Spelling suggestions: "subject:"combinatorial""
101 |
Dimensionnement GRWA et protection par segment dans les réseaux optiques WDMBouffard, Alexandre January 2005 (has links)
No description available.
|
102 |
Analyse combinatoire de données : structures et optimisation / Logical Analysis of Data : Structures and OptimizationDarlay, Julien 19 December 2011 (has links)
Cette thèse porte sur des problèmes d'exploration de données avec le point de vue de la recherche opérationnelle. L'exploration de données consiste en l'apprentissage de nouvelles connaissances à partir d'observations contenues dans une base de données. La nature des problèmes rencontrés dans ce domaine est proche de celle des problèmes de la recherche opérationnelle: grandes instances, objectifs complexes et difficulté algorithmique. L'exploration de données peut aussi se modéliser comme un problème d'optimisation avec un objectif partiellement connu. Cette thèse se divise en deux parties. La première est une introduction à l'exploration de données. Elle présente l'Analyse Combinatoire de Données (ACD), une méthode d'exploration de données issue de l'optimisation discrète. Cette méthode est appliquée à des données médicales originales et une extension aux problèmes d'analyse de temps de survie est proposée. L'analyse de temps de survie consiste à modéliser le temps avant un événement (typiquement un décès ou une rechute). Les heuristiques proposées utilisent des techniques classiques de recherche opérationnelle telles que la programmation linéaire en nombres entiers, la décomposition de problème, des algorithmes gloutons. La seconde partie est plus théorique et s'intéresse à deux problèmes combinatoires rencontrés dans le domaine de l'exploration de données. Le premier est un problème de partitionnement de graphes en sous-graphes denses pour l'apprentissage non supervisé. Nous montrons la complexité algorithmique de ce problème et nous proposons un algorithme polynomial basé sur la programmation dynamique lorsque le graphe est un arbre. Cet algorithme repose sur des résultats de la théorie des couplages. Le second problème est une généralisation des problèmes de couverture par les tests pour la sélection d'attributs. Les lignes d'une matrice sont coloriées en deux couleurs. L'objectif est de trouver un sous-ensemble minimum de colonnes tel que toute paire de lignes avec des couleurs différentes restent distinctes lorsque la matrice est restreinte au sous-ensemble de colonnes. Nous montrons des résultats de complexité ainsi que des bornes serrées sur la taille des solutions optimales pour différentes structures de matrices. / This thesis focuses on some data mining problems with an operations research point of view. Data mining is the process of learning new knowledge from large datasets. The problems in this field are close to the ones encountered in operations research: Large instances, complex objectives and algorithmic difficulty. Moreover, learning knowledge from a dataset can be viewed as a particular optimization problem with a partially known objective function. This thesis is divided into two main parts. The first part starts with an introduction to data mining. Then it presents a specific method from the field of discrete optimization known as Logical Analysis of Data (LAD). In this part, an original medical application and an extension of LAD to survival analysis are presented. Survival analysis is the modeling of time to event (typically death or failure). The proposed heuristics are derived from classical operations research methods such as integer programming, problem decomposition and greedy algorithms. The second part is more theoretical and focuses on two combinatorial problems encountered while solving practical data mining problems. The first one is a problem of graph partition into dense subgraphs for unsupervised learning. We emphasize the algorithmic complexity of this problem, and give a polynomial algorithm based on dynamic programming when the graph is a tree. This algorithm relies on famous combinatorial optimization results in matching theory. The second problem is a generalization of test cover for feature selection. The rows of a binary matrix are bicolored. The objective is to find a minimum subset of columns such that any pair of rows with different colors are still distinct when the matrix is restricted to the subset of columns. We give complexity results and tight bounds on the size of the optimal solutions for various matrix structures.
