• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 86
  • 38
  • 25
  • 21
  • 5
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 223
  • 35
  • 27
  • 23
  • 22
  • 22
  • 22
  • 18
  • 17
  • 17
  • 16
  • 16
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

PORE-CONFINED CARRIERS AND BIOMOLECULES IN MESOPOROUS SILICA FOR BIOMIMETIC SEPARATION AND TARGETING

Zhou, Shanshan 01 January 2017 (has links)
Selectively permeable biological membranes composed of lipophilic barriers inspire the design of biomimetic carrier-mediated membranes for aqueous solute separation. This work imparts selective permeability to lipid-filled pores of silica thin film composite membranes using carrier molecules that reside in the lipophilic self-assemblies. The lipids confined inside the pores of silica are proven to be a more effective barrier than bilayers formed on the porous surface through vesicle fusion, which is critical for quantifying the function of an immobilized carrier. The ability of a lipophilic carrier embedded in the lipid bilayer to reversibly bind the target solute and transport it through the membrane is demonstrated. Through the functionalization of the silica surface with enzymes, enzymatic catalysis and biomimetic separations can be combined on this nanostructured composite platform. The successful development of biomimetic nanocomposite membrane can provide for efficient dilute aqueous solute upgrading or separations using engineered carrier/catalyst/support systems. While the carrier-mediated biomimetic membranes hold great potential, fully understanding of the transport processes in composite synthetic membranes is essential for improve the membrane performance. Electrochemical impedance spectroscopy (EIS) technique is demonstrated to be a useful tool for characterizing the thin film pore accessibility. Furthermore, the effect of lipid bilayer preparation methods on the silica thin film (in the form of pore enveloping, pore filling) on ion transport is explored, as a lipid bilayer with high electrically insulation is essential for detecting activity of proteins or biomimetic carriers in the bilayer. This study provides insights for making better barriers on mesoporous support for carrier-mediated membrane separation process. Porous silica nanoparticles (pSNPs) with pore sizes appropriate for biomolecule loading are potential for encapsulating dsRNA within the pores to achieve effective delivery of dsRNA to insects for RNA interference (RNAi). The mobility of dsRNA in the nanopores of the pSNPs is expected to have a functional effect on delivery of dsRNA to insects. The importance of pores to a mobile dsRNA network is demonstrated by the lack of measurable mobility for both lengths of RNA on nonporous materials. In addition, when the dsRNA could not penetrate the pores, dsRNA mobility is also not measurable at the surface of the particle. Thus, the pores seem to serve as a “sink” in providing a mobile network of dsRNA on the surface of the particle. This work successfully demonstrates the loading of RNA on functionalized pSNPs and identified factors that affects RNA loading and releasing, which provides basis for the delivery of RNA-loaded silica particles in vivo.
122

Caractérisation de la porosité des géopolymères : évolution temporelle et étude de l'eau confinée / Characterization of geopolymer porosity : temporal evolution and study of the confined water

