilização de seu próprio mRNA. / The cold shock proteins belong to a family of proteins presenting a highly conserved domain, called cold shock domain (CSD). They are involved in various cellular processes, including adaptation to low temperature, nutritional stress, cell growth and stationary phase. In C. crescentus, a non-pathogenic <font face=\"Symbol\">α-proteobacteria, the cold shock proteins CspC and CspD have two CSDs and they are induced during stationary phase. This study aims to determine the transcription factors and cellular signals involved in cspC gene regulation in C. crescentus. In the present study we scanned a library of 4000 mutant clones with the Tn5 transposon, from which seven mutants were identified presenting reduced expression of cspC: CCNA03569 (hypothetical protein); CCNA02510 (polysaccharide deacetylase); CCNA01594 (ribosomal protein L11 methyltransferase); CCNA02186 (acetolactate synthase 3 regulatory subunit); CCNA00084 (bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase); CCNA03616 (sulfite reductase (NADPH)) e CCNA01448 (fructose 1,6-bisphosphatase II). Expression assays in the presence of a conditioned medium, showed that cspC and cspD are apparently not induced in response to increased cell density. The phenotype of the mutant cspC was evaluated as to oxidative stress resistance in the stationary phase. The results showed that the <font face=\"Symbol\">DcspC strain is highly sensitive to hydrogen peroxide and superoxide but is not sensitive to organic hydroperoxide. The absence of cspC probably is compensated by dps, since the expression of this gene is increased in <font face=\"Symbol\">DcspC strain. In contrast, the transcritpion of katG is decreased, but the activities of KatG and SodB are not affected in the cspC mutant. Under conditions of stress caused by hydrogen peroxide, sucrose or salt, cspC expression is not affected. The sigma factors sigmas SigT and SigU and transcription regulator Fur are not involved in the regulation of cspC, but cspC expression is increased in <font face=\"Symbol\">DsigJ and decreased in <font face=\"Symbol\">DoxyR strains, respectively. It was also determined that cspC shows a positive autoregulation, which may occur via stabilization of its own mRNA.
|
25 |
Translation-mediated stress responses : mining of ribosome profiling dataFranaszek, Krzysztof January 2017 (has links)
Advances in next-generation sequencing platforms during the past decade have resulted in exponential increases in biological data generation. Besides applications in determining the sequences of genomes and other DNA elements, these platforms have allowed the characterization of cell-wide mRNA pools under different conditions and in different tissues. In 2009, Ingolia and colleagues developed an extension of high-throughput sequencing that provides a snapshot of all cellular mRNA fragments protected by translating ribosomes, dubbed ribosome profiling. This approach allows detection of differential translation activity, annotation of novel protein coding sequences and variants, identification of ribosome pause sites and estimates of de novo protein synthesis. As with other sequencing based methodologies, a major challenge of ribosome profiling has been sorting, filtering and interpreting the gigabytes of data produced during the course of a typical experiment. In this thesis, I developed and applied computational pipelines to interrogate ribosome profiling data in relation to gene expression in several viruses and eukaryotic species, as well as to identify sites of ribosomal pausing and sites of non-canonical translation activity. Specifically, I applied various control analyses for characterizing the quality of profiling data and developed scripts for visualizing genome-based (exon-by-exon) rather than transcript-based ribosome footprint alignments. I also examined the challenge of mapping footprints to repetitive sequences in the genome and propose ways to mitigate the associated problems. I performed differential expression analyses on data from coronavirus-infected murine cells, retrovirus-infected human cells and temperature-stressed Arabidopsis thaliana plants. Dissection of translational responses in Arabidopsis thaliana during heat shock or cold shock revealed several groups of genes that were highly upregulated within 10 minutes of temperature challenge. Analysis of the branches of the unfolded protein and integrated stress responses during coronavirus infection allowed for deconvolution of transcriptional and translational contributions. During the course of these analyses, I identified errors in a recently publicized algorithm for detection of differential translation, and wrote corrections that have now been pulled into the repository for this package. Comparison of the translational kinetics of the dengue virus infection in mosquito and human cell lines revealed host-specific sites of ribosome pausing and RNA accumulation. Analysis of HIV profiling data revealed footprint peaks which were in agreement with previously proposed models of peptide or RNA mediated ribosome stalling. I also developed a simulation to identify transcripts that are prone to generating RPFs with multiple alignments during the read mapping process. Together, the scripts and pipelines developed during the course of this work will serve to expedite future analyses of ribosome profiling data, and the results will inform future studies of several important pathogens and temperature stress in plants.