|
103 |
Solving Hard Combinatorial Optimization Problems using Cooperative Parallel Metaheuristics / Utilisation de méta-heuristiques coopératives parallèles pour la résolution de problèmes d'optimisation combinatoire difficilesMunera Ramirez, Danny 27 September 2016 (has links)
Les Problèmes d’Optimisation Combinatoire (COP) sont largement utilisés pour modéliser et résoudre un grand nombre de problèmes industriels. La résolution de ces problèmes pose un véritable défi en raison de leur inhérente difficulté, la plupart étant NP-difficiles. En effet, les COP sont difficiles à résoudre par des méthodes exactes car la taille de l’espace de recherche à explorer croît de manière exponentielle par rapport à la taille du problème. Les méta-heuristiques sont souvent les méthodes les plus efficaces pour résoudre les problèmes les plus difficiles. Malheureusement, bien des problèmes réels restent hors de portée des meilleures méta-heuristiques. Le parallélisme permet d’améliorer les performances des méta-heuristiques. L’idée de base est d’avoir plusieurs instances d’une méta-heuristique explorant de manière simultanée l’espace de recherche pour accélérer la recherche de solution. Les meilleures techniques font communiquer ces instances pour augmenter la probabilité de trouver une solution. Cependant, la conception d’une méthode parallèle coopérative n’est pas une tâche aisée, et beaucoup de choix cruciaux concernant la communication doivent être résolus. Malheureusement, nous savons qu’il n’existe pas d’unique configuration permettant de résoudre efficacement tous les problèmes. Ceci explique que l’on trouve aujourd’hui des systèmes coopératifs efficaces mais conçus pour un problème spécifique ou bien des systèmes plus génériques mais dont les performances sont en général limitées. Dans cette thèse nous proposons un cadre général pour les méta-heuristiques parallèles coopératives (CPMH). Ce cadre prévoit plusieurs paramètres permettant de contrôler la coopération. CPMH organise les instances de méta-heuristiques en équipes ; chaque équipe vise à intensifier la recherche dans une région particulière de l’espace de recherche. Cela se fait grâce à des communications intra-équipes. Des communications inter-équipes permettent quant a` elles d’assurer la diversification de la recherche. CPMH offre à l’utilisateur la possibilité d’ajuster le compromis entre intensification et diversification. De plus, ce cadre supporte différentes méta-heuristiques et permet aussi l’hybridation de méta-heuristiques. Nous proposons également X10CPMH, une implémentation de CPMH, écrite en langage parallèle X10. Pour valider notre approche, nous abordons deux COP du monde industriel : des variantes difficiles du Problème de Stable Matching (SMP) et le Problème d’Affectation Quadratique (QAP). Nous proposons plusieurs méta-heuristiques originales en version séquentielle et parallèle, y compris un nouvelle méthode basée sur l’optimisation extrémale ainsi qu’un nouvel algorithme hybride en parallèle coopératif pour QAP. Ces algorithmes sont implémentés grâce à X10CPMH. L’évaluation expérimentale montre que les versions avec parallélisme coopératif offrent un très bon passage à l’échelle tout en fournissant des solutions de haute qualité. Sur les variantes difficiles de SMP, notre méthode coopérative offre des facteurs d’accélération super-linéaires. En ce qui concerne QAP, notre méthode hybride en parallèle coopératif fonctionne très bien sur les cas les plus difficiles et permet d’améliorer les meilleures solutions connues de plusieurs instances. / Combinatorial Optimization Problems (COP) are widely used to model and solve real-life problems in many different application domains. These problems represent a real challenge for the research community due to their inherent difficulty, as many of them are NP-hard. COPs are difficult to solve with exact methods due to the exponential growth of the problem’s search space with respect to the size of the problem. Metaheuristics are often the most efficient methods to make the hardest problems tractable. However, some hard and large real-life problems are still out of the scope of even the best metaheuristic algorithms. Parallelism is a straightforward way to improve metaheuristics performance. The basic idea is to perform concurrent explorations of the search space in order to speed up the search process. Currently, the most advanced techniques implement some communication mechanism to exchange information between metaheuristic instances in order to try and increase the probability to find a solution. However, designing an efficient cooperative parallel method is a very complex task, and many issues about communication must be solved. Furthermore, it is known that no unique cooperative configuration may efficiently tackle all problems. This is why there are currently efficient cooperative solutions dedicated to some specific problems or more general cooperative methods but with limited performances in practice. In this thesis we propose a general framework for Cooperative Parallel Metaheuristics (CPMH). This framework includes several parameters to control the cooperation. CPMH organizes the explorers into teams; each team aims at intensifying the search in a particular region of the search space and uses intra-team communication. In addition, inter-team communication is used to ensure search diversification. CPMH allows the user to tune the trade-off between intensification and diversification. However, our framework supports different metaheuristics and metaheuristics hybridization. We also provide X10CPMH, an implementation of our CPMH framework developed in the X10 parallel language. To assess the soundness of our approach we tackle two hard real-life COP: hard variants of the Stable Matching Problem (SMP) and the Quadratic Assignment Problem (QAP). For all problems we propose new sequential and parallel metaheuristics, including a new Extremal Optimization-based method and a new hybrid cooperative parallel algorithm for QAP. All algorithms are implemented thanks to X10CPMH. A complete experimental evaluation shows that the cooperative parallel versions of our methods scale very well, providing high-quality solutions within a limited timeout. On hard and large variants of SMP, our cooperative parallel method reaches super-linear speedups. Regarding QAP, the cooperative parallel hybrid algorithm performs very well on the hardest instances, and improves the best known solutions of several instances.