Benavent, Virginie 04 October 2016 (has links)
Ce travail s’inscrit dans le cadre de l’étude de liants aluminosilicatés que sont les géopolymères. La première partie de ce travail a consisté à caractériser la texture poreuse des géopolymères, par des techniques intrusives (porosimétrie à eau, adsorption-désorption d’azote, intrusion mercure) et non-intrusives (diffusion des rayons X et des neutrons aux petits angles). Le terme « texture poreuse » regroupe la forme et la taille des pores, le volume poreux, la surface spécifique et la connectivité des pores. En parallèle, l’évolution de la texture poreuse et des propriétés mécaniques a été suivie sur une période de deux ans, en évitant les échanges avec le milieu extérieur afin d’étudier l’évolution intrinsèque des géopolymères. La seconde étape a consisté à étudier les propriétés thermodynamiques, la structure et la dynamique de l’eau confinée dans la porosité, par calorimétrie différentielle à balayage basse température, par diffusion des neutrons et par des essais de migration. La structure poreuse des géopolymères est complexe, puisqu’il s’agit d’une porosité multi échelle, méso- et macroporeuse, essentiellement ouverte et connectée. Elle consiste en un réseau vermiculaire de mésopores et un réseau de macropores connecté via les mésopores. La taille caractéristique (comprise entre 4 et 10 nm environ) et le volume des mésopores dépendent de la formulation de la pâte de géopolymère, à savoir de la teneur en eau, du rapport molaire Si/Al et de la nature du cation compensateur de charge. Il a été montré que les géopolymères étudiés sont très poreux, la porosité représentant entre 40 et 50 % du volume total du matériau. Le volume mésoporeux représente entre 7 et 15 % du volume total, le reste étant attribué à un volume macroporeux. Au cours du temps, la porosité des géopolymères se ferme légèrement, ceci étant attribué à un mécanisme de dissolution-reprécipitation au niveau des murs de pores. Les propriétés mécaniques atteignent un maximum entre 7 et 10 jours, puis sont stables dans le temps lorsque les échantillons sont conservés à 20°C et à l’abri du séchage ou de la carbonatation de la solution porale. Par ailleurs, trois types d’eau ont été mises en évidence au sein des pores : (i) l’eau liée chimiquement et/physiquement à la surface des parois, (ii) l’eau libre confinée dans les mésopores, et (iii) l’eau libre dans les macropores. A l’échelle locale, les molécules d’eau possède une mobilité proche de celle de l’eau libre, tandis qu’à l’échelle macroscopique, une diminution d’un ordre de grandeur du coefficient de diffusion a été observé, avec un effet probable de la taille des mésopores. / In this study, we have investigated the porous network of geopolymers. The first step consisted in characterizing the structure of the porous network by the means of both intrusive experimental techniques (water porosimetry, gas sorption and mercury intrusion) and non-intrusive techniques (small-angle X-ray and neutron scattering). By the same time, the evolutions of the porous structure as well as the mechanical properties were followed over time. The second step was to determine the structure, the thermodynamics and the dynamics of water confined in the porosity by differential scanning calorimetry, quasi-elastic neutron scattering and migration tests.Geopolymer pore structure is a complex multi-scale porosity, a meso- and macroporous network, essentially open and connected. It consists in a vermicular mesoporous network which connects the macropores. The mesopore characteristic size depends on the formulation of the geopolymer paste and is ranged between about 4 and 10 nm. Geopolymer have a total pore volume comprised between 40 and 50 %, the mesoporous volume represents between 7 and 15 % of the material global volume. The majority of the pore volume is then attributed to macropores. A slight closure of porosity was observed with time and was attributed to a dissolution-precipitation mechanism occurring at pore wall interfaces. The mechanical properties reach a maximum within 10 days, and then are stable over time when the samples were kept from drying and carbonation and at the temperature of 20°C. Besides, three kinds of water were highlighted inside the porosity: (i) an interfacial water linked at the pore surfaces, (ii) free water inside the mésopores and (iii) free water inside macropores. At local time scale, the mobility of water was found close to the one of free water, and at the macroscopic scale, a decrease in diffusion coefficient of one order of magnitude was observed, together with an effect of mesopore size.
123

Improved understanding of sublevel blasting : Determination of the extent of the compacted zone, its properties and the effects on caving

Petropoulos, Nikolaos January 2017 (has links)
Sublevel caving (SLC) is a mass mining method relying on the flowability of the blasted material. The ore is blasted in slices against caved material which is mainly waste rock. The result of the confined blast is greatly influenced by the interaction between the blasted material and the caved material. During blasting both materials change characteristics; the blasted material increases its porosity and compressibility due to breakage and swelling while the caved material is compacted and decreases in porosity and compressibility. The understanding of the mechanisms involved in this process is of significant importance. The behavior of the caved material (confining material) was studied in laboratory under dynamic loading. A new apparatus was developed to conduct impact tests to simulate blasting conditions. The tested material was a blend of crushed waste rock from drift development in the Kiirunavaara mine with maximum particle size 32 mm. The material was tested for two conditions, i.e. dry and wet (pendular state), and with different impact velocities (low (5 m/s), medium (8 m/s) and high (10-12 m/s)). During the impact tests, two types of measurements were taken; dynamic measurements based on the recordings from the installed accelerometers on the machine and static measurements pre- and post-impact. Additionally, the angle of repose, the impact duration, and the fragmentation was measured. In addition to the laboratory tests, small-scale blasting tests were carried out to investigate the burden behavior in confined conditions. The blasted specimen was a cuboid magnetic mortar block and the confining material was crushed concrete with maximum particle size 16 mm. The blocks were instrumented with custom-made incremental displacement sensor. After the analysis of the results from the above experimental work, two confined pillar tests (test #1 and test #2) were carried out at the Kiirunavaara mine. The preparation work for the pillar tests involved the development of instrumentation and installation techniques. The experimental configuration contained two blastholes and measurement holes in between the blastholes drilled from the neighboring drift. Test #1 mainly focused on the evaluation of the instrumentation and techniques while test #2 was focused on the interaction between the blasted burden and the confining material. The confining material in test #1 was a blend of ore and waste material from drift development at the Kiirunavaara mine. The characteristics of the material were unknown. Test #2 was split into two parts, the confining material in the first part was the same as in the laboratory impact tests and the second part of the pillar was confined by caved masses. The instrumentation was installed in the burden of the pillars and was equipped with accelerometers and displacement sensor. Additional instrumentation was also installed in the confining material. The burden in the small-scale blasting tests reached maximum velocity 29 m/s and maximum displacement 12.6 mm. In pillar tests, the burden movement was in the range of 0.9 to 1.1 m. In both pillar tests, burden erosion material was observed in the gap between the intact and the blasted burden. This material was finer compared to the blasted burden. The origin of this material was from the vicinity of the blastholes. The results of the laboratory tests showed that the wet material exhibited larger compaction zone than that of the dry material. The wet material showed apparent cohesion close to the impact surface of the tested material. A similar observation was made in test #2 where an agglomeration of the confining material, as a result of apparent cohesion, was observed on the surface of the blasted burden. The displacement data from the instrumentation in the burden and inside the confining material showed that the compaction zone follows an inverse exponential behavior. After the blast steeper angles of repose were measured indicating higher frictional forces between the particles. Moreover, the evidence of apparent cohesion and a larger angle of repose indicated the introduction of tensile strength in the material. The mass of the confining material was compressed elastically and plastically during the blast. After the blast, the material recovered its elastic deformation and pushed the blasted burden backward as observed in the small-scale blasting tests and the pillar tests. At this stage, the burden erosion material was compacted. Hence, there were 3 materials, i.e. burden erosion material, burden and confining material, which were compacted with different compaction rates. This condition promotes interlocking of the particles in the materials. If this behavior is correlated with a production SLC ring, then it indicates disturbances in flowability of the blasted material.
124