|
26 |
Identificação e caracterização de genes codificantes de proteínas ricas em glicina ligantes de RNA em soja (Glycine max (L.) Merril)Poersch, Liane Balvedi January 2011 (has links)
A soja constitui uma das culturas mais importantes mundialmente, tanto social quanto economicamente. Consequentemente, informações moleculares sobre processos de desenvolvimento, bem como conhecimento detalhado das interações entre condições estressoras e a resposta da planta a fatores ambientais são necessários. A identificação e caracterização de genes que respondem a condições ambientais específicas constituem um passo inicial no entendimento dos processos adaptativos. Proteínas ricas em glicina (GRPs) são polipeptídeos contendo um grande número do aminoácido glicina em sua estrutura primária. Os genes codificantes de GRPs são regulados ao longo do desenvolvimento e regulados por auxina, ABA, frio, ferimentos, luz, ritmo circadiano, salinidade, seca, patógenos e encharcamento. Entretanto, há pouca informação sobre GRPs de plantas e seus papéis no desenvolvimento e resposta a estresses. As GRPs podem ser divididas em quatro classes (I, II, III, IV) de acordo com sua estrutura primária e presença de domínios característicos. A classe IV é composta por proteínas ligantes de RNA. Domínios adicionais permitem dividir a classe IV de GRPs em quatro subclasses (IVa, IVb, IVc, IVd). A subclasse IVc é representada por proteínas contendo um cold-schock domain (CSD) e dedos de zinco CCHC tipo retrovirais. O objetivo do presente estudo foi: (i) identificar e caracterizar os genes codificantes de classe IV de GRPs, (ii) verificar a padrão de expressão dos genes codificantes da subclasse IVc de GRPs e (iii) produzir plantas de soja transgênicas expressando o gene AtGRP2, o qual foi mostrado estar envolvido na floração e desenvolvimento da semente em Arabidopsis, e também poderia desempenhar um papel na aclimatação ao frio. Um total de 47 genes codificantes da classe IV de GRPs foi identificado no genoma da soja: 19 da subclasse IVa, sete da IVb, seis da IVc e 15 da IVd. Análises in silico indicaram uma expressão preferencial de todos os genes codificantes da subclasse IVc em tecidos em desenvolvimento. Análises de RT-qPCR revelaram que plantas jovens e maduras exibem uma expressão mais alta em folhas do que em outros órgãos, com exceção dos genes GRP2L_4/5 que tiveram expressão mais alta em sementes. GRP2L_4/5 e GRP2L_2 foram induzidos em resposta a baixas temperaturas. Sob estresse com ABA a expressão de todos os genes foi reprimida em folhas e/ou raízes, com exceção do gene GRP2L_2 que foi induzido em raízes. Em resposta a infecção com Phakopsora pachyrhizi, a expressão de GRP2L_2 e GRP2L_3 foi mais alta e precoce no genótipo suscetível quando comparada com o resistente, enquanto que a resposta de GRP2L_4/5 e GRP2L_6 foi mais tardia no genótipo resistente. Ainda, embriões somáticos secundários das cultivares Bragg, IAS-5 e BRSMG 68 Vencedora de soja foram usados para introduzir o gene AtGRP2 no genoma da soja por bombardeamento e sistema bombardeamento/Agrobacterium. Seis eventos de transformação independentes foram confirmados por PCR. No presente momento as plantas estão em desenvolvimento em frascos de vidro. No presente estudo a classe IV de GRPs em soja foi identificada e caracterizada. Este é o primeiro passo para elucidar o papel destas proteínas em plantas. / Molecular information on plant developmental process, as well as detailed knowledge of the interaction between stress conditions and plant response to environmental factors are essential for understanding the adaptive response. Glycine-Rich Proteins (GRP) have the amino acid glycine well represented in their primary structure. The genes encoding GRPs are developmentally regulated and induced by auxin, ABA, cold, wound, light, circadian rhythm, salinity, drought, pathogens, and flooding. However, there is scarce information about plant GRPs and its role on development and stress response. The GRPs can be divided into four classes (I, II, II and IV) according to their primary structure and the presence of characteristic domains. Class IV is composed by