|
104 |
Screening and deconvoluting complex mixtures of catalyst components in reaction development / Identification de nouveaux systèmes catalytiques par criblage et déconvolution de mélanges de catalyseurs potentielsWolf, Eléna 02 October 2015 (has links)
Le développement réactionnel est problème multidimensionnel complexe qui, dans un scénario représentatif, implique l’unique convergence de plusieurs paramètres à une réactivité désirée. Le choix incorrect d’un seul paramètre réactionnel tel que le pré-catalyseur, le ligand mais aussi le solvant ou encore l’acide/base peut complètement supprimer la réactivité du système. De ce fait, ce processus requiert souvent de nombreuses expérimentations pour obtenir un premier résultat probant. Pour éviter de tester toutes les combinaisons en parallèle, des approches créatives de criblage ont été développées ces dernières années mais le nombre important de reactions nécessaires à l’exploration de juste trois ou quatre paramètres est toujours un challenge pour les chimistes qui n’ont pas accès au criblage à haut debit. Afin de répondre à cette problèmatique, une stratégie combinatoire réaction-économique pour l’identification d’un lead hit dans une reaction spécifique est proposée. Des mélanges complexes de pré-catalyseurs et de ligands, choisis au préalable, sont testés avec un ou deux autres paramètres de reaction supplémentaires pour identifier de bonnes conditions de réaction dans un nombre minimum de manipulations. La déconvolution iterative permet ensuite d’identifier le catalyseur, généré in situ, le plus actif dans les conditions réactionnelles. L’application de cette approche est décrite sur une réaction de Friedel-Crafts, une arylation ortho-C–H sélective de composés benzamides, une alkylation C3 d’indole et en catalyse asymétrique sur une réaction d’hétéro Diels-Alder. / Reaction development is a complex multidimensional problem that, in a representative scenario, requires often the unique convergence of multiple parameters for a desired reactivity. The incorrect choice of a single parameter, such as the pre-catalyst, the ligand, the solvent or the acid/base, can completely eliminate the reactivity of the system. Thus, the process often requires extensive manipulations to obtain a lead hit. To avoid this time consuming process, many creative screening approaches have been developed but the large number of reactions necessary to explore the intersection of just three or four parameters is still a challenge for chemists who do not have access to high throughput experimentation. A reaction-economic combinatorial strategy is described for lead hit identification in catalyst discovery directed towards a specific transformation. Complex mixtures of rationally chosen pre-catalysts and ligands are screened against various reaction parameters to identify lead conditions in a small number of reactions. Iterative deconvolution of the resulting hits identifies which components contribute to the lead in situ generated catalyst. The application of this screening approach is described in the dehydrative Friedel-Crafts reaction, in the ortho-C–H arylation of benzamides, in the C3-indole alkylation and in the asymmetric hetero Diels-Alder cycloaddition.
