• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 27
  • 14
  • 9
  • 6
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 204
  • 204
  • 204
  • 204
  • 41
  • 33
  • 27
  • 27
  • 23
  • 23
  • 23
  • 22
  • 21
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Análise numérica da disposição de aerogeradores próximos : estudo de caso segundo a teoria constructal

Küchle, Jefferson January 2016 (has links)
Turbinas eólicas usualmente são agrupadas em grandes parques, reduzindo o custo de instalação, transmissão da energia e manutenção periódica. A superposição das esteiras sobre turbinas adjacentes normalmente reduz consideravelmente a capacidade total, objeto de estudo de Micrositing. Porém, por vezes o “efeito Venturi” ocasionado pelas turbinas à montante induz maior velocidade às turbinas adjacentes aumentando o potencial eólico disponível nas linhas consecutivas. De forma inovadora empregar o Design Constructal de Bejan, o modelo do disco atuador genérico e a Dinâmica dos Fluidos Computacional (CFD) para obter a melhor disposição geométrica das turbinas em uma área plana e não rugosa, com foco à maior potência extraída por área de turbinas instaladas. Para tal, modelar e predizer o comportamento da esteira é fundamental, assim como conhecer os modelos de esteira e a aplicabilidade dos métodos empregados. O Design Constructal é a fonte dos parâmetros geométricos base das simulações: o espaçamento entre as turbinas e as razões de diâmetros. Após 64 simulações semi-iterativas e mais de 60 iterativas verifica-se que o maior ganho em potência disponível por área é de 7,37% para a configuração V = 7m/s, S = 3D, d/D = 0.5, L = 3D e 8,48% para a configuração V = 11m/s, S = 3D; d/D = 0.25 & 0.5, L= 0.75D, valor relativo à execução de somente um diâmetro de 100 metros. / Usually wind turbines are grouped in large parks, reducing the cost of installation, energy transmission and periodic maintenance. But the overlapping of the aerodynamical wakes on adjacent turbines reduces the total capacity, Micrositing study. However, the "Venturi effect" caused by the turbines upstream sometimes increases the speed to the adjacent turbines increasing the wind potential available in straight lines. Innovatively employing the Design Constructal Bejan, the model of the actuator disc and Computational Fluid Dynamics (CFD) to search the best geometrical layout of the turbines on a roughless and flat area, focus on higher power extracted by area. To do this, model and predict the wake of behavior is fundamental, as well as know the aerodynamical wakes models and the applicability of the methods employed. The Design Constructal is the source of the simulation’s parameters: spacing between the turbines and the diameter’s ratio. After concluded 64 semi-iterative and iterative simulations, and more than 60 verifies, the best gain in available power per area is 7.37% for the configuration V = 7 m/s; S = 3d; d/D = 0.5; L = 3D. And the gain of 8.48% for the configuration V = 11m/s, s = 3D; d/D = 0.25 & 0.50; L = 0.75D, comparing to the implementation of just 100 meters diameter.
72