Theoretical study of fluid adsorption in porous materials / Etude théorique de l'adsorption de fluide dans des matériaux poreux

Qiao, Chongzhi 20 October 2019 (has links)
Les matériaux poreux ont une importance stratégique en génie chimique, par exemple en capturant les gaz à effet de serre, la séparation et la purification, les catalyseurs et la conception de capteurs. En raison de la diversité des matériaux poreux et des propriétés thermodynamiques des fluides confinés affectés par autant de matériaux et de propriétés des fluides, les méthodes classiques de la mécanique statistique sont encore étudiées au cas par cas, ce qui rend difficile l’offre des variables de contrôle. de fluide confiné ni pour fournir un motif régulier de fluide confiné. L'élaboration de théories thermodynamiques ou des lois d'échelle universelles permettant de décrire avec précision les fluides confinés devient de plus en plus importante. Cette thèse étudie la relation entre le fluide confiné et le fluide en vrac correspondant, les propriétés interfaciales des fluides sur une surface courbe, l'équation d'état générale des fluides confinés et l'effet de trempe.Une relation de mise à l'échelle générale relie le fluide confiné et le fluide en vrac. Cette relation d'échelle montre que la différence de propriétés thermodynamiques entre un fluide confiné et un fluide en vrac peut être décrite uniquement par la porosité, la quantité d'adsorption en excès et la pression du système en vrac équilibré. La relation intrinsèque entre la relation d’échelle et la théorie d’adsorption de Gibbs est également révélée. En combinant le SPT et la thermodynamique morphologique, nous avons d'abord proposé un SPT augmenté pour explorer les propriétés interfaciales des fluides sur une surface incurvée. En introduisant un terme de courbure d'ordre supérieur, une nouvelle équation d'état offrant une expression plus précise de la tension interfaciale d'un fluide sur une surface sphérique est obtenue. Pour construire une équation d'état générale pour des fluides confinés et explorer les variables de contrôle des fluides confinés, en combinant thermodynamique morphologique et SPT, nous avons introduit la première équation d'état pour un fluide confiné, sans rapport avec le modèle de matériau poreux. Dans cette équation d'état, quatre propriétés géométriques du matériau poreux, à savoir la porosité, l'aire de l'interface solide-fluide, la courbure moyenne et la courbure gaussienne, sont considérées comme des variables de contrôle. Les variables indépendantes sont le potentiel chimique et la température. Les résultats de cette équation d'état concordent parfaitement avec la simulation moléculaire. L'effet de confinement est lié à son potentiel chimique. Nous avons d’abord étudié l’influence des conditions confinées sur le potentiel chimique des fluides. Les résultats montrent qu’une augmentation du potentiel chimique, ce qui signifie que l’augmentation de la résistance des fluides dans les matériaux poreux peut être obtenue en réduisant la porosité, en augmentant la densité du fluide ou en augmentant la surface d’interface solide-liquide. / Porous materials have strategically important in chemical engineering, e.g., capturing Greenhouse gas, separation and purification, catalysts, and design of sensors. Due to the variety of porous materials, and thermodynamic properties of confined fluid are affected by so many materials and fluid properties, studies of classical statistical mechanic methods are still on a case-by-case way, which is hard to offer neither the control variables of confined fluid nor to provide a regular pattern of confined fluid. The development of thermodynamic theories or the universal scaling laws that can accurately describe confined fluids becomes more and more important. This thesis investigates the relation between confined fluid and the corresponding bulk fluid, interfacial properties of fluids at a curved surface, the general equation of state for confined fluids, and quench effect.With the help of scaled particle theory (SPT) and molecular simulation, a general scaling relation that connects the confined fluid and bulk fluid is found. This scaling relation shows that the difference of thermodynamics properties between confined fluid and bulk fluid can be described by only porosity, excess adsorption amount, and the pressure of equilibrated bulk system. The intrinsic relation between scaling relation and Gibbs adsorption theory is also revealed. By combining SPT and morphological thermodynamics, we first proposed an augmented SPT to explore the interfacial properties of fluids at a curved surface. By introducing a higher order curvature term, a new equation of state which offers a more accurate expression of the interfacial tension of fluid at a spherical surface is derived. To construct a general equation of state for confined fluids and explore the control variables of confined fluids, by combining morphological thermodynamic and SPT, we introduced the first equation of state for confined fluid which is irrelevant to the model of porous material. In this equation of state, four geometric properties of porous material, i.e., the porosity, the area of solid-fluid interface, integrate mean and Gaussian curvature are considered as control variables. Independent variables are chemical potential and temperature. Results from this equation of state have a great agreement with molecular simulation in a wide range. The confinement effect is related to its chemical potential. We first studied the influence of confined conditions on the chemical potential of fluids. Results show that an increase on chemical potential, which means the increase of resistance of fluids into porous materials can be led by reducing the porosity, or increasing the fluid density, or increasing the area of solid-liquid interface.
125