|
105 |
Linguistique de corpus et didactique des langues et des cultures étrangères : étude comparée français-russe / Corpus linguistics and foreign language and culture teaching : French - Russian comparative studyDa Silva Akborisova, Elena 09 December 2014 (has links)
Cette thèse vise à contribuer à l’approche DDL (Data-Driven Learning) dans l’enseignement du lexique en FLE. Dans le cadre de l’approche DDL, on fait appel aux corpus pour enseigner différentes composantes d’une langue. Le lexique, étant un des premiers besoins d’un apprenant, car il donne accès à la communication en langue étrangère, fait l’objet de nombreux travaux de recherche actuels en linguistique et en didactique. L’idiomaticité, trait constitutif de toutes les langues, se manifeste sous forme d’expressions variées. Elle relève du champ de la lexicologie, et plus spécifiquement de la phraséologie. La linguistique de corpus permet d’observer ce fait de langue dans un cadre structure/sens. Les expressions idiomatiques en général, et en particulier les collocations, sont mises au centre de la démarche didactique dans cette thèse. Les collocations à verbe support restent une source d’erreurs importante même aux niveaux avancés d’apprentissage. Le matériel didactique présenté aux lecteurs de cette étude cherche à promouvoir l’exploitation directe des corpus bilingues par les apprenants en classe afin d’identifier ces collocations en L1 et en L2, de les comprendre, de trouver des correspondances et de les employer de manière appropriée. L’approche comparative français-russe renforcée par une observation des lignes de concordance issues de corpus authentiques devraient permettre une meilleure acquisition des faits linguistiques visés. Ce travail s’inscrit dans une perspective d’apprentissage déductif et d’autonomisation des apprenants. / This thesis aims to contribute to the DDL (Data-Driven Learning) approach in French vocabulary teaching. In the framework of the DDL approach we use corpora to teach different language phenomena. Vocabulary, one of the immediate needs of a language learner because it makes a communication in a foreign language possible, has become a popular research theme in the fields of linguistics and language teaching. Idiomaticity, an inherent part of all languages, manifests through various expressions. Phraseology studies different ways of expressing idiomaticity. Corpus linguistics permits to observe this language phenomenon in a structure/sense framework. Idiomatic expressions in general and collocations in particular are the heart and the main focus of the teaching perspective described in this thesis. Even advanced language learners make errors in light verb constructions. The teaching material presented in this study seeks to promote the search in bilingual corpora in the classroom in order to identify these collocations in L1 and in L2, to understand them, to find equivalents and finally, to use them correctly. A comparative French-Russian approach reinforced by a study of concordance lines from authentic corpora might contribute to better understanding of a particular language feature. This study falls in line with deductive learning practices and with the learners’ autonomisation perspective.
|
106 |
The use of geometric structures in graphics and optimization / L'utilisation des structures géométriques pour synthèse d'image et optimisationBus, Norbert 07 October 2015 (has links)
Les données du monde réel ont manifestement une composante géométrique importante et suggère les patterns géométriques signifiants. Les méthodes qui utilisent la nature géométrique des données sont activement développés dans plusieurs domaines scientifiques, comme, par exemple, la géométrie algorithmique, la géométrie discrète, la synthèse d'images, la vision par ordinateur. Dans le travail présent, nous utilisons les structures géométriques afin de modéliser des algorithmes efficaces pour deux domaines, celui de synthèse d'images et de l'optimisation combinatoire. Dans la première partie il s'agit de la structure de données géométriques, appelé une décomposition bien-séparée, et son application pour un des problèmes les plus difficiles dans la synthèse d'images, un efficace rendu photo-réalistique. Une solution consiste à appliquer toute une famille de méthodes de many-lights qui fait une approximation d'illumination globale par calcule individuelle d'illumination avec un grand nombre de VPLs (virtual point light) répartis sur les surfaces. L'application individuelle de chacun VPL résulte dans un grand nombre des calculs. Une des stratégies de la réussite pour réduire les computations est de faire les clusteurs