Experimental studies and CFD simulations of conical spouted bed hydrodynamics

Wang, Zhiguo 11 1900 (has links)
Conical spouted beds have been commonly used for drying suspensions, solutions and pasty materials. They can also be utilized in many other processes, such as catalytic partial oxidation of methane to synthesis gas, coating of tablets, coal gasification and liquefaction, pyrolysis of sawdust or mixtures of wood residues. The main objectives of this work include both the experimental research and mathematical modelling of the conical spouted bed hydrodynamics. For experimental research, pressure transducers and static pressure probes were applied to investigate the evolution of the internal spout and the local static pressure distribution; optical fibre probes were utilized to measure axial particle velocity profiles and voidage profiles; the step tracer injection technique using helium as the tracer and thermal conductivity cells as detectors was used to investigate the gas mixing behaviour inside a conical spouted bed. It was found that many factors might affect calibration of the effective distance of an optical fibre probe. Therefore, a new calibration setup was designed and assembled, and a comprehensive sensitivity analysis was conducted to calibrate the optical probes used in this study. For mathematical modelling, a stream-tube model based on the bed structure inside a conical spouted bed was proposed to simulate partial spouting states. By introducing an adjustable parameter, this model is capable of predicting the total pressure drop under different operating conditions, and estimating axial superficial gas velocity profiles and gauge pressure profiles. A mathematical model based on characteristics of conical spouted beds and the commercial software FLUENT was also developed and validated using measured experimental data. The proposed new CFD model can simulate both stable spouting and partial spouting states, with an adjustable solids-phase source term. At stable spouting states, simulation results agree very well with almost all experimental data, such as static pressure profiles, axial particle velocity profiles, voidage profiles etc. A comprehensive sensitivity analysis was also conducted to investigate the effect of all possible factors on simulation results, including the fluid inlet profile, solid bulk viscosity, frictional viscosity, restitution coefficient, exchange coefficient, and solid phase source term. The proposed new CFD model was also used successfully to simulate gas mixing behaviours inside a conical spouted bed, and simulate cylindrical packed beds as well as cylindrical fluidized beds in one code package.
73

Experimental studies and CFD simulations of conical spouted bed hydrodynamics

Wang, Zhiguo 11 1900 (has links)
Conical spouted beds have been commonly used for drying suspensions, solutions and pasty materials. They can also be utilized in many other processes, such as catalytic partial oxidation of methane to synthesis gas, coating of tablets, coal gasification and liquefaction, pyrolysis of sawdust or mixtures of wood residues. The main objectives of this work include both the experimental research and mathematical modelling of the conical spouted bed hydrodynamics. For experimental research, pressure transducers and static pressure probes were applied to investigate the evolution of the internal spout and the local static pressure distribution; optical fibre probes were utilized to measure axial particle velocity profiles and voidage profiles; the step tracer injection technique using helium as the tracer and thermal conductivity cells as detectors was used to investigate the gas mixing behaviour inside a conical spouted bed. It was found that many factors might affect calibration of the effective distance of an optical fibre probe. Therefore, a new calibration setup was designed and assembled, and a comprehensive sensitivity analysis was conducted to calibrate the optical probes used in this study. For mathematical modelling, a stream-tube model based on the bed structure inside a conical spouted bed was proposed to simulate partial spouting states. By introducing an adjustable parameter, this model is capable of predicting the total pressure drop under different operating conditions, and estimating axial superficial gas velocity profiles and gauge pressure profiles. A mathematical model based on characteristics of conical spouted beds and the commercial software FLUENT was also developed and validated using measured experimental data. The proposed new CFD model can simulate both stable spouting and partial spouting states, with an adjustable solids-phase source term. At stable spouting states, simulation results agree very well with almost all experimental data, such as static pressure profiles, axial particle velocity profiles, voidage profiles etc. A comprehensive sensitivity analysis was also conducted to investigate the effect of all possible factors on simulation results, including the fluid inlet profile, solid bulk viscosity, frictional viscosity, restitution coefficient, exchange coefficient, and solid phase source term. The proposed new CFD model was also used successfully to simulate gas mixing behaviours inside a conical spouted bed, and simulate cylindrical packed beds as well as cylindrical fluidized beds in one code package.
74

Numerical Simulation of Non-premixed Laminar and Turbulent Flames by means of Flamelet Modelling Approaches