RNA-binding proteins. Additional domains permit to split class IV GRPs into four subclasses (IVa, IVb, IVc and IVd). Subclass IVc is represented by proteins containing a Cold-Shock Domain (CSD) and retroviral-like CCHC zinc fingers. The goal of the present study was: (i) to identify and characterize the genes encoding class IV GRPs, (ii) to verify the relative expression of genes encoding subclass IVc GRPs and (iii) to produce transgenic soybean plants expressing the AtGRP2 gene, which was shown to be involved in Arabidopsis flower and seed development, and can also play a role in cold acclimation. A total of 47 genes encoding class IV GRPs were found in the soybean genome: 19 from IVa, seven from IVb, six from IVc and 15 from IVd subclasses. In silico analyses indicated a preferential expression of all genes encoding subclass IVc GRPs in tissues under development. RT-qPCR analyses revealed that both young and mature plants exhibit relative higher expression of subclass IVc GRPs in leaves than in other organs, with exception of GRP2L_4/5 genes that have higher expression in seeds. The GRP2L_4/5 and GRP2L_2 were up-regulated in response to low temperatures. Under ABA stress the expression of all genes was down-regulated in leaves and roots, with exception of GRP2L_2 gene that was up-regulated in roots. In response to Phakopsora pachyrhizi infection, GRP2L_2 and GRP2L_3 expression was higher and earlier in the susceptible genotype when compared with that of the resistant one, while GRP2L_4/5 and GRP2_6 respond later in the resistant genotype. Furthermore, secondary somatic embryos of Bragg, IAS-5 and BRSMG 68 Vencedora soybean cultivars were used to introduce the AtGRP2 gene into the soybean genome by particle bombardment and bombardment/Agrobacterium system. Six independent Bragg transformation events were confirmed by PCR. In the present moment the plants are under development in glass flasks. In the present study the soybean class IV GRPs were identified and characterized. This is the first step to elucidate the role of these proteins in plants.
|
27 |
Identificação e caracterização de genes codificantes de proteínas ricas em glicina ligantes de RNA em soja (Glycine max (L.) Merril)Poersch, Liane Balvedi January 2011 (has links)
A soja constitui uma das culturas mais importantes mundialmente, tanto social quanto economicamente. Consequentemente, informações moleculares sobre processos de desenvolvimento, bem como conhecimento detalhado das interações entre condições estressoras e a resposta da planta a fatores ambientais são necessários. A identificação e caracterização de genes que respondem a condições ambientais específicas constituem um passo inicial no entendimento dos processos adaptativos. Proteínas ricas em glicina (GRPs) são polipeptídeos contendo um grande número do aminoácido glicina em sua estrutura primária. Os genes codificantes de GRPs são regulados ao longo do desenvolvimento e regulados por auxina, ABA, frio, ferimentos, luz, ritmo circadiano, salinidade, seca, patógenos e encharcamento. Entretanto, há pouca informação sobre GRPs de plantas e seus papéis no desenvolvimento e resposta a estresses. As GRPs podem ser divididas em quatro classes (I, II, III, IV) de acordo com sua estrutura primária e presença de domínios característicos. A classe IV é composta por proteínas ligantes de RNA. Domínios adicionais permitem dividir a classe IV de GRPs em quatro subclasses (IVa, IVb, IVc, IVd). A subclasse IVc é representada por proteínas contendo um cold-schock domain (CSD) e dedos de zinco CCHC tipo retrovirais. O objetivo do presente estudo foi: (i) identificar e caracterizar os genes codificantes de classe IV de GRPs, (ii) verificar a padrão de expressão dos genes codificantes da subclasse IVc de GRPs e (iii) produzir plantas de soja transgênicas expressando o gene AtGRP2, o qual foi mostrado estar envolvido na floração e desenvolvimento da semente em Arabidopsis, e também poderia desempenhar um papel na aclimatação ao frio. Um total de 47 genes codificantes da classe IV de GRPs foi identificado no genoma da soja: 19 da subclasse IVa, sete da IVb, seis da IVc e 15 da IVd. Análises