considérés qui sont consideré comme une seul émetteur. Nous utilisons la décomposition bien-séparée de points comme le fondement de la structure des données susceptible de procéder à un calcul préliminaire et de conserver d'une façon compacte un grand nombre des clusterisations individuels potentiels ce qui montre que la clusterisation des VPL plus correspondante peut être extraite de cette structure de données d'une manière efficace. Nous montrons qu'au lieu de regroupper les points et/ou VPL indépendemment il vaut mieux produire les clusteurs sur l'espace de produit du nombre des points à nuancer et un groupe de VPL à la base de l'illumination des paires induite. En plus, nous proposons une technique adaptive afin d'échantillonner pour réduire le nombre des demandes de vérifications de visibilité pour chaque clusteur de l'espace de produit. Notre méthode consiste à détenir chaque émetteur qui peut être rapproché par VPL, matériaux spéculaire et à performer les méthodes précédents réconnus les meilleurs jusqu'au présent. La deuxième partie est consacrée au développement de nouveaux algorithmes d'approximation pour un problème fondamental de NP complet dans la géométrie algorithmique, précisément le problème du hitting set, avec une précision pour le cas d'un groupe de points et d'un groupe de disques, nous souhaiterons calculer les plus petits nombre du points qui touche tous les disques. Il arrive que les algorithmes efficaces à détecter le hitting set repose sur une structure géométrique clée, appelée epsilon-net. Nous donnons un algorithme utilisant uniquement les triangulisations de Delaunay pour construire les epsilon-nets de taille 13.4/epsilon. Nous donnons une implémentation pratique de la technique à calculer les hitting sets dans le temps quasi-linéaire en utilisant des epsilon-nets de petites tailles. Nos résultats aboutissent à une approximation de 13.4 pour le problème de hitting set par un algorithme qui fonctionne même pour les grands ensembles de données. Pour les ensembles de taille plus petite, nous proposons une implémentation de la technique de recherche locale avec une approximation bornes supérieures, avec le résultat obtenu d'approximation de (8 + epsilon) dans le temps O(n^{2.34}) / Real-world data has a large geometric component, showing significant geometric patterns. How to use the geometric nature of data to design efficient methods has became a very important topic in several scientific fields, e.g., computational geometry, discrete geometry, computer graphics, computer vision. In this thesis we use geometric structures to design efficient algorithms for problems in two domains, computer graphics and combinatorial optimization. Part I focuses on a geometric data structure called well-separated pair decomposition and its usage for one of the most challenging problems in computer graphics, namely efficient photo-realistic rendering. One solution is the family of many-lights methods that approximate global illumination by individually computing illumination from a large number of virtual point lights (VPLs) placed on surfaces. Considering each VPL individually results in a vast number of calculations. One successful strategy the reduce computations is to group the VPLs into a small number of clusters that are treated as individual lights with respect to each point to be shaded. We use the well-separated pair decomposition of points as a basis for a data structure for pre-computing and compactly storing a set of view independent candidate VPL clusterings showing that a suitable clustering of the VPLs can be efficiently extracted from this data structure. We show that instead of clustering points and/or VPLs independently what is required is to cluster the product-space of the set of points to be shaded and the set of VPLs based on the induced pairwise illumination. Additionally we propose an adaptive sampling technique to reduce the number of visibility queries for each product-space cluster. Our method handles any light source that can be approximated with virtual point lights (VPLs), highly glossy materials and outperforms previous state-of-the-art methods. Part II focuses on developing new approximation algorithms for a fundamental NP-complete problem in computational geometry, namely the minimum hitting set problem with particular focus on the case where given a set of points and a set of disks, we wish to compute the minimum-sized subset of the points that hits all disks. It turns out that efficient algorithms for geometric hitting set rely on a key geometric structure, called epsilon-net. We give an algorithm that uses only Delaunay triangulations to construct epsilon-nets of size 13.4/epsilon and we provide a practical implementation of a technique to calculate hitting sets in near-linear time using small sized epsilon-nets. Our results yield a 13.4 approximation for the hitting set problem with an algorithm that runs efficiently even on large data sets. For smaller datasets, we present an implementation of the local search technique along with tight approximation bounds for its approximation factor, yielding an (8 + epsilon)-approximation algorithm with running time O(n^{2.34})