Claramunt Altimira, Kilian 18 February 2005 (has links)
Deep knowledge of combustion phenomena is of great scientific and technological interest. In fact, better design of combustion equipments (furnaces, boilers, engines, etc) can contribute both in the energy efficiency and in the reduction of pollutant formation. One of the limitations to design combustion equipments, or even predict simple flames, is the resolution of the mathematical formulation. Analytical solutions are not feasible, and recently numerical techniques have received enormous interest. Even though the ever-increasing computational capacity, the numerical resolution requires large computational resources due to the inherent complexity of the phenomenon (viz. multidimensional flames, finite rate kinetics, radiation in participating media, turbulence, etc). Thus, development of capable mathematical models reducing the complexity and the stiffness as well as efficient numerical techniques are of great interest.The main contribution of the thesis is the analysis and application of the laminar flamelet concept to the numerical simulation of both laminar and turbulent non-premixed flames. Assuming a one-dimensional behavior of combustion phenomena in the normal direction to the flame front, and considering an appropriate coordinates transformation, flamelet approaches reduce the complexity of the problem.The numerical methodology employed is based on the finite volume technique and a parallel multiblock algorithm is used obtaining an excellent parallel efficiency. A post-processing verification tool is applied to assess the quality of the numerical solutions.Before dealing with flamelet approaches, a co-flow partially premixed methane/air laminar flame is studied for different levels of partial premixing. A comprehensive study is performed considering different mathematical formulations based on the full resolution of the governing equations and their validation against experimental data from the literature. Special attention is paid to the prediction of pollutant formation.After the full resolution of the governing equations, the mathematical formulation of the flamelet equations and a deep study of the hypothesis assumed are presented. The non-premixed methane/air laminar flame is considered to apply the flamelet modelling approach, comparing the results with the simulations obtained with the full resolution of the governing equations. Steady flamelets show a proper performance to predict the main flame features when differential diffusion and radiation are neglected, while unsteady flamelets are more suitable to account for these effects as well as pollutant formation. Assumptions of the flamelet equations, the scalar dissipation rate modelling, and the evaluation of the Lagrangian flamelet time for unsteady flamelets are specially analysed. For the numerical simulation of turbulent flames, the mathematical formulation based on mass-weighted time-averaging techniques, using RANS EVM two-equation models is considered. The laminar flamelet concept with a presumed PDF is taken into account. An extended Eddy Dissipation Concept model is also applied for comparison purposes. A piloted non-premixed methane/air turbulent flame is studied comparing the numerical results with experimental data from the literature. A clear improvement in the prediction of slow processes is shown when the transient term in the flamelet equations is retained. Radiation is a key aspect to properly define the thermal field and, consequently, species such as nitrogen oxides. Finally, the consideration of the round-jet anomaly is of significant importance to estimate the flame front position.In conclusion, flamelet modelling simulations are revealed to be an accurate approach for the numerical simulation of laminar and turbulent non-premixed flames. Detailed chemistry can be taken into account and the stiffness of the chemistry term is solved in a pre-processing task. Pollutant formation can be predicted considering unsteady flamelets.
75

An Accelerated Aerodynamic Optimization Approach For A Small Turbojet Engine Centrifugal Compressor

Ceylanoglu, Arda 01 December 2009 (has links) (PDF)
Centrifugal compressors are widely used in propulsion technology. As an important part of turbo-engines, centrifugal compressors increase the pressure of the air and let the pressurized air flow into the combustion chamber. The developed pressure and the flow characteristics mainly affect the thrust generated by the engine. The design of centrifugal compressors is a challenging and time consuming process including several tests, computational fluid dynamics (CFD) analyses and optimization studies. In this study, a methodology on the geometry optimization and CFD analyses of the centrifugal compressor of an existing small turbojet engine are introduced as increased pressure ratio being the objective. The purpose is to optimize the impeller geometry of a centrifugal compressor such that the pressure ratio at the maximum speed of the engine is maximized. The methodology introduced provides a guidance on the geometry optimization of centrifugal impellers supported with CFD analysis outputs. The original geometry of the centrifugal compressor is obtained by means of optical scanning. Then, the parametric model of the 3-D geometry is created by using a CAD software. A design of experiments (DOE) procedure is applied through geometrical parameters in order to decrease the computation effort and guide through the optimization process. All the designs gathered through DOE study are modelled in the CAD software and meshed for CFD analyses. CFD analyses are carried out to investigate the resulting pressure ratio and flow characteristics. The results of the CFD studies are used within the Artificial Neural Network methodology to create a fit between geometric parameters (inputs) and the pressure ratio (output). Then, the resulting fit is used in the optimization study and a centrifugal compressor with higher pressure ratio is obtained by following a single objective optimization process supported by design of experiments methodology.
76