Stress-Strain Behavior for Actively Confined Concrete Using Shape Memory Alloy Wires

Zuboski, Gordon R. 09 August 2013 (has links)
No description available.
126

Crystallization, Crystal Orientation and Morphology of Poly(Ethylene Oxide) Under One Dimensional Defect-Free Confinement on the Nanoscale

Hsiao, Ming-Siao 01 September 2009 (has links)
No description available.
127

Confined Mixing of Multiple Transverse Jets

Bishop, Allen J. 01 December 2012 (has links) (PDF)
The mixing performance of multiple transverse jets has been evaluated experimentally. Measurement techniques included laser Doppler velocimetry and planar laser induced fluorescence. Basic findings are consistent with results presented in literature for single jet mixing behavior. Mixing performance has been compared to literature for the single jet case and the Holdeman parameter has been re-evaluated for effectiveness at low jet numbers. A single jet in a confined crossflow was found to have a local minimum at B(d⁄D) = 0.721. Results for two jets indicate monotonically decreasing unmixedness for the range of conditions tested, with no local optimum apparent. Data for three jets indicate a local optimum at B(d⁄D) = 0.87and relatively flat range of mixing performance in the range of 0.75 < B(d⁄D) < 1.5. Six jets indicate a minimum unmixedness near B(d⁄D) = 0.5, but exhibited poorer mixing performance than all other configurations at the highest values of B(d⁄D)tested. The most optimum configuration tested was six jets at B(d⁄D) = 0.5, resulting in an unmixedness of 0.0192. This value was 76% lower than the next lowest configuration (three jets) at the same B(d⁄D).Total momentum was found to collapse the data well, as configurations more closely matched a historical correlation for second moment of a single confined jet more closely.
128

Experimental study on compressive behavior and failure analysis of composite concrete confined by glass/epoxy ±55° filament wound pipes

Gemi, L., Koroglu, M.A., Ashour, Ashraf 21 December 2017 (has links)
Yes / This paper investigates the strength and ductility of concrete confined by Glass/Epoxy ±55° Filament Wound Pipes (GFRP) under axial compression. A total of 24 cylinderical specimens were prepared with expansive and Portland cements, properly compacted and un-compacted for different composite fresh concrete matrix. Test results showed that compressive strength and axial deformation at failure of concrete confined with GFRP tubes increased by an average of 2.85 and 5.57 times these of unconfined concrete, respectively. Macro and micro analyses of GFRP pipes after failure were also investigated. Debonding, whitening, matrix/transfer cracking, delamination and splitting mechanisms were detected at failure, respectively. The experimental results were also employed to assess the reliability of design models available in the literature for confined concrete compressive strength.
129

Confined crystallization, crystalline phase deformation and their effects on the properties of crystalline polymers

Wang, Haopeng January 2009 (has links)
No description available.
130

POLYMER CRYSTALLIZATION IN DROPLETS AND CONFINED LAYERS USING MULTILAYERED FILMS

Langhe, Deepak 30 January 2012 (has links)
No description available.

Page generated in 0.0396 seconds