|
107 |
Modèles et algorithmes pour l'optimisation robuste dans les Self-Organizing Network (SON) des réseaux mobiles 4G (LTE) / Models and algorithms for robust optimization in self-Organizing Networks (SON) of 4G mobile networks (LTE)Tabia, Nourredine 13 December 2013 (has links)
La norme 3G/UMTS a permis de développer les premières applications multimédia pour téléphones et tablettes mobiles. Le nouveau standard 4G/LTE (Long Term Evolution) a pour objectif le très haut débit mobile. Dans ce standard, beaucoup d’efforts ont portés sur la reconfiguration automatique des réseaux en fonction de la demande des clients dans un processus appelé Self-Organizing Network (SON). Le travail de cette thèse s’inscrit dans cette direction. La reconfiguration de réseaux est comprise principalement dans le sens des modèles, des méthodes et des outils pour analyser les indicateurs remontés du réseau et configurer automatiquement les paramètres. Nous avons essentiellement travaillé sur les paramètres des aériens, l’allocation des fréquences, des puissances d’émission et des inclinaisons verticales.Dans cette optique, étant donné la forte variabilité des données d’entrée de l’optimisation issues des remontées de réseau, cette thèse porte sur les modèles et algorithmes d’optimisation robuste dans le contexte de l’optimisation sous contraintes. L’optimisation robuste fait référence à un ensemble de procédés pour proposer des solutions à des problèmes combinatoires dans un contexte de données incertaines et de scénarios variables dans le temps. Une première partie est dédiée à l’état de l’art et présente les principes des Self-Organizing Network (SON). La deuxième partie est consacrée à l’état de l’art des méthodes en optimisation robuste. En troisième partie nous présentons la modélisation mathématique du problème d’optimisation pour lequel les données de trafic (répartitions des clients sur la zone de service et leurs demandes respectives) prennent des valeurs variables dans le temps. Une phase de diagnostic sur le fonctionnement du réseau à partir des données, et une étude de sensibilité des solutions vis-à-vis des variations dans la réalisation des données ont été faites en quatrième partie avec des algorithmes de recherche locale. La cinquième partie présente le travail de conception, développement et test sur scénarios, d’une Recherche Tabou ainsi qu’une analyse approfondie sur les méthodes de pilotage envisagées pour les SON en 4G. / The standard 3G/UMTS has launched the first multimedia applications for mobile phones and tablets. The new standard 4G/LTE (Long Term Evolution) has mobile broadband objective. In this standard a huge effort has been done on automatic network reconfiguration based on customer demand variation in a process called Self-Organizing Network (SON). The work of this thesis lies in this direction. Reconfiguration of networks lies mainly in the direction of models, methods and tools to analyze network Key Performance Indicators and automatically configure its settings. We mainly worked on the air interface parameters such that frequency assignment, emitted power and pattern vertical inclination.In this context, given the high variability of optimization input data issued from the network, this thesis focuses on robust optimization under constraints. The robust optimization refers to a set of processes to provide solutions to combinatorial problems with uncertain and variable scenarios of data over time. The first Section presents the principles of Self-Organizing Network (SON). The second Section concerns the state of the art on robust optimization. The third Section defines the mathematical model to optimize for which traffic data (distribution of customers and throughput requirements on the service area) take variable values over time. A data diagnostic phase on the network operation and a sensitivity analysis of the solutions were made in the fourth Section with several local search algorithms. The fifth Section presents the work of design, development and test of a Tabu Search method and a thorough analysis of SON control methodology proposed for 4G.
