• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 40
  • 23
  • 21
  • 10
  • 8
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 186
  • 186
  • 32
  • 32
  • 28
  • 26
  • 23
  • 23
  • 22
  • 21
  • 19
  • 19
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Modélisation multi-échelles du comportement thermo-mécanique de composites à renforts sphériques / Multi-scale modeling of the thermo-mechanical behavior of particle-based composites

Di Paola, François 30 November 2010 (has links)
Ce travail de thèse a porté sur la simulation numérique du comportement thermique et mécanique d'un combustible nucléaire à particules. Il s'agit d'un composite réfractaire constitué d'une matrice de graphite comportant 45 % en fraction volumique de particules sphériquesd'UO2 revêtues de deux couches de pyrocarbone. L'objectif était de développer une modélisationmulti-échelles de ce composite afin d'estimer son comportement moyen, ainsi que les hétérogé-néités des champs mécaniques au sein des constituants. Nous avons modélisé la microstructuredu combustible et généré des échantillons numériques en 3D. Pour cela, des outils de générationde distributions aléatoires de sphères, de maillage et de caractérisation microstructurale, tellela covariance, ont été développés dans le code de calcul Cast3M. Une centaine d'échantillonsnumériques de différentes tailles ont été réalisés. Le comportement thermo-élastique du combustiblea été caractérisé à partir de ces échantillons, à l'aide de calculs de microstructures paréléments finis. Nous avons étudié l'influence de divers paramètres de la modélisation, dont lesconditions aux limites. Nous proposons une méthode pour s'affranchir des effets des conditionsaux limites sur les résultats, appelée méthode d'érosion. Elle s'appuie sur l'analyse des résultatssur un érodé du volume élémentaire. Nous avons alors déterminé les propriétés effectives ducomposite (modules d'élasticité, conductivité thermique, dilatation thermique), ainsi que lesdistributions des champs mécaniques locaux au sein de la matrice. Enfin, nous avons proposéun modèle de changement d'échelles permettant d'obtenir, non seulement les valeurs moyennesdes variables mécaniques dans chaque phase, mais également leurs variances et covariances pourtout chargement macroscopique imposé. Cette approche statistique de changement d'échellespermet ainsi d'estimer la distribution des grandeurs mécaniques au sein de chaque phase ducomposite. / The aim of this work was to perform numerical simulations of the thermal and mechanical behavior of a particle-based nuclear fuel. This is a refractory composite material made of UO2spherical particles which are coated with two layers of pyrocarbon and embedded in a graphitematrix at a high volume fraction (45 %). The objective was to develop a multi-scale modelingof this composite material which can estimate its mean behavior as well as the heterogeneity ofthe local mechanical variables. The first part of this work was dedicated to the modeling of themicrostructure in 3D. To do this, we developed tools to generate random distributions of spheres,meshes and to characterize the morphology of the microstructure towards the finite elementcode Cast3M. A hundred of numerical samples of the composite were created. The secondpart was devoted to the characterization of the thermo-elastic behavior by the finite elementmodeling of the samples. We studied the influence of different modeling parameters, one of themis the boundary conditions. We proposed a method to vanish the boundary conditions effectsfrom the computed solution by analyzing it on an internal sub-volume of the sample obtained byerosion. Then, we determined the effective properties (elastic moduli, thermal conductivity andthermal expansion) and the stress distribution within the matrix. Finally, in the third part weproposed a multi-scale modeling to determine the mean values and the variance and covarianceof the local mechanical variables for any macroscopic load. This statistical approach have beenused to estimate the intra-phase distribution of these variables in the composite material.
62

High-fidelity multidisciplinary design optimization of a 3D composite material hydrofoil