in silico indicaram uma expressão preferencial de todos os genes codificantes da subclasse IVc em tecidos em desenvolvimento. Análises de RT-qPCR revelaram que plantas jovens e maduras exibem uma expressão mais alta em folhas do que em outros órgãos, com exceção dos genes GRP2L_4/5 que tiveram expressão mais alta em sementes. GRP2L_4/5 e GRP2L_2 foram induzidos em resposta a baixas temperaturas. Sob estresse com ABA a expressão de todos os genes foi reprimida em folhas e/ou raízes, com exceção do gene GRP2L_2 que foi induzido em raízes. Em resposta a infecção com Phakopsora pachyrhizi, a expressão de GRP2L_2 e GRP2L_3 foi mais alta e precoce no genótipo suscetível quando comparada com o resistente, enquanto que a resposta de GRP2L_4/5 e GRP2L_6 foi mais tardia no genótipo resistente. Ainda, embriões somáticos secundários das cultivares Bragg, IAS-5 e BRSMG 68 Vencedora de soja foram usados para introduzir o gene AtGRP2 no genoma da soja por bombardeamento e sistema bombardeamento/Agrobacterium. Seis eventos de transformação independentes foram confirmados por PCR. No presente momento as plantas estão em desenvolvimento em frascos de vidro. No presente estudo a classe IV de GRPs em soja foi identificada e caracterizada. Este é o primeiro passo para elucidar o papel destas proteínas em plantas. / Molecular information on plant developmental process, as well as detailed knowledge of the interaction between stress conditions and plant response to environmental factors are essential for understanding the adaptive response. Glycine-Rich Proteins (GRP) have the amino acid glycine well represented in their primary structure. The genes encoding GRPs are developmentally regulated and induced by auxin, ABA, cold, wound, light, circadian rhythm, salinity, drought, pathogens, and flooding. However, there is scarce information about plant GRPs and its role on development and stress response. The GRPs can be divided into four classes (I, II, II and IV) according to their primary structure and the presence of characteristic domains. Class IV is composed by RNA-binding proteins. Additional domains permit to split class IV GRPs into four subclasses (IVa, IVb, IVc and IVd). Subclass IVc is represented by proteins containing a Cold-Shock Domain (CSD) and retroviral-like CCHC zinc fingers. The goal of the present study was: (i) to identify and characterize the genes encoding class IV GRPs, (ii) to verify the relative expression of genes encoding subclass IVc GRPs and (iii) to produce transgenic soybean plants expressing the AtGRP2 gene, which was shown to be involved in Arabidopsis flower and seed development, and can also play a role in cold acclimation. A total of 47 genes encoding class IV GRPs were found in the soybean genome: 19 from IVa, seven from IVb, six from IVc and 15 from IVd subclasses. In silico analyses indicated a preferential expression of all genes encoding subclass IVc GRPs in tissues under development. RT-qPCR analyses revealed that both young and mature plants exhibit relative higher expression of subclass IVc GRPs in leaves than in other organs, with exception of GRP2L_4/5 genes that have higher expression in seeds. The GRP2L_4/5 and GRP2L_2 were up-regulated in response to low temperatures. Under ABA stress the expression of all genes was down-regulated in leaves and roots, with exception of GRP2L_2 gene that was up-regulated in roots. In response to Phakopsora pachyrhizi infection, GRP2L_2 and GRP2L_3 expression was higher and earlier in the susceptible genotype when compared with that of the resistant one, while GRP2L_4/5 and GRP2_6 respond later in the resistant genotype. Furthermore, secondary somatic embryos of Bragg, IAS-5 and BRSMG 68 Vencedora soybean cultivars were used to introduce the AtGRP2 gene into the soybean genome by particle bombardment and bombardment/Agrobacterium system. Six independent Bragg transformation events were confirmed by PCR. In the present moment the plants are under development in glass flasks. In the present study the soybean class IV GRPs were identified and characterized. This is the first step to elucidate the role of these proteins in plants.