|
108 |
Régulation coopérative des intersections : protocoles et politiques / Cooperative Intersection Management : Protocols and policiesPerronnet, Florent 27 May 2015 (has links)
Dans ce travail, nous exploitons le potentiel offert par les véhicules autonomes coopératifs, pour fluidifier le trafic dans une intersection isolée puis dans un réseau d’intersections. Nous proposons le protocole SVAC (Système du Véhicule Actionneur Coopératif) permettant de réguler une intersection isolée. SVAC est basé sur une distribution individuelle du droit de passage qui respecte un ordre précis donné par une séquence de passage.Pour optimiser la séquence de passage, nous définissons la politique PED (Politique d’Evacuation Distribuée) permettant d’améliorer le temps d’évacuation total de l’intersection. La création de la séquence de passage est étudiée à travers deux modélisations. Une modélisation sous forme de graphes permettant le calcul de la solution optimale en connaissant les dates d’arrivée de tous les véhicules, et une modélisation de type réseaux de Petri avec dateurs pour traiter la régulation temps-réel. Des tests réels avec des véhicules équipés ont été réalisés pour étudier la faisabilité du protocole SVAC. Des simulations mettant en jeu un trafic réaliste permettent ensuite de montrer la capacité de fluidifier le trafic par rapport à une régulation classique par feux tricolores.La régulation d’un réseau d’intersections soulève les problèmes d’interblocage et de réorientation du trafic. Nous proposons le protocole SVACRI (Système du Véhicule Actionneur Coopératif pour les Réseaux d’Intersections) qui permet d’éliminer à priori les risques d’interblocage à travers la définition de contraintes d’occupation et de réservation de l’espace et du temps. Nous étudions également la possibilité d’améliorer la fluidité du trafic à travers le routage des véhicules, en tirant avantage du protocole SVACRI. Enfin, nous généralisons le système de régulation proposé pour la synchronisation des vitesses aux intersections. / The objective of this work is to use the potential offered by the wireless communication and autonomous vehicles to improve traffic flow in an isolated intersection and in a network of intersections. We define a protocol, called CVAS (Cooperative Vehicle Actuator System) for managing an isolated intersection. CVAS distributes separately the right of way to each vehicle according to a specific order determined by a computed sequence.In order to optimize the sequence, we define a DCP (Distributed Clearing Policy) to improve the total evacuation time of the intersection. The control strategy is investigated through two modeling approaches. First graph theory is used for calculating the optimal solution according to the arrival times of all vehicles, and then a timed Petri Net model is used to propose a real-time control algorithm. Tests with real vehicles are realized to study the feasibility of CVAS. Simulations of realistic traffic flows are performed to assess our algorithm and to compare it versus conventional traffic lights.Managing a network of intersections raises the issue of gridlock. We propose CVAS-NI protocol (Cooperative Vehicle actuator system for Networks of Intersections), which is an extension of CVAS protocol. This protocol prevents the deadlock in the network through occupancy and reservation constraints. With a deadlock free network we extend the study to the traffic routing policy. Finally, we generalize the proposed control system for synchronizing the vehicle velocities at intersections.
|
109 |
Algorithmes métaheuristiques hybrides pour la sélection de gènes et la classification de données de biopucesHernandez Hernandez, José Crispin 14 November 2008 (has links) (PDF)
Les biopuces permettent de mesurer simultanément l'activité d'un grand nombre de gènes au sein d'échantillons biologiques et de réaliser un diagnostic (reconnaissance tissu sain/tissu cancéreux ou distinction entre différents types de cancer) à partir de ces données. Pour cette tâche de classification, on dispose d'un faible nombre d'échantillons alors que chaque échantillon est décrit par un très grand nombre de gènes. Dans cette thèse, nous nous intéressons à la sélection de gènes qui permet de proposer un sous-ensemble de gènes pertinents afin de construire un classifieur prédisant le type de tumeur qui caractérise un échantillon cellulaire. Le problème de la sélection de gènes est un problème très difficile et les algorithmes métaheuristiques à base de voisinage (méthodes de recherche locale) et à base de populations (algorithmes génétiques et algorithmes mémétiques) semblent bien appropriés pour traiter ce problème. Dans cette thèse, nous proposons plusieurs méthodes de sélection dites intégrées, combinant des algorithmes métaheuristiques avec un séparateur à vaste marge linéaire (SVM). Dans ces algorithmes, la qualité d'un sous-ensemble de gènes sélectionnés est évaluée grâce au classifieur SVM. De plus, nos algorithmes exploitent l'information de pertinence fournie par le classifieur SVM sur les différents gènes pour guider les mécanismes de recherche locale ou pour proposer des opérateurs génétiques spécialisés. Des expérimentations ont été réalisées sur les différents jeux de données disponibles dans la littérature et nos méthodes se révèlent très compétitives par rapport aux travaux existants.
|
110 |
Contribution à la résolution du sac-à-dos à contraintes disjonctivesOuld Ahmed Mounir, Mohamed Elhavedh 15 October 2009 (has links) (PDF)
Le problème du sac-à-dos à contraintes disjonctives (DCKP) est une variante du sac-à-dos normal. C'est un problème dans lequel certains objets peuvent être incompatibles avec d'autres. Le DCKP apparait, souvent, comme sous problème d'autres problèmes d'optimisation combinatoire plus complexes.
|
Page generated in 0.0422 seconds