Volpi, Silvia 01 May 2018 (has links)
Multidisciplinary design optimization (MDO) refers to the process of designing systems characterized by the interaction of multiple interconnected disciplines. High-fidelity MDO usually requires large computational resources due to the computational cost of achieving multidisciplinary consistent solutions by coupling high-fidelity physics-based solvers. Gradient-based minimization algorithms are generally applied to find local minima, due to their efficiency in solving problems with a large number of design variables. This represents a limitation to performing global MDO and integrating black-box type analysis tools, usually not providing gradient information. The latter issues generally inhibit a wide use of MDO in complex industrial applications. An architecture named multi-criterion adaptive sampling MDO (MCAS-MDO) is presented in the current research for complex simulation-based applications. This research aims at building a global derivative-free optimization tool able to employ high-fidelity/expensive black-box solvers for the analysis of the disciplines. MCAS-MDO is a surrogate-based architecture featuring a variable level of coupling among the disciplines and is driven by a multi-criterion adaptive sampling (MCAS) assessing coupling and sampling uncertainties. MCAS uses the dynamic radial basis function surrogate model to identify the optimal solution and explore the design space through parallel infill of new solutions. The MCAS-MDO is tested versus a global derivative-free multidisciplinary feasible (MDF) approach, which solves fully-coupled multidisciplinary analyses, for two analytical test problems. Evaluation metrics include number of function evaluations required to achieve the optimal solution and sample distribution. The MCAS-MDO outperforms the MDF showing a faster convergence by clustering refined function evaluations in the optimum region. The architecture is applied to a steady fluid-structure interaction (FSI) problem, namely the design of a tapered three-dimensional carbon fiber-reinforced plastic hydrofoil for minimum drag. The objective is the design of shape and composite material layout subject to hydrodynamic, structural, and geometrical constraints. Experimental data are available for the original configuration of the hydrofoil and allow validating the FSI analysis, which is performed coupling computational fluid dynamics, solving the Reynolds averaged Navier-Stokes equations, and finite elements, solving the structural equation of elastic motion. Hydrofoil forces, tip displacement, and tip twist are evaluated for several materials providing qualitative agreement with the experiments and confirming the need for the two-way versus one-way coupling approach in case of significantly compliant structures. The free-form deformation method is applied to generate shape modifications of the hydrofoil geometry. To reduce the global computational expense of the optimization, a design space assessment and dimensionality reduction based on the Karhunen–Loève expansion (KLE) is performed off-line, i.e. without the need for high-fidelity simulations. It provides with a selection of design variables for the problem at hand through basis rotation and re-parametrization. By using the KLE, an efficient design space is identified for the current problem and the number of design variables is reduced by 92%. A sensitivity analysis is performed prior to the optimization to assess the variability associated with the shape design variables and the composite material design variable, i.e. the fiber orientation. These simulations are used to initialize the surrogate model for the optimization, which is carried out for two models: one in aluminum and one in composite material. The optimized designs are assessed by comparison with the original models through evaluation of the flow field, pressure distribution on the body, and deformation under the hydrodynamic load. The drag of the aluminum and composite material hydrofoils is reduced by 4 and 11%, respectively, increasing the hydrodynamic efficiency by 4 and 7%. The optimized designs are obtained by evaluating approximately 100 designs. The quality of the results indicates that global derivative-free MDO of complex engineering applications using expensive black-box solvers can be achieved at a feasible computational cost by minimizing the design space dimensionality and performing an intelligent sampling to train the surrogate-based optimization.
63

Reliability-based design optimization of composite wind turbine blades for fatigue life under wind load uncertainty