Análise numérica da disposição de aerogeradores próximos : estudo de caso segundo a teoria constructal

Küchle, Jefferson January 2016 (has links)
Turbinas eólicas usualmente são agrupadas em grandes parques, reduzindo o custo de instalação, transmissão da energia e manutenção periódica. A superposição das esteiras sobre turbinas adjacentes normalmente reduz consideravelmente a capacidade total, objeto de estudo de Micrositing. Porém, por vezes o “efeito Venturi” ocasionado pelas turbinas à montante induz maior velocidade às turbinas adjacentes aumentando o potencial eólico disponível nas linhas consecutivas. De forma inovadora empregar o Design Constructal de Bejan, o modelo do disco atuador genérico e a Dinâmica dos Fluidos Computacional (CFD) para obter a melhor disposição geométrica das turbinas em uma área plana e não rugosa, com foco à maior potência extraída por área de turbinas instaladas. Para tal, modelar e predizer o comportamento da esteira é fundamental, assim como conhecer os modelos de esteira e a aplicabilidade dos métodos empregados. O Design Constructal é a fonte dos parâmetros geométricos base das simulações: o espaçamento entre as turbinas e as razões de diâmetros. Após 64 simulações semi-iterativas e mais de 60 iterativas verifica-se que o maior ganho em potência disponível por área é de 7,37% para a configuração V = 7m/s, S = 3D, d/D = 0.5, L = 3D e 8,48% para a configuração V = 11m/s, S = 3D; d/D = 0.25 & 0.5, L= 0.75D, valor relativo à execução de somente um diâmetro de 100 metros. / Usually wind turbines are grouped in large parks, reducing the cost of installation, energy transmission and periodic maintenance. But the overlapping of the aerodynamical wakes on adjacent turbines reduces the total capacity, Micrositing study. However, the "Venturi effect" caused by the turbines upstream sometimes increases the speed to the adjacent turbines increasing the wind potential available in straight lines. Innovatively employing the Design Constructal Bejan, the model of the actuator disc and Computational Fluid Dynamics (CFD) to search the best geometrical layout of the turbines on a roughless and flat area, focus on higher power extracted by area. To do this, model and predict the wake of behavior is fundamental, as well as know the aerodynamical wakes models and the applicability of the methods employed. The Design Constructal is the source of the simulation’s parameters: spacing between the turbines and the diameter’s ratio. After concluded 64 semi-iterative and iterative simulations, and more than 60 verifies, the best gain in available power per area is 7.37% for the configuration V = 7 m/s; S = 3d; d/D = 0.5; L = 3D. And the gain of 8.48% for the configuration V = 11m/s, s = 3D; d/D = 0.25 & 0.50; L = 0.75D, comparing to the implementation of just 100 meters diameter.
77

Aplicação de técnicas de CFD no estudo da eficiência de estágio em colunas de destilação para produção de etanol

