• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 7
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anomaly and Mass Spectrum of Tensionless String in Light-cone Gauge / 光円錐ゲージにおける張力の無い弦のアノマリーと質量スペクトル

Murase, Kenta 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18794号 / 理博第4052号 / 新制||理||1583(附属図書館) / 31745 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 川合 光, 准教授 福間 將文, 教授 田中 貴浩 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
2

Aspects of trace anomaly in perturbation theory and beyond

Prochazka, Vladimir January 2017 (has links)
In this thesis we study the connection between conformal symmetry breaking and the the renormalization group. In the first chapter we review the main properties of conformal field theories (CFTs), Wilsonian RG and describe how renormalization induces a flow between different CFTs. The prominent role is given to the trace of energy-momentum tensor (TEMT) as a measure for conformal symmetry violation. Scaling properties of supersymmetric gauge theories are also reviewed . In the second chapter the quantum action principle is introduced as a scheme for renormalizing composite operators. The framework is then applied to derive conditions for UV finiteness of two-point correlators of composite operators with special emphasis on TEMT. We then proceed to discuss the application of the Feynman-Hellmann theorem to evaluate gluon condensates. In the third chapter the basic elements the Trace anomaly on curved space are examined. The finiteness results from Chapter 2 are given physical meaning in relation with the RG flow of the geometrical quantity ~ d (coefficient of □R in the anomaly). The last chapter is dedicated to the a-theorem. First we apply some of the results derived in Chapter 3 to extend the known perturbative calculation for the flow of the central charge βa for gauge theories with Banks-Zaks fixed point. In the last part we review the main ideas of the recent proof of the a-theorem by Komargodski and Schwimmer and apply their formalism to re-derive the known non-perturbative formula for ∆ βa of SUSY conformal window theories.
3

Threelogy in two parts 3-algebras in BLG models and a study of TMG solutions

Ritter, Patricia Diana January 2012 (has links)
This thesis is a review of research done over the course of the past 4 years, divided into two unrelated parts. The rst is set in the context of Bagger-Lambert-Gustavsson models, based on 3-Lie algebras. In particular I will describe theories with metric 3-algebras of inde nite signature: these present elds with negative kinetic terms. The problem can be solved by gaugeing away the non-physical degrees of freedom, to obtain other well understood theories. I will show how this procedure can be easily applied for 3-algebra metrics of any inde nite signature. Part II of this thesis focuses on solutions of topologically massive gravity (TMG): particular attention is devoted to warped AdS3 black holes, which are discussed in great detail. I will present a novel analysis of the near horizon geometries of these solutions. I further propose an approach for searching for new solutions to 3-dimensional gravity based on conformal symmetry. This approach is able to yield most of the known axisymmetric stationary TMG backgrounds.
4