Hu, Weifei 01 July 2015 (has links)
The objectives of this study are (1) to develop an accurate and efficient fatigue analysis procedure that can be used in reliability analysis and reliability-based design optimization (RBDO) of composite wind turbine blades; (2) to develop a wind load uncertainty model that provides realistic uncertain wind load for the reliability analysis and the RBDO process; and (3) to obtain an optimal composite wind turbine blade that satisfies target reliability for durability under the uncertain wind load. The current research effort involves: (1) developing an aerodynamic analysis method that can effectively calculate detailed wind pressure on the blade surface for stress analysis; (2) developing a fatigue failure criterion that can cope with non-proportional multi-axial stress states in composite wind turbine blades; (3) developing a wind load uncertainty model that represents realistic uncertain wind load for fatigue reliability of wind turbine systems; (4) applying the wind load uncertainty model into a composite wind turbine blade and obtaining an RBDO optimum design that satisfies a target probability of failure for a lifespan of 20 years under wind load uncertainty. In blade fatigue analysis, resultant aerodynamic forces are usually applied at the aerodynamic centers of the airfoils of a blade to calculate stress/strain. However, in reality the wind pressures are applied on the blade surface. A wind turbine blade is often treated as a typical beam-like structure for which fatigue life calculations are limited in the edge-wise and/or flap-wise direction(s). Using the beam-like structure, existing fatigue analysis methods for composite wind turbine blades cannot cope with the non-proportional multi-axial stress states that are endured by wind turbine blades during operation. Therefore, it is desirable to develop a fatigue analysis procedure that utilizes detailed wind pressures as wind loads and considers non-proportional multi-axial stress states in fatigue damage calculation. In this study, a 10-minute wind field realization, determined by a 10-minute mean wind speed V10 and a 10-minute turbulence intensity I10, is first simulated using Veers’ method. The simulated wind field is used for aerodynamic analysis. An aerodynamic analysis method, which could efficiently generate detailed quasi-physical blade surface pressures, has been developed. The generated pressures are then applied on a high-fidelity 3-D finite element blade model for stress and fatigue analysis. The fatigue damage calculation considers the non-proportional multi-axial complex stress states. A detailed fatigue damage contour, which indicates the fatigue failure locally, can be obtained using the developed fatigue analysis procedure. As the 10-minute fatigue analysis procedure is deterministic in this study, the calculated 10-minute fatigue damage is determined by V10 and I10. It is necessary to clarify that the rotational speed of the wind turbine blade is assumed to be constant (12.1 rpm) and the pitch angle is fixed to be 0 degree for different wind conditions, since the rotational speed control and pitch angle control have not been considered in this study. For predicting the fatigue life of a wind turbine, a fixed Weibull distribution is widely used to determine the percentage of time the wind turbine experiences different mean wind speeds during its life-cycle. Meanwhile, fixed turbulence intensities are often used based on the designed wind turbine types. These simplifications, i.e., fixed Weibull distribution and fixed turbulence intensities, ignore the realistic uncertain wind load when designing a reliable wind turbine system. In the real world, both the mean wind speed and turbulence intensity vary constantly over one year, and their annual distributions are different at different locations and in different years. Thus, it is necessary to develop a wind load uncertainty model that can provide a realistic uncertain wind load for designing reliable wind turbine systems. In this study, 249 groups of measured wind data, collected at different locations and in different years, are used to develop a dynamic wind load uncertainty model. The dynamic wind load uncertainty model consists of annual wind load variation and wind load variation in a large spatiotemporal range, i.e., at different locations and in different years. The annual wind load variation is represented by the joint probability density function of V10 and I10. The wind load variation in a large spatiotemporal range is represented by the probability density functions of five parameters, C, k, a, b, and τ, which determine the joint probability density function of V10 and I10. In order to obtain the RBDO optimum design efficiently, a deterministic design optimization (DDO) procedure of a composite wind turbine blade has been first carried out using averaged percentage of time (probability) for each wind condition. A wind condition is specified by two terms: 10-minute mean wind speed and 10-minute turbulence intensity. In this research, a probability table, which consists of averaged probabilities corresponding to different wind conditions, is referred as a mean wind load. The mean wind load is generated using the dynamic wind load uncertainty model. During the DDO process, the laminate thickness design variables are tailored to minimize the total cost of composite materials while satisfying the target fatigue lifespan of 20 years. It is found that, under the mean wind load condition, the fatigue life of the initial design is only 0.0004 year. After the DDO process, even though the cost at the DDO optimum design is increased by 31.5% compared to that at the initial design, the predicted fatigue life at the DDO optimum design is significantly increased to 19.9995 years. Reliability analyses of the initial design and the DDO optimum design have been carried out using the wind load uncertainty model and Monte Carlo simulation. The reliability analysis results show that the DDO procedure reduces the probability of failure from 100% at the initial design to 49.9% at the DDO optimum design considering only wind load uncertainty. In order to satisfy the target 2.275% probability of failure, it is necessary to further improve the fatigue reliability of the composite wind turbine blade by RBDO. Reliability-based design optimization of the composite wind turbine blade has been carried out starting at the DDO optimum design. Fatigue hotspots for RBDO are identified among the laminate section points, which are selected from the DDO optimum design. Local surrogate models for 10-minute fatigue damage have been created at the selected hotspots. Using the local surrogate models, both the wind load uncertainty and manufacturing variability has been included in the RBDO process. It is found that the probability of failure is 50.06% at the RBDO initial design (DDO optimum design) considering both wind load uncertainty and manufacturing variability. During the RBDO process, the normalized laminate thickness design variables are tailored to minimize the total cost of composite materials while satisfying the target 2.275% probability of failure. The obtained RBDO optimum design reduces the probability of failure from 50.06% at the DDO optimum design to 2.28%, while increasing the cost by 3.01%.
64

