1 |
Chiral perturbation theory for lattice QCDBär, Oliver 02 March 2011 (has links)
Eine zusammenfassende Übersicht über die Formulierung der chiralen Störungstheorie (ChPT) für die Gitter Quantenchromodynamik (QCD) ist gegeben. Wir beginnen mit kurzen Zusammenfassungen der chiralen Störungstheorie für die Kontinuum-QCD sowie Symanziks effektiver Theorie für die Gitter-QCD. Anschließend wird die Formulierung der ChPT für die Gitter-QCD behandelt. Nach einem weiteren Kapitel über partial quenching und Theorien mit gemischten Wirkungen werden konkrete Anwendungen diskutiert: Wilson ChPT, staggered ChPT sowie Wilson ChPT mit einem chiral verdrehten Massenterm. Die folgenden Kapitel behandeln das Epsilonregime mit Wilsonfermionen sowie ausgewählte Resultate für ChