• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rhéologie et comportement de suspensions de Escherichia Coli en milieux confinés / Rheology and behavior of confined Escherichia Coli suspensions

Gachelin, Jeremie 19 December 2014 (has links)
Lorsque des particules actives, des particules pouvant se mouvoir par elles-mêmes, sont mises en suspension dans un fluide, celles-ci peuvent avoir un comportement collectif. Dans ce document, nous présentons des travaux expérimentaux utilisant des Escherichia Coli, une particule biologique, des techniques microfluidiques, ainsi que des simulations numériques. Ceux-ci nous ont permis de caractériser les comportements collectifs de ces nageurs, leur modification en présence d'un cisaillement extérieur ainsi que l'impact de ces comportements microscopiques sur sa viscosité. Nous avons ainsi mis au jour le caractère progressif de l'apparition des mouvements collectifs avec la concentration, l'existence d'un taux de cisaillement critique commun pour les comportements individuels et collectifs des nageurs, ainsi qu'une rhéologie non-newtonienne de ces suspensions. / If we put active particles, ie. motile particles, in suspension into a _uid, collective behaviors can occur. In this document, we present experimental works using Escherichia Coli, a biological particle, micro_uidic devices, and numerical simulations. By these ways, we caracterized these swimmers, their collective motions, the impact of an external shear on their behavior, and rheological behavior of this kind of suspensions. We show that the typical size of these collective motions increases smoothly with the volume fraction, and that a critical shear rate exist and is the same for individual and collective motion under shear. We also show for that bacterial suspensions have a non-newtonian viscosity and describe their rheological behavior.
2

Movimentos coletivos harmônicos, suas frequências e combinações lineares, na regulação de três proteínas: na transição alostérica da DEA, na ativação por redução da MosR e na ligação da ElrR ao DNA / Collective harmonic motions, their frequencies and linear combinations, on the regulation of three proteins: on the allosteric transition of DEA, on the activation by reduction of MosR and on the DNA-binding of ElrR

Câmara, Amanda Souza 04 August 2017 (has links)
Nas duas últimas décadas, houve um enorme aumento no número de estruturas proteicas resolvidas, e entre elas há uma variedade imensa de proteínas com mais de uma conformação observada. Essa quantidade incontestável de dados experimentais corroboram a hipótese de que cada proteína exista num espaço conformacional próprio, onde ela possa adotar inúmeras conformações, umas mais distintas ou estáveis que outras. Essas conformações estão distribuídas nesse espaço de acordo com sua energia potencial, que pode ser definida como uma superfície cheia de rugosidades, poços e barreiras energéticas. Duas conformações distantes nesse espaço são muito diferentes entre si, enquanto que duas conformações próximas são mais semelhantes. Da mesma forma, se distinguem os movimentos necessários para passar de uma conformação à outra. Para uma proteína passar de um estado a outro, geralmente identificados com grandes mudanças conformacionais, é necessário um movimento coletivo. Por ser de grande amplitude, esse tipo de movimento ocorre com baixa frequência, e dificilmente é observado em simulações clássicas de dinâmica molecular. Assim, existem métodos dedicados à obtenção destes movimentos, como a análise de modos normais, os modelos de redes elásticas e a análise de componentes principais. Neste trabalho, adaptamos o método de transformada de Fourier para recuperar modos harmônicos que compõem uma trajetória simulada suficientemente longa para analisar três proteínas distintas quanto a seus movimentos biológicos de importância funcional. Uma é a DEA, cuja simetria hexagonal observamos influenciar nos modos coletivos e na transição entre estados. Outra é a MosR, que simulamos em seus dois estados diferentes, oxidado ou reduzido, para encontrar como a oxidação é capaz de impedir os movimentos coletivos que levam à conformação ligada ao DNA. Nestas duas proteínas, observamos que nenhum modo por si só é responsável pela transição entre as conformações experimentais, mas que eles dependem de outros modos ou outras mudanças conformacionais ocorrendo de forma combinada. A terceira proteína analisada é um regulador transcricional, assim como a MosR, a ElrR, cuja estrutura é conhecida somente na forma apo. Neste trabalho, construímos modelos da ElrR ligada ao DNA pela combinação linear de modos harmônicos para modelar um possível ligante na nova conformação do sítio alostérico. As amplitudes usadas nessa combinação foram obtidas pelo método de mínimos quadrados, visando minimizar o desvio em relação somente às coordenadas que as hélices de reconhecimento devem apresentar para se ligar ao sítio de DNA. Este prognóstico foi feito pela análise metódica das estruturas de 27 reguladores transcricionais, homodiméricos com o motivo HTH, em complexo com DNA. Essa análise também nos permitiu descrever a estereoquímica do encaixe das hélices de reconhecimento nos sulcos maiores do DNA com novos parâmetros geométricos, intimamente relacionados com a simetria do complexo, com a sequência de resíduos das hélices de reconhecimento e com a sequência de bases do sítio de DNA, de forma a auxiliar na modelagem de novos complexos. / There was an enormous increase in the deposited protein structures in the past two decades, among them there is a great variety of proteins with more than one observed conformation. This undenieble amount of experimental data ratify the hypothesis that each protein posseses its own conformational space, where it can adopt countless conformations, some more distinct or stable than others. These conformations are distributed in the space according to its potential energy, which maybe defined as a rough landscape fulled with energetic wells and barriers. Two conformations lying apart from each other in this landscape do not carry much resemblances, while neighbouring conformations are very similar. The motions required to get one conformation to another are just as distinguishable. There must be a collective motion inbetween two states of a protein, commonly characterized by large conformation changes. This type of motion is related to large amplitudes and low frequencies, thus it is hardly seen in classical molecular dynamics simulations. Therefore, there are dedicated methods to obtain these motions, as normal modes analysis, elastic network models and essential dynamics. In this work we adapted the method of Fourier transform filtering to retrieve harmonic modes that compose a simulated trajectory and thus analise the biological motions with functional importance of three distinct proteins. One is DEA, which hexagonal symmetry was observed to affect its collective motions and the transition between biological states. Another protein is MosR, which we simulated in two different states, oxidized or reduced, to learn how the formation of a disulphide bridge is able to preclude the collective motions that lead to a DNA-binding conformation. With these two proteins we observed that no mode by itself is responsible for the transition between experimental conformations, and they actually depend on other conformational changes occurring in a combined manner. The third protein that we analised, ElrR, is a transcriptional regulator, like MosR, which structure is known only on its apo form. Hence in this work we built models of ElrR bound to DNA by the linear combination of harmonic modes aiming to model a ligand that would fit in the allosteric site upon the conformational changes driven by the collective motions. The amplitudes we used in this method were calculated by the least square method to minimize the deviation to the positions of the recognition helices when bound to the DNA. This prognostic of the target position of the recognition helices was made upon the methodical analysis of 27 structures of homodimeric transcriptional regulators, that present the Helix-Turn-Helix motif, complexed with DNA. This approach allowed us to describe the stereochemical fitting of the recognition helices into the DNA major grooves with new geometrical parameters intimatelly related to the symmetry of the complex, the residue sequence of the recognition helices and the base sequence of the DNA site, providing thus support to model new complexes.
3

Movimentos coletivos harmônicos, suas frequências e combinações lineares, na regulação de três proteínas: na transição alostérica da DEA, na ativação por redução da MosR e na ligação da ElrR ao DNA / Collective harmonic motions, their frequencies and linear combinations, on the regulation of three proteins: on the allosteric transition of DEA, on the activation by reduction of MosR and on the DNA-binding of ElrR

Amanda Souza Câmara 04 August 2017 (has links)
Nas duas últimas décadas, houve um enorme aumento no número de estruturas proteicas resolvidas, e entre elas há uma variedade imensa de proteínas com mais de uma conformação observada. Essa quantidade incontestável de dados experimentais corroboram a hipótese de que cada proteína exista num espaço conformacional próprio, onde ela possa adotar inúmeras conformações, umas mais distintas ou estáveis que outras. Essas conformações estão distribuídas nesse espaço de acordo com sua energia potencial, que pode ser definida como uma superfície cheia de rugosidades, poços e barreiras energéticas. Duas conformações distantes nesse espaço são muito diferentes entre si, enquanto que duas conformações próximas são mais semelhantes. Da mesma forma, se distinguem os movimentos necessários para passar de uma conformação à outra. Para uma proteína passar de um estado a outro, geralmente identificados com grandes mudanças conformacionais, é necessário um movimento coletivo. Por ser de grande amplitude, esse tipo de movimento ocorre com baixa frequência, e dificilmente é observado em simulações clássicas de dinâmica molecular. Assim, existem métodos dedicados à obtenção destes movimentos, como a análise de modos normais, os modelos de redes elásticas e a análise de componentes principais. Neste trabalho, adaptamos o método de transformada de Fourier para recuperar modos harmônicos que compõem uma trajetória simulada suficientemente longa para analisar três proteínas distintas quanto a seus movimentos biológicos de importância funcional. Uma é a DEA, cuja simetria hexagonal observamos influenciar nos modos coletivos e na transição entre estados. Outra é a MosR, que simulamos em seus dois estados diferentes, oxidado ou reduzido, para encontrar como a oxidação é capaz de impedir os movimentos coletivos que levam à conformação ligada ao DNA. Nestas duas proteínas, observamos que nenhum modo por si só é responsável pela transição entre as conformações experimentais, mas que eles dependem de outros modos ou outras mudanças conformacionais ocorrendo de forma combinada. A terceira proteína analisada é um regulador transcricional, assim como a MosR, a ElrR, cuja estrutura é conhecida somente na forma apo. Neste trabalho, construímos modelos da ElrR ligada ao DNA pela combinação linear de modos harmônicos para modelar um possível ligante na nova conformação do sítio alostérico. As amplitudes usadas nessa combinação foram obtidas pelo método de mínimos quadrados, visando minimizar o desvio em relação somente às coordenadas que as hélices de reconhecimento devem apresentar para se ligar ao sítio de DNA. Este prognóstico foi feito pela análise metódica das estruturas de 27 reguladores transcricionais, homodiméricos com o motivo HTH, em complexo com DNA. Essa análise também nos permitiu descrever a estereoquímica do encaixe das hélices de reconhecimento nos sulcos maiores do DNA com novos parâmetros geométricos, intimamente relacionados com a simetria do complexo, com a sequência de resíduos das hélices de reconhecimento e com a sequência de bases do sítio de DNA, de forma a auxiliar na modelagem de novos complexos. / There was an enormous increase in the deposited protein structures in the past two decades, among them there is a great variety of proteins with more than one observed conformation. This undenieble amount of experimental data ratify the hypothesis that each protein posseses its own conformational space, where it can adopt countless conformations, some more distinct or stable than others. These conformations are distributed in the space according to its potential energy, which maybe defined as a rough landscape fulled with energetic wells and barriers. Two conformations lying apart from each other in this landscape do not carry much resemblances, while neighbouring conformations are very similar. The motions required to get one conformation to another are just as distinguishable. There must be a collective motion inbetween two states of a protein, commonly characterized by large conformation changes. This type of motion is related to large amplitudes and low frequencies, thus it is hardly seen in classical molecular dynamics simulations. Therefore, there are dedicated methods to obtain these motions, as normal modes analysis, elastic network models and essential dynamics. In this work we adapted the method of Fourier transform filtering to retrieve harmonic modes that compose a simulated trajectory and thus analise the biological motions with functional importance of three distinct proteins. One is DEA, which hexagonal symmetry was observed to affect its collective motions and the transition between biological states. Another protein is MosR, which we simulated in two different states, oxidized or reduced, to learn how the formation of a disulphide bridge is able to preclude the collective motions that lead to a DNA-binding conformation. With these two proteins we observed that no mode by itself is responsible for the transition between experimental conformations, and they actually depend on other conformational changes occurring in a combined manner. The third protein that we analised, ElrR, is a transcriptional regulator, like MosR, which structure is known only on its apo form. Hence in this work we built models of ElrR bound to DNA by the linear combination of harmonic modes aiming to model a ligand that would fit in the allosteric site upon the conformational changes driven by the collective motions. The amplitudes we used in this method were calculated by the least square method to minimize the deviation to the positions of the recognition helices when bound to the DNA. This prognostic of the target position of the recognition helices was made upon the methodical analysis of 27 structures of homodimeric transcriptional regulators, that present the Helix-Turn-Helix motif, complexed with DNA. This approach allowed us to describe the stereochemical fitting of the recognition helices into the DNA major grooves with new geometrical parameters intimatelly related to the symmetry of the complex, the residue sequence of the recognition helices and the base sequence of the DNA site, providing thus support to model new complexes.
4