Utveckling av flygtaktiken för att möta det nya hotet

Nilsson, Johanna January 2011 (has links)
Vid deltagande i internationella insatser kan Flygvapnet komma att möta nya typer av hot som Flygvapnet tidigare inte stött på, vilket medför att en anpassning eller förändring av flygtaktiken är en förutsättning för att undvika flygplansskador. 2000-talets lättviktflygplan medför en skyddsnivå på flygplanen som är låg och motståndaren kan påverka materialet samt konstruktionen i flygplanen genom beskjutning med finkalibriga projektiler. Syftet med uppsatsen är att analysera hur den nya hotbilden skiljer sig från vad Flygvapnet ställs inför nationellt samt analysera hur finkalibrig eld påverkar kompositmaterial och hur det i sig påverkar flygtaktiken. Inledningsvis utgår jag i uppsatsen från en beskrivande metod av empirin i syfte att läsaren skall få förståelse samt bakgrund inom de belysta ämnena för att förstå det som senare diskuteras i uppsatsen. Därefter övergå uppsatsen till en hotbildsanalys i syfte att senare diskutera och dra slutsatser om hur flygtaktiken bör anpassas för internationella insatser. I slutsatsen har jag kommit fram till att finkalibrig elds påverkan på kompositmaterial är mycket effektiv vilket innebär att projektilen slår igenom och deformerar materialet. Vidare diskuteras alternativ till genomförande av start och landning för att minska exponeringstiden och undvika att motståndaren kan påverka flygplanen. / While participating in international missions, the Swedish Air force may encounter new kinds of threats. This result in a needed adaptation or change in flight tactics to avoid aircraft damage. The light weight plans of the 21th century have a low degree of protection and the opponent can affect the material and construction with small arms. The purposes of this essay is to analyze how the new threats differ from what the Swedish Air force faces on a national level, and also analyze how small arms affects composite and in turn affects the flight tactics. I have initially used a descriptive method of the empiri and thereafter I used an analytic method in order to later on discuss and finding a conclusion on how the flight tactics need to be adapted and changed for international missions. In the conclusion I found that low caliber fire affects the composite material in a high degree, which means that the projectile will deform, disfigure and go straight through the material. I also discuss alternatives for the takeoff and landing procedures in a way that will reduce the exposure time and avoid the affects that the opponents can make on the aircraft.
65

Ti/TiN スパッタリング薄膜の多層化につれての機械的特性の向上

森, 敏彦, MORI, Toshihiko, 福田, 俊一, FUKUDA, Syun'ichi, 竹村, 嘉彦, TAKEMURA, Yoshihiko 07 1900 (has links)
No description available.
66

Stability of End Notched Flexure Specimen

Gojuri, Arun January 2010 (has links)
This paper deals with two-dimensional Finite Element Analysis of the End Notched Flexure (ENF) specimen. The specimen is known to be unstable if the crack length is shorter than some critical crack length acr. A geometric linear two-dimensional Finite Element (FE) analysis of the ENF specimen is performed to evaluate acr for isotropic and orthotropic elastic materials, respectively. Moreover, the Mode II Energy Release Rate (ERR) JII and the compliance of the specimen are calculated. The influence of anisotropy is studied. Comparisons are made with the results from beam theory. This work is an extension of previous work.
67

Fatigue Response of Centrally Notched APC-2 Composite Laminates at Elevated Temperature

Tseng, Yu-Chung 29 June 2006 (has links)
This thesis was concerned on the investigation of mechanical properties of centrally notched and unnotched AS-4/PEEK (APC-2) composite laminates due to static tensile and tension-tension (T-T) fatigue tests empirically and systematically. Then, statistical analyses were used to determine and quantify the significant thermomechanical variables that influence the durability/life of the composite laminates. Typical laminates were made from sixteen prepregs of APC-2 and manufactured by a modified curing process. After drilling one hole with various diameters in the center of the samples respectively, the lay-ups were conducted on tension fracture and T-T fatigue test at different temperatures. From the parametric study we achieved the important results as follows. The cross-ply laminate possesses the higher ultimate strength, fatigue strength and longitudinal stiffness than those of the quasi-isotropic at the same temperature. Notch effect decays the laminate strength seriously, but changes the stiffness irregularly. As test temperature rising both strength and stiffness of lay-ups degrade significantly. Combining both effects of notch and temperature under severe environmental condition, it is found the cross-ply laminate possesses more resistance than that of the quasi-isotropic to cyclic loading. However, the quasi-isotropic laminate is more capable of sustaining the original strength than that of the cross-ply. Finally, the multiple regression analysis results showed that the hygrothermal environmental effects and cyclic loading were decoupled for APC-2 composite system. A semi-empirical model, reliably set up after the said programs, predicts conservative values, and should be adequate for use in preliminary designs. That is the main contribution in this study. Also, for the purposes of design and application, the predicted models efficiently treat experimental data instead of conventional curve-fitting methods.
68