Oliveira, Gladson Cintra de 17 March 2014 (has links)
Made available in DSpace on 2016-06-02T19:56:54Z (GMT). No. of bitstreams: 1 6010.pdf: 3960363 bytes, checksum: bb924b69a99f6fe80ceb63d34a17b457 (MD5) Previous issue date: 2014-03-17 / Universidade Federal de Sao Carlos / Distillation is one of the most important and used separation techniques of components at industrial level, applied in a wide range of processes. Its great importance is due to the capacity of purify components of a mixture using the volatility difference among them as driving force. However, this technique represents 40% of the total energy consumption of an industrial facility. Nowadays, with the necessity of rethink the energetic use owing to the massive usage of natural resources, new regulations of pollutant emissions, environmental issues and market competition; the enhancement of the distillation process has become essential to the refineries, petrochemicals and a variety of other sectors of the industry. Empirical studies about the flow dynamics in distillation columns are rare due to the large dimensions of this equipment and the high investment, including measurement instrumentation. This lack of experimental data makes difficult the appropriate understanding of the mechanisms that occur in this equipment, as flow patterns and degree of separation, as well as the relation between both. Nevertheless, to improve the distillation process performance is necessary to deeply know the dynamics of the multiphase flow existing on each tray of the column, where the contact between the phases indeed happens. In this study, was proposed the computational simulation of sieve trays of distillation columns using CFD s tools (Computational Fluid Dynamics). The main aim was to conceive a model capable to predict the hydrodynamics and the more volatile component transfer between the liquid and the vapor. Furthermore, the regions that possibly interfere on obtaining higher efficiencies were pointed out. For that, tridimensional, transient and multiphase models with the Euler- Euler framework were used. The main results show liquid velocity profiles, volumetric fraction, clear liquid height, mass fraction and efficiency. The results presented agreement with the literature. In general, the fluid dynamics results obtained here highlight the significance of the application of models that represent the complex behavior existing on sieve trays, since this crucially influence in the separation degree of the process. The CFD evidenced to be and valuable tool to study this sort of flow on columns internals and can be applied in the design and optimization of those equipment. / A destilação é uma das mais importantes técnicas de separação de componentes empregada a nível industrial nos mais diversos processos. Sua suma importância dá-se na capacidade de purificar componentes de uma mistura utilizando a diferença de volatilidade entre eles como força motriz. Entretanto, trata-se de uma técnica que representa cerca de 40% da energia consumida em uma planta industrial. Atualmente, com a necessidade de se repensar o uso energético, com as novas políticas de emissão de poluentes, da preocupação com o ambiente e a concorrência de mercado; o aperfeiçoamento do processo de destilação tem se tornado essencial para as refinarias, petroquímicas e diversos setores da indústria. Estudos empíricos sobre o escoamento em colunas de destilação são raros, em parte devido às grandes dimensões destes aparelhos e ao alto investimento em equipamentos e instrumentos de medição. Esta carência de dados experimentais dificulta o entendimento adequado dos mecanismos que ocorrem neste equipamento, como os padrões de escoamento e o grau de separação, assim como a relação entre estes dois. Contudo, para que se possa melhorar o processo destilatório, é necessário conhecer a fundo a dinâmica do escoamento multifásico existente em cada prato da coluna, onde de fato ocorre o contato íntimo entre as fases. Neste estudo, foi proposta a simulação computacional de pratos perfurados de colunas de destilação usando ferramentas de CFD (Computational Fluid Dynamics). O principal objetivo foi conceber um modelo capaz de prever a hidrodinâmica do prato e a transferência do componente mais volátil entre o líquido e o vapor. Além do mais, foram apontadas as regiões no prato que possivelmente interferem na obtenção de maiores eficiências de estágio. Para isso, foram usados modelos 3D, transientes e multifásicos com abordagem Euler-Euler. Os principais resultados mostram os perfis de velocidade, fração volumétrica, altura de líquido claro, fração mássica e eficiência, os quais apresentaram concordância quando comparados com a literatura. Em geral, os resultados fluidodinâmicos obtidos neste estudo ressaltam a importância da aplicação de modelos que representem o complexo comportamento encontrado em pratos perfurados, já que estes influenciam decisivamente no grau de separação do processo. CFD demonstrou ser uma ferramenta valiosa para estudar o fluxo em internos de torres de destilação e pode ser aplicado para projeto e otimização destes equipamentos.
78

Análise numérica da disposição de aerogeradores próximos : estudo de caso segundo a teoria constructal