The Yangian Bootstrap for Massive Feynman Diagrams

Miczajka, Julian 25 March 2022 (has links)
In dieser Dissertation erweitern wir die Ideen des Yangian-Bootstrap-Algorithmus auf Feynman-Diagramme mit massiven Teilchen. Ausgehend von der massiven dual-konformen Symmetrie der N = 4 Super-Yang-Mills Theorie auf dem Coulomb-Zweig konstruieren wir einen Satz von bilokalen Yangian Level-Eins Generatoren und zeigen, dass sie eine unendliche Anzahl von planaren ein- und zwei-Schleifen-Diagrammen vernichten. Wir beschreiben außerdem wie der dual-konforme Level-Eins Impuls-Operator auf eine massive Verallgemeinerung des gewöhnlichen spezial-konformen Generators im Impulsraum abgebildet wird. Als nächstes wenden wir den Yangian-Bootstrap-Algorithmus mit großem Erfolg auf eine Reihe von massiven Ein-Schleifen-Diagrammen mit verallgemeinerten Propagatorexponenten und in beliebiger Anzahl von Raumdimensionen an. Im Spezialfall der dual-konformen Integrale, deren Propagatorexponenten sich zur Raumdimension addieren, finden wir neue sehr einfache Darstellungen durch hypergeometrische Funktionen, die eine natürliche Verallgemeinerung für Diagramme mit beliebig vielen äußeren Punkten erlauben. Außerdem diskutieren wir Aspekte des Yangian-Bootstrap-Algorithmus in Minkowski-Raumzeit am Beispiel des masselosen Box-Integrals. Wir zeigen, dass dessen Yangian-Symmetrie gemeinsam mit seinen diskreten Permutationssymmetrien das Box-Integrals bis auf 12 unbestimmte Konstanten komplett festlegt. Schließlich schlagen wir vor, dass das Auftreten von Yangian-Symmetrie in massiven Fischnetz-Diagrammen mit deren Rolle als Ein-Spur-Streuamplituden in einer massiven Fischnetz-Theorie zusammenhängen könnte. In Analogie mit der masselosen Fischnetz-Theorie zeigen wir, wie diese Theorie als Deformation der N = 4 Super-Yang-Mills Theorie auf dem Coulomb-Zweig definiert werden kann. Wir diskutieren eine bestimmte Klasse von planaren Grenzfällen, in der die off-shell Streuamplituden der Theorie eine massive dual-konforme Symmetrie sowie Yangian-Symmetrie aufweisen. / In this dissertation, we extend the ideas of the Yangian bootstrap algorithm to massive Feynman diagrams. Based on the massive dual-conformal symmetry of Coulomb branch N = 4 super-Yang-Mills theory, we construct a set of bi-local Yangian level-one generators and show that they annihilate infinite classes of massive planar Feynman integrals at one and two loops. We also describe how the dual-conformal level-one momentum generator maps to a massive deformation of the ordinary momentum space special conformal generator. We then apply the Yangian bootstrap to a set of massive one-loop integrals with generalised propagator powers and in an arbitrary number of space dimensions to great success. In the special case of dual-conformal integrals, whose propagator powers sum to the space dimension, we find very simple novel hypergeometric structures, suggesting a natural generalisation to diagrams with an arbitrary number of external points. In the particular case of the massless box integral we also discuss elements of the Yangian bootstrap in Minkowski space. We show that its Yangian and discrete permutation symmetries constrain it up to 12 undetermined constants. We then derive the values of these constants via analytic continuation from the box integral in the Euclidean region. Finally, we provide evidence that the appearance of Yangian symmetry for massive fishnet diagrams is related to their role as colour-ordered scattering amplitudes in a massive fishnet theory. We show how to construct this theory from Coulomb branch N = 4 super-Yang-Mills theory, paralleling the original construction of the massless fishnet theory. We discuss how a particular class of planar limits leads to the emergence of massive dual-conformal symmetry as well as massive Yangian symmetry for the theory’s off-shell scattering amplitudes.
5