|
28 |
Identificação de fatores de transcrição e sinais celulares que regulam a expressão do gene cspC em Caulobacter crescentus. / Identification of transcription factors and cellular signals that regulate cspC gene expression from Caulobacter crescentus.Juliana da Silva Santos 17 January 2012 (has links)
As proteínas de choque frio pertencem a uma família de proteínas com um domínio altamente conservado, denominado domínio de choque frio (CSD). Estão envolvidas em vários processos celulares, incluindo adaptação a baixas temperaturas, estresse nutricional e fase estacionária. Em C. crescentus, uma <font face=\"Symbol\">α-proteobacteria não patogênica, as proteínas CspC e CspD apresentam dois CSDs e seus níveis aumentam apenas durante a fase estacionária. Este trabalho tem como objetivo determinar os fatores de transcrição e sinais celulares envolvidos na regulação do gene cspC em C. crescentus. No presente trabalho, foi realizada a varredura de uma biblioteca de 4000 clones mutados pela inserção do transposon Tn5, onde foram identificados sete mutantes com expressão reduzida de cspC: CCNA03569 (proteína hipotética); CCNA02510 (deacetilase de oligossacarídeos); CCNA01594 (metiltransferase da proteína ribossomal L11); CCNA02186 (pequena subunidade da acetato lactato sintase); CCNA00084 (fosforibosil aminoimidazol carboxamida formiltransferase/ IMP ciclohidrase); CCNA03616 (sulfito redutase dependente de NADPH) e CCNA01448 (frutose-1,6-bisfosfatase). Através de ensaios de expressão na presença de um meio condicionado, verificou-se que cspC e cspD aparentemente não são induzidos em resposta ao aumento de densidade populacional. O fenótipo do mutante cspC na fase estacionária foi avaliado em relação a sua resistência a estresse oxidativo, e vimos que a linhagem <font face=\"Symbol\">DcspC é altamente sensível ao peróxido de hidrogênio e a superóxidos, mas não é sensível a hidroperóxido orgânico. A ausência de cspC provavelmente é compensada por dps, já que a expressão deste gene aumenta no mutante <font face=\"Symbol\">DcspC. Por outro lado, a transcrição de katG diminui, mas as atividades de KatG e SodB não são afetadas no mutante cspC. Em condições de estresses provocados por peróxido de hidrogênio, sacarose e sal a expressão de cspC não é afetada. Os fatores sigmas SigT e SigU e o regulador de transcrição Fur não estão envolvidos na regulação de cspC, mas no mutante <font face=\"Symbol\">DsigJ a expressão de cspC aumenta, e no mutante <font face=\"Symbol\">DoxyR ela é diminuída. Foi verificado também que cspC apresenta uma autoregulação positiva, que pode se dar por meio de estabilização de seu próprio mRNA. / The cold shock proteins belong to a family of proteins presenting a highly conserved domain, called cold shock domain (CSD). They are involved in various cellular processes, including adaptation to low temperature, nutritional stress, cell growth and stationary phase. In C. crescentus, a non-pathogenic <font face=\"Symbol\">α-proteobacteria, the cold shock proteins CspC and CspD have two CSDs and they are induced during stationary phase. This study aims to determine the transcription factors and cellular signals involved in cspC gene regulation in C. crescentus. In the present study we scanned a library of 4000 mutant clones with the Tn5 transposon, from which seven mutants were identified presenting reduced expression of cspC: CCNA03569 (hypothetical protein); CCNA02510 (polysaccharide deacetylase); CCNA01594 (ribosomal protein L11 methyltransferase); CCNA02186 (acetolactate synthase 3 regulatory subunit); CCNA00084 (bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase); CCNA03616 (sulfite reductase (NADPH)) e CCNA01448 (fructose 1,6-bisphosphatase II). Expression assays in the presence of a conditioned medium, showed that cspC and cspD are apparently not induced in response to increased cell density. The phenotype of the mutant cspC was evaluated as to oxidative stress resistance in the stationary phase. The results showed that the <font face=\"Symbol\">DcspC strain is highly sensitive to hydrogen peroxide and superoxide but is not sensitive to organic hydroperoxide. The absence of cspC probably is compensated by dps, since the expression of this gene is increased in <font face=\"Symbol\">DcspC strain. In contrast, the transcritpion of katG is decreased, but the activities of KatG and SodB are not affected in the cspC mutant. Under conditions of stress caused by hydrogen peroxide, sucrose or salt, cspC expression is not affected. The sigma factors sigmas SigT and SigU and transcription regulator Fur are not involved in the regulation of cspC, but cspC expression is increased in <font face=\"Symbol\">DsigJ and decreased in <font face=\"Symbol\">DoxyR strains, respectively. It was also determined that cspC shows a positive autoregulation, which may occur via stabilization of its own mRNA.
|
29 |
Análise do papel do gene cspC de Caulobacter crescentus e de sua regulação. / Study of the role cspC gene from Caulobacter crescentus and its regulation.Heloise Balhesteros 31 August 2009 (has links)
O choque frio em bactérias causa a indução de proteínas de choque frio de baixo peso molecular (CSPs), que desestabilizam estruturas secundárias do mRNA, permitindo sua tradução. Caulobacter crescentus possui quatro genes codificando CSPs: cspA e cspB são induzidos sob choque frio, e cspC e cspD, na fase estacionária. Neste trabalho, foi determinada uma nova seqüência para o gene cspC, revelando que a proteína CspC possui dois domínios CSD, como CspD. O mutante nulo para cspC apresentou sensibilidade em baixa temperatura e menor viabilidade em fase estacionária, com alterações na morfologia. A região regulatória foi mapeada por fusões de transcrição, e uma região ativadora da expressão foi identificada, mostrando uma regulação transcricional. Algumas condições nutricionais que disparam a indução do gene foram determinadas, indicando que sua expressão é influenciada pela ausência de glicose no meio, mas não pela ausência de nitrogênio. Este perfil de indução não depende da região ativadora, que, por sua vez, é necessária para os máximos níveis de expressão. / The cold shock response in bacteria involves the expression of cold shock proteins (CSPs), which destabilize secondary structures on mRNAs, allowing their translation. Caulobacter crescentus possesses four genes encoding CSPs: cspA and cspB are induced upon cold shock, while cspC and cspD are induced at stationary phase. In this work, a new sequence for the coding region of the cspC gene was determined, revealing that CspC contains two cold shock domains, like CspD. A null cspC mutant was sensitive to low temperature, presented reduced viability at stationary phase, and altered morphology. The regulatory region of cspC was mapped by transcriptional fusions, identifying a region responsible for activation of cspC expression, suggesting a transcriptional regulation. Some nutritional conditions triggering cspC induction were determined, indicating that its expression is influenced by glucose starvation, but not by nitrogen starvation. This expression profile was not dependent on the activation region, which, in turn, was required for maximum levels of expression.
|
30 |
Indução de tolerância à deficiência hídrica na germinação e crescimento inicial de sementes de feijoeiro / The induced tolerance to water stress in the germination and early growth of bean seedsAgostini, Edna Antônia Torquato de 17 March 2011 (has links)
Made available in DSpace on 2016-01-26T18:56:23Z (GMT). No. of bitstreams: 1
Dissertacao.pdf: 324266 bytes, checksum: 7cb8130236c8d36814fc6baebf56c4e4 (MD5)
Previous issue date: 2011-03-17 / Plants are always exposed to aggression of biotic and abiotic agents. Their protection pathway is essential, and it would increase the food production. Navy beans (Phaseolus vulgaris L) are of high economic importance and of agronomic value. It is a susceptible crop to temperature and to water stress, what could lead to metabolic alterations as the synthesis of protein defences. The objective of this work was to study the effect of salicylic acid and the cold shock applied to germinating seeds over the water deficit tolerance, during the beginning of the germination process by means of physiological variables and soluble protein expression. Seeds were embedded in moistened paper substrate, half of the sample in water and half in the salicylic acid (0.01mM) in the first 24 hours. Part of both treatments was then subjected to cold shock 24 hours at 7°C. After that all seeds, from both treatments were subjected to different mannitol induced water potentials: 0;-0.3; -0.6 and -1.2 MPa. Water was considered the zero potential. Four combinations were considered: without shock and salicylic acid (SCHSAS), with shock and without salicylic acid (CCHSAS), without shock with salicylic acid (SCHCAS) and with shock and salicylic acid (CCHCAS). Treatments were evaluated by germination, vigour classification, shoot and root dry weight and length, as by the rate shoot/root. After germination evaluation, five normal seedlings were used to protein and another five to proline extraction. Proline was determined in the