Küchle, Jefferson January 2016 (has links)
Turbinas eólicas usualmente são agrupadas em grandes parques, reduzindo o custo de instalação, transmissão da energia e manutenção periódica. A superposição das esteiras sobre turbinas adjacentes normalmente reduz consideravelmente a capacidade total, objeto de estudo de Micrositing. Porém, por vezes o “efeito Venturi” ocasionado pelas turbinas à montante induz maior velocidade às turbinas adjacentes aumentando o potencial eólico disponível nas linhas consecutivas. De forma inovadora empregar o Design Constructal de Bejan, o modelo do disco atuador genérico e a Dinâmica dos Fluidos Computacional (CFD) para obter a melhor disposição geométrica das turbinas em uma área plana e não rugosa, com foco à maior potência extraída por área de turbinas instaladas. Para tal, modelar e predizer o comportamento da esteira é fundamental, assim como conhecer os modelos de esteira e a aplicabilidade dos métodos empregados. O Design Constructal é a fonte dos parâmetros geométricos base das simulações: o espaçamento entre as turbinas e as razões de diâmetros. Após 64 simulações semi-iterativas e mais de 60 iterativas verifica-se que o maior ganho em potência disponível por área é de 7,37% para a configuração V = 7m/s, S = 3D, d/D = 0.5, L = 3D e 8,48% para a configuração V = 11m/s, S = 3D; d/D = 0.25 & 0.5, L= 0.75D, valor relativo à execução de somente um diâmetro de 100 metros. / Usually wind turbines are grouped in large parks, reducing the cost of installation, energy transmission and periodic maintenance. But the overlapping of the aerodynamical wakes on adjacent turbines reduces the total capacity, Micrositing study. However, the "Venturi effect" caused by the turbines upstream sometimes increases the speed to the adjacent turbines increasing the wind potential available in straight lines. Innovatively employing the Design Constructal Bejan, the model of the actuator disc and Computational Fluid Dynamics (CFD) to search the best geometrical layout of the turbines on a roughless and flat area, focus on higher power extracted by area. To do this, model and predict the wake of behavior is fundamental, as well as know the aerodynamical wakes models and the applicability of the methods employed. The Design Constructal is the source of the simulation’s parameters: spacing between the turbines and the diameter’s ratio. After concluded 64 semi-iterative and iterative simulations, and more than 60 verifies, the best gain in available power per area is 7.37% for the configuration V = 7 m/s; S = 3d; d/D = 0.5; L = 3D. And the gain of 8.48% for the configuration V = 11m/s, s = 3D; d/D = 0.25 & 0.50; L = 0.75D, comparing to the implementation of just 100 meters diameter.
79

Tribosurface Interactions involving Particulate Media with DEM-calibrated Properties: Experiments and Modeling