Conformal Feynman Integrals and Correlation Functions in Fishnet Theory

Corcoran, Luke 12 January 2023 (has links)
In dieser Dissertation untersuchen wir unterschiedliche Aspekte im Zusammenhang mit Korrelationsfunktionen in der Fischnetz-Theorie. Zunächst betrachten wir einen der einfachsten Korrelatoren der Fischnetz Theorie, das konforme Box-Integral, in Minkowski Signatur. Während dieses Integral in Euklidischer Signatur eine konforme Symmetrie aufweist, wird diese Symmetrie in Minkowski-Raumzeit subtil gebrochen. Wir beschreiben die Brechung der konformen Symmetrie quantitativ, indem wir die funktionale Form des Box-Integrals in allen kinematischen Regionen untersuchen. Ausserdem untersuchen wir das Ausmass zu dem das Box integral durch seine Yangian-Symmetrie festgelegt ist. Als nächstes widmen wir uns den Basso-Dixon-Graphen, die ebenfalls konforme Vier-Punkt-Integrale sind und Verallgemeinerungen des Box-Integrals zu höheren Schleifenordnungen darstellen. Wir leiten die Yangian-Ward-Identitäten ab, die diese Klasse von Integralen erfüllen. Die Ward-Identitäten sind einhomogene Erweiterungen der partiellen Differentialgleichungen, die im homogenen Fall durch Appell-Hypergeometrische Funktionen gelöst werden. Die Ward-Identitäten können natürlicherweise auf eine Ein-Parameter-Familie von D-dimensionalen Integralen erweitert werden, die Korrelatoren in der verallgemeinerten Fischnetz-Theorie von Kazakov und Olivucci darstellen. Schliesslich untersuchen wir den Dilatationsoperator in einem Drei-Skalar-Sektor der Fischnetztheorie, der auch als Eklektisches Modell bezeichnet wird. In diesem Sektor der Dilatationsoperator nimmt nicht--diagonalisierbare Form an. Das führt dazu, dass die Zwei-Punkt-Korrelationsfunktionen eine logarithmische Abhängigkeit von der Raumzeitseparierung der Operatoren annimmt. Unter Zuhilfenahme von kombinatorischen Argumenten führen wir eine generierende Funktion ein, die das Jordan-Block-Spektrum eines verwandten Modells, der hypereklektischen Spinkette, vollständig charakterisiert. / We study various aspects of correlation functions in fishnet theory. We begin with the study of the simplest correlator in theory theory, represented by the conformal box integral, in Minkowski space. While this integral is conformally invariant in Euclidean space, this symmetry is subtly broken in Minkowski space. We quantify the extent to which conformal symmetry is broken by analysing the functional form of the box in each kinematic region. We propose a new method to calculate the box integral directly in Minkowski space, by introducing a family of configurations with two points at infinity. Furthermore, we investigate the extent to which the box integral is constrained by Yangian symmetry. We constrain the functional form of the box integral in all kinematic regions up to twelve undetermined constants, which we fix by three separate analytic continuations from the Euclidean region. Next, we study the Basso-Dixon graphs, which represent higher-loop versions of the box integral. We derive and study Yangian Ward identities for this class of integrals. These take the form of inhomogeneous extensions of the partial differential equations defining the Appell hypergeometric functions. The Ward identities naturally generalise to a one-parameter family of D dimensional integrals representing correlators in a generalised fishnet theory. Finally, we study the dilatation operator in a particular three scalar sector of the fishnet theory, which has been dubbed the eclectic model. This dilatation operator is non-diagonalisable in this sector. This leads to logarithmic spacetime dependence in the corresponding two-point functions. Using combinatorial arguments, we introduce a generating function which fully characterises the Jordan block spectrum of a related model: the hypereclectic spin chain. This function is found by purely combinatorial means and can be expressed in terms of the q-binomial coefficient.
6