Production technology and properties of composite material made out of porous cement paste and crushed expanded polystyrene / Kompozitinės medžiagos iš poringosios cemento tešlos ir trupinto polistireninio putplasčio gamybos technologija ir savybės

Kligys, Modestas 04 December 2009 (has links)
The composite material of different density, where porous cement paste serves as matrix and crushed waste expanded polystyrene packages serve as inclusions, was developed. The compositions of formative mixtures and technological parameters of production for this composite material were selected and its properties were investigated. / Sukurta skirtingo tankio kompozitinė medžiaga, kurioje matrica yra poringoji cemento tešla, o intarpai - trupintos polistireninio putplasčio pakavimo taros atliekos. Parinktos minėtos kompozitinės medžiagos formavimo mišinių sudėtys, gamybos technologiniai parametrai ir ištirtos jos bandinių savybės.
69

高強度GFRP積層板における内部欠陥からの層間き裂と貫通層間き裂の疲労進展特性の関係

松原, 剛, MATSUBARA, Go, 田中, 啓介, TANAKA, Keisuke 05 1900 (has links)
No description available.
70

Stockage d'énergie thermique par un composite zéolite/MgSO4-H2O : étude thermocinétique du système MgSO4 – H2O et étude expérimentale des composites / Thermal energy storage by a zeolite/MgSO4 composite : thermokinetic study of the MgSO4 – H2O system and experimental study of composites

Okhrimenko, Larysa Mikolaivna 08 January 2018 (has links)
L’épuisement des combustibles fossiles et l’augmentation de la demande d’énergie, entrainent l’intérêt croissant du développement des énergies renouvelables et des systèmes efficaces énergétiquement. Néanmoins, le décalage entre le besoin en énergie et la fourniture de celle-ci par les énergies renouvelables rend nécessaire l’utilisation d’un système de stockage. Parmi les différentes technologies de stockage d’énergie thermique, les composites formés d’une matrice poreuse et d’un sel hygroscopique, permettent de profiter à la fois des capacités d’adsorption/désorption de la matrice et des réactions chimiques du sel. La difficulté principale du développement d’un tel système est la compréhension incomplète des phénomènes physico-chimiques mis en jeu.Le premier objectif de cette thèse est d’étudier les réactions d’hydratation et de déshydratation du sel MgSO4. La caractérisation physico-chimique des solides ainsi que des expériences de thermogravimétrie isotherme et isobare ont été réalisées. Il a été montré que le système est divariant et que les hydrates obtenus sont non-stœchiométriques. Un modèle thermodynamique a été développé et appliqué aux données expérimentales. Les études cinétiques des réactions de déshydratation et d’hydratation ont été réalisées ce qui a permis de définir les étapes limitantes ainsi que d’écrire deux modèles et d’appliquer aux résultats expérimentaux. Enfin différents matériaux composites zéolite/ MgSO4 ont été synthétisés. Ces matériaux ont été caractérisés et leur capacité de sorption a été mesurée. Les résultats mettent en évidence une augmentation de la capacité de sorption, mais uniquement pour des pressions de vapeur d’eau importantes. / Exhaustion of fossil fuels and increase of energy demand, lead to growing interest in the development of renewable energies and energy efficient systems. Nevertheless, the gap between the supply and the demand of energy by renewable energies makes necessary the using a storage system. Among various thermals energy storage technologies, the composites formed by a porous matrix and a hygroscopic salt, allow to benefit advantage of both the adsorption/desorption capacities of the matrix and the chemical reactions of salt. The main difficulty to develop of such a system is the incomplete understanding of the involved physicochemical phenomena.The first objective of this thesis is to study the hydration and dehydration reactions of MgSO4 salt in presence of water vapor. Firstly, the physicochemical characterization of solids and isothermal and isobaric thermogravimetry experiments were carried out. It has been shown that the system is divariant and that the hydrates obtained are non-stoichiometric with localized water molecules. A thermodynamic model was developed and applied to the experimental data. In a second step, the kinetic studies of both the dehydration and hydration reactions were carried out. The rate limiting steps were defined, two kinetic models have been written and applied to the experimental results. Finally, various zeolite/MgSO4 composite materials have been synthesized. These materials have been characterized and their sorption capacity has been measured. The results show an increased sorption capacity, but only for water vapor pressures different from those used for thermal energy storage.

Page generated in 0.0835 seconds