whole seedling and protein in shoot and in the root, being compared by SDS-PAGE. Results were analyzed as a completely random design in a factorial design (4x4 as a combination of salicylic acid cold shock with the water restriction) by the Tukey s test (P< 5%) for average comparisons and with polynomial regression for water deficit. Electrophoretic patterns were analyzed by absence presence of bands. Germination was not affected by salicylic acid or by the cold shock treatments, but by the increase in the water deficit. Vigour was altered by salicylic acid and by the shock, being the last one affecting positively and the cold shock negatively. Salicylic acid increased length and weight, especially in the intermediary levels of water deficit. Protein expression of the treatments CCHCAS and SCHCAS showed the same electrophorectical patterns for shoot and root, with an increase in the expression for the lower potentials. The pattern of CCHSAS and SCHSAS treatments exhibited some different bands. / As condições ambientais desfavoráveis fazem com que os vegetais passem por adaptações e a forma como se protegem é essencial, podendo aumentar a produção e qualidade dos alimentos. O feijão (Phaseolus vulgaris L) é de grande valor econômico e de relevante interesse agronômico. Tratando-se de uma cultura de sensibilidade à temperatura e deficiência hídrica, podem ocorrer aclimatações e alterações no metabolismo celular, entre elas a síntese de proteínas de defesa. O objetivo deste trabalho foi estudar o efeito do ácido salicílico e do choque frio aplicados às sementes para a possível tolerância à restrição hídrica, durante o início do processo de germinação, por meio de variáveis fisiológicas e expressão de proteínas solúveis. As sementes foram embebidas em substrato papel a temperatura constante de 25°C em água ou solução aquosa correspondente a 2,5 vezes o peso do substrato seco, sendo parte das sementes em água e parte em solução de ácido salicílico à concentração de 0,01 Mm, pelas primeiras 24 horas. Metade das sementes embebidas em água como as embebidas em ácido salicílico foram transferidas para o choque frio, por 24 horas, à temperatura de 7°C. A seguir todas as sementes foram transferidas para um substrato simulando diferentes potenciais osmóticos: 0,0; -0,3; -0,6; -1,2 MPa induzidos por manitol, sendo considerado potencial zero o substrato umedecido com água, compondo quatro combinações sem choque sem ácido salicílico (SCHSAS), com choque sem ácido salicílico (CCHSAS), sem choque com ácido salicílico (SCHCAS) e com choque com ácido salicílico (CCHCAS). Os tratamentos foram avaliados por germinação, classificação de vigor, comprimento de parte aérea e raiz, massa seca da parte aérea e raiz e relação raiz/parte aérea. Após a avaliação da germinação, duas amostras de cinco plântulas normais, por repetição, foram utilizadas para determinação de prolina (plântula toda) e extração de proteínas totais e análise por eletroforese SDS PAGE de parte aérea e raiz. Os resultados foram analisados considerando o delineamento inteiramente casualizado em arranjo fatorial de 4x4 (combinação dos tratamentos com ácido salicílico e choque frio e níveis de deficiência de água no substrato), empregando-se Tukey (5% de probabilidade) para comparação de médias dos tratamentos qualitativos e análise de regressão polinomial para os níveis de deficiência. As análises de eletroforese foram avaliadas por imagem detectando-se presença e ausência de bandas. A germinação não foi influenciada pelos tratamentos com ácido salicílico e choque, mas diminuiu com a progressão da deficiência de água. O vigor foi alterado pelos tratamentos de ácido salicílico e choque, sendo que o tratamento com ácido salicílico influiu positivamente enquanto o choque negativamente. O tratamento com ácido salicílico proporcionou maiores comprimentos e massas secas de parte aérea e total das plântulas, principalmente nos níveis intermediários de deficiência de água. A expressão de proteínas dos tratamentos CCHCAS e SCHCAS revelou o mesmo padrão eletroforético tanto para parte aérea quanto para raiz com maior intensidade de expressão nos potenciais osmóticos menores. O perfil de bandas dos tratamentos CCHSAS e SCHSAS apresentou alteração revelando algumas bandas diferenciadoras.
|
Page generated in 0.0537 seconds