Scattering amplitudes in four- and six-dimensional gauge theories

Schuster, Theodor 06 October 2014 (has links)
Streuamplituden der Quantenchromodynamik (QCD), N = 4 Super-Yang-Mills-Theorie (SYM-Theorie) und der sechsdimensionalen N = (1, 1) SYM-Theorie werden untersucht, mit einem Fokus auf die Symmetrien und Relationen zwischen den Streuamplituden dieser Eichtheorien auf dem Baum-Niveau. Die Baum-Niveau- und Ein-Schleifen-Farbzerlegung beliebiger QCD-Amplituden in primitive Amplituden wird bestimmt und Identitäten hergeleitet, welche den Nullraum unter den primitiven Amplituden aufspannen. Anschließend wird bewiesen, dass alle farbgeordneten Baum-Niveau-Amplituden der masselosen QCD aus der N = 4 SYM-Theorie erhalten werden können. Analytische Formeln für alle für die QCD relevanten N = 4 SYM-Amplituden werden bestimmt und die Effizienz und Genauigkeit der numerischen Auswertung der analytischen Formeln für farbgeordnete QCD-Baum-Niveau-Amplituden mit einer effizienten numerischen Implementierung der Berends-Giele-Rekursion verglichen. Die Symmetrien der massive Amplituden auf dem Coulomb-Zweig der N = 4 SYM-Theorie werden hergeleitet. Diese können durch eine dimensionale Reduktion der masselosen Baum-Niveau-Amplituden der sechsdimensionalen N = (1, 1) SYM-Theory erhalten werden. Darüber hinaus wird bezeigt, wie es mit Hilfe einer numerischen Implementierung der BCFW-Rekursion möglich ist analytische Formeln für die Baum-Niveau-Superamplituden der N = (1, 1) SYM-Theory zu erhalten und die Möglichkeit eines Uplifts der masselose Baum-Niveau-Amplituden der N = 4 SYM-Theory untersucht. Schließlich wird eine Alternative zur dimensionalen Regularisierung der N = 4 SYM-Theorie untersucht. Die Infrarotdivergenzen werden hierbei durch Massen regularisiert, die durch einen Higgs-Mechanismus erhalten wurden. Die korrespondierende Stringtheorie-Beschreibung deutet auf eine exakte duale konforme Symmetrie der Streuamplituden hin. Durch explizite Rechnungen wird dies bestätigt und Vorteile des Regulators werden demonstriert. / We study scattering amplitudes in quantum chromodynamics (QCD), N = 4 super Yang-Mills (SYM) theory and the six-dimensional N = (1, 1) SYM theory, focusing on the symmetries of and relations between the tree-level scattering amplitudes in these three gauge theories. We derive the tree level and one-loop color decomposition of an arbitrary QCD amplitude into primitive amplitudes. Furthermore, we derive identities spanning the null space among the primitive amplitudes. We prove that every color ordered tree amplitude of massless QCD can be obtained from gluon-gluino amplitudes of N = 4 SYM theory. Furthermore, we derive analytical formulae for all gluon-gluino amplitudes relevant for QCD. We compare the numerical efficiency and accuracy of evaluating these closed analytic formulae for color ordered QCD tree amplitudes to a numerically efficient implementation of the Berends-Giele recursion. We derive the symmetries of massive tree amplitudes on the coulomb branch of N = 4 SYM theory, which in turn can be obtained from N = (1, 1) SYM theory by dimensional reduction. Furthermore, we investigate the tree amplitudes of N = (1, 1) SYM theory and explain how analytical formulae can be obtained from a numerical implementation of the supersymmetric BCFW recursion relation and investigate a potential uplift of the massless tree amplitudes of N = 4 SYM theory. Finally we study an alternative to dimensional regularization of N = 4 SYM theory. The infrared divergences are regulated by masses obtained from a Higgs mechanism. The corresponding string theory set-up suggests that the amplitudes have an exact dual conformal symmetry. We confirm this expectation and illustrate the calculational advantages of the massive regulator by explicit calculations.
7

Dualities, Symmetries and Unbroken Phases in String Theory : Probing the Composite Nature of the String / Dualiteter, Symmetrier och Obrutna Faser i Strängteori : En Utforskning av Strängens Sammansatta Natur

Engquist, Johan January 2005 (has links)
The thesis treats aspects of string/M-theory in anti-de Sitter spacetimes and their supersymmetric completions. By applying the AdS/CFT correspondence, as well as models of spin chains and singletons, we try to attain a better understanding of the underlying symmetries and the unbroken phases of string/M-theory. Tensionless string/M-theory in anti-de Sitter spacetime is argued to imply a higher spin gauge symmetry enhancement and to be described by gauged sigma models of multi-singletons as well as by closed singleton strings. Vasiliev's weakly projected equations of symmetric massless higher spin gauge fields in the vector oscillator formulation is shown to follow from a deformation of the singleton model. Various four dimensional minimal as well as non-minimal supersymmetric higher spin gauge theories in the spinor formulation are examined. The minimal higher spin gauge theory based on the symmetry algebra hs(1|4) is elaborated on in an N=1 superspace, illustrating the remarkable fact that the choice of base manifold is not fixed in unfolded dynamics. The importance of the representations saturating the unitarity bounds in anti-de Sitter spacetime is stressed throughout the thesis, with particular emphasis on the singleton and the massless representations. Singletons, and hence massless states, are shown to appear as bound states on the string or p-brane and are localized at cusps. Furthermore, we examine semiclassical string solutions in Type IIB String Theory in AdS(5) x S(5) and their boundary duals in N=4 Super Yang-Mills Theory in d=4 which are constituted out of thermodynamic composite operators. By using integrable spin chain techniques and Bäcklund transformations in the field theory and in the string theory, respectively, the one-loop anomalous dimensions as well as the tower of conserved charges of the composite operators are shown to be in agreement with the energies and the tower of conserved charges associated with the dual string states.

Page generated in 0.0847 seconds