Desai, Prathamesh 01 December 2017 (has links)
While tribology involves the study of friction, wear, and lubrication of interacting surfaces, the tribosurfaces are the pair of surfaces in sliding contact with a fluid (or particulate) media between them. The ubiquitous nature of tribology is evident from the usage of its principles in all aspects of life, such as the friction promoting behavior of shoes on slippery water-lubricated walkways and tires on roadways to the wear of fingernails during filing or engine walls during operations. These tribosurface interfaces, due to the small length scales, are difficult to model for contact mechanics, fluid mechanics and particle dynamics, be it via theory, experiments or computations. Also, there is no simple constitutive law for a tribosurface with a particulate media. Thus, when trying to model such a tribosurface, there is a need to calibrate the particulate media against one or more property characterizing experiments. Such a calibrated media, which is the “virtual avatar” of the real particulate media, can then be used to provide predictions about its behavior in engineering applications. This thesis proposes and attempts to validate an approach that leverages experiments and modeling, which comprises of physics-based modeling and machine learning enabled surrogate modeling, to study particulate media in two key particle matrix industries: metal powder-bed additive manufacturing (in Part II), and energy resource rock drilling (in Part III). The physics-based modeling framework developed in this thesis is called the Particle-Surface Tribology Analysis Code (P-STAC) and has the physics of particle dynamics, fluid mechanics and particle-fluid-structure interaction. The Computational Particle Dynamics (CPD) is solved by using the industry standard Discrete Element Method (DEM) and the Computational Fluid Dynamics (CFD) is solved by using finite difference discretization scheme based on Chorin's projection method and staggered grids. Particle-structure interactions are accounted for by using a state-of-the art Particle Tessellated Surface Interaction Scheme and the fluid-structure interaction is accounted for by using the Immersed Boundary Method (IBM). Surrogate modeling is carried out using back propagation neural network. The tribosurface interactions encountered during the spreading step of the powder-bed additive manufacturing (AM) process which involve a sliding spreader (rolling and sliding for a roller) and particulate media consisting of metal AM powder, have been studied in Part II. To understand the constitutive behavior of metal AM powders, detailed rheometry experiments have been conducted in Chapter 5. CPD module of P-STAC is used to simulate the rheometry of an industry grade AM powder (100-250microns Ti-6Al-4V), to determine a calibrated virtual avatar of the real AM powder (Chapter 6). This monodispersed virtual avatar is used to perform virtual spreading on smooth and rough substrates in Chapter 7. The effect of polydispersity in DEM modeling is studied in Chapter 8. A polydispersed virtual avatar of the aforementioned AM powder has been observed to provide better validation against single layer spreading experiments than the monodispersed virtual avatar. This experimentally validated polydispersed virtual avatar has been used to perform a battery of spreading simulations covering the range of spreader speeds. Then a machine learning enabled surrogate model, using back propagation neural network, has been trained to study the spreading results generated by P-STAC and provide much more data by performing regression. This surrogate model is used to generate spreading process maps linking the 3D printer inputs of spreader speeds to spread layer properties of roughness and porosity. Such maps (Chapters 7 and 8) can be used by a 3D-printer technician to determine the spreader speed setting which corresponds to the desired spread layer properties and has the maximum spread throughout. The tribosurface interactions encountered during the drilling of energy resource rocks which involve a rotary and impacting contact of the drill bit with the rock formation in the presence of drilling fluids have been studied in Part III. This problem involves sliding surfaces with fluid (drilling mud) and particulate media (intact and drilled rock particles). Again, like the AM powder, the particulate media, viz. the rock formation being drilled into, does not have a simple and a well-defined constitutive law. An index test detailed in ASTM D 5731 can be used as a characterization test while trying to model a rock using bonded particle DEM. A model to generate weak concrete-like virtual rock which can be considered to be a mathematical representation of a sandstone has been introduced in Chapter 10. Benchtop drilling experiments have been carried out on two sandstones (Castlegate sandstone from the energy rich state of Texas and Crab Orchard sandstone from Tennessee) in Chapter 11. Virtual drilling has been carried out on the aforementioned weak concrete-like virtual rock. The rate of penetration (RoP) of the drill bit has been found to be directly proportional to the weight on bit (WoB). The drilling in dry conditions resulted in a higher RoP than the one which involved the use of water as the drilling fluid. P-SATC with the bonded DEM and CFD modules was able to predict both these findings but only qualitatively (Chapter 11)
80

Numerical simulation of the flow through an aqxial tidal-current turbine employing an elastic-free-surface approach. / Simulação numérica do escoamento através de uma turbina axial de corrente de maré utilizando uma metodologia de parede elástica para a modelagem da superfície livre.