Functional Domain Motions and Processivity in Bacterial Hyaluronate Lyase / A Molecular Dynamics study / Functional Domain Motions and Processivity in Bacterial Hyaluronate Lyase / A Molecular Dynamics study

Joshi, Harshad 04 May 2007 (has links)
No description available.
5

[en] A COMPUTATIONAL APPROACH TO THE STRUCTURE AND DYNAMICS OF HUMAN SERUM ALBUMIN: EFFECTS OF THE HEME / [pt] UMA ABORDAGEM COMPUTACIONAL DA ESTRUTURA E DINÂMICA DA ALBUMINA SÉRICA HUMANA: EFEITOS DO HEME

TEOBALDO RICARDO CUYA GUIZADO 18 July 2018 (has links)
[pt] As doenças trasmitidas pelo sangue, assim como a necessidade de bancos de sangue para um pronto auxílio em casos de acidentes tem estimulado esforços para desenvolver substitutos do sangue. A albumina serica humana (HSA do ingles Human Serum Albumin) é a proteína mais abundante no plasma sanguíneo. A molécula heme é a transportadora de oxigênio no sangue. Portanto, um estudo detalhado da interação HSA/heme seria útil em pesquisas que visam tornar o complexo HSA-heme em um substituto do sangue. Nesta tese, foram usadas técnicas de dinâmica molecular e ferramentas estatísticas para estudar o sistema HSA-heme em solvente explícito. Tanto o ligante quanto a proteína foram também estudados separadamente em meio aquoso. Dentre outros resultados, nosso estudo revelou a organização da água circundante, os efeitos da ligação do heme na HSA, os mecanismos moleculares da ligação do heme, os movimentos coletivos da proteína livre e ligada, assim como também os aminoácidos que atuam como dobradiças moleculares na mudança conformacional que sofre a proteína ao ligar o heme. / [en] Diseases transmitted through the blood, as well as the need for blood banks to help in case of accidents, stimulated efforts to develop blood substitutes. The human serum albumin (HSA) is the most abundant protein in blood plasma. The heme molecule is the carrier of oxygen in the blood. Therefore, a detailed study of the interaction HSA/heme could give useful insights in the research aimed to convert the HSA-heme complex into a blood substitute. In this thesis, molecular dynamics techniques and statistical tools were applied to study the HSA-heme system in explicit solvent. Both ligand and protein were also studied separately in aqueous medium. Among other results, our study reveals the organization of the surrounding water, the effects of the heme upon its binding to HSA, the molecular mechanisms for heme binding, the collective motions of the protein with and without the heme, as well as the amino acids that act as molecular hinges in the conformational change between the free and bound forms of the protein.

Page generated in 0.1351 seconds