Fernando Mattavo de Almeida 15 June 2018 (has links)
Together with the world economic growth is the increasing of energy generation demand. However, the upgrade of world power production capability could affect the environment negatively. Even the clean and renewable sources, such as hydroelectricity and wind powers have socio-economic and environmental disadvantages. For example, the required flooded area for a hydro power plant construction could devastate entire forests, and the installation of a wind farm power plant could affect migratory rotes of birds and generate high levels of noise. Hence, for the balancing of advantages and disadvantages of each power generation source, it is necessary to diversify, which requires investments in new power sources. In this context, the energy generation in the ocean is highlighted. The first point concerning the ocean energy is that there is no need of population removal from the installation area, such as the onshore based methods and the second point is that most of the population is concentrated in coastal areas. Therefore the production occurs near to the demand, decreasing the costs with energy distribution. The two main methodologies for harassing energy from oceans are based on gravity waves and in tides. And since the tidal cycles are governed mainly by the gravitational interaction between oceans, Moon and Sun, they are easily predictable, which increases the reliability of such systems. These works explores methodologies to analyse the power generation from a single axial tidal current turbine through a Steady State RANS methodology. Are discussed the effects of flow directionality, inlet velocity profile and turbulence levels and the results are compared with an experimental scheme. It is proposed an alternative methodology for free surface modelling in the CFD analysis. The usual methodology, VOF, it is based on a homogeneous, biphasic approach which requires an additional mesh refinement and is computationally expensive. This new methodology introduces an elastic wall approach in the free surface region in which the stiffness is calculated to provide the same restoring effect as gravity. In general, the results for open domain matched with the experimental results, validating the numerical model and the confined domain has shown a higher power and thrust coefficients if compared with the open domain, which is in accordance with the actuator disk theory approach. The elastic free surface presented convergence problems related to high Froude numbers and therefore to high deformations. However, a simulation with 10% of the original inlet velocity was performed, achieving reasonable results for both power and thrust coefficients evaluation. / O crescimento econômico mundial e o aumento na demanda pela geração de energia andam juntos. No entanto, uma maior capacidade de produção de energia poderia afetar negativamente o meio ambiente. Mesmo as fontes limpas e renováveis, como a hidrelétrica e a eólica acarretam em impactos socioeconômicos e ambientais. Por exemplo, a construção de uma usina hidrelétrica demanda uma imensa área alagada que pode devastar florestas inteiras e a instalação de uma usina eólica pode afetar a migração de certas espécies de pássaros e produzir altos níveis de barulho. Portanto, para equilibrar as vantagens e desvantagens devidas a cada meio de produção de energia, é necessária a diversificação, que demanda de investimentos em novas fontes. Neste contexto, a geração de energia nos oceanos é destacada. O primeiro ponto a respeito desta fonte é de que não há a necessidade de remoção da população na área de instalação, tal como os métodos de geração dentro do continente. O segundo principal ponto é a respeito da distribuição de energia. A maior parte da população mundial vive em regiões costeiras, diminuindo, portanto, a distância entre a produção e demanda, reduzindo assim, seus custos. As duas principais metodologias para se explorar a energia proveniente dos oceanos são: Energia de Ondas e Energia de Marés. E considerando que os ciclos de mare são governados principalmente pela interação gravitacional entre os oceanos, lua e sol, eles são facilmente previsíveis, o que aumenta a confiabilidade dos sistemas de geração de energia baseados em marés. Este trabalho explora as metodologias para analisar a geração de energia a partir de uma única turbina axial de corrente de maré através de uma metodologia baseada nas equações de Navier-Stokes com a média de Reynolds, analisadas em regime permanente. São discutidos efeitos da direção do escoamento, perfil de velocidades na entrada e nos níveis de turbulência. Os resultados são comparados com experimentos. É proposta uma metodologia alternativa para a modelagem da superfície livre com CFD uma vez que a metodologia atual é baseada em um escoamento bifásico que demanda de um refinamento adicional da malha e é computacionalmente caro. A nova metodologia usa uma parede elástica na região da superfície livre com a rigidez ajustada para se obter o mesmo efeito de restauração que a gravidade. De maneira geral, os resultados para o domínio aberto se aproximaram dos resultados experimentais, validando o modelo numérico e além disso, o modelo considerando confinamento da turbine mostrou maiores valores para os coeficientes de potência e empuxo, estando portanto, de acordo com a teoria do disco atuador. O modelo com a superfície livre elástica apresentou problemas de convergência, relacionados com números de Froude elevados, uma vez que isto se relaciona com maiores deformações na região da superfície livre. Uma simulação com 10% da velocidade original foi realizada, obtendo-se resultados coerentes para ambos coeficientes de potência e empuxo.

Page generated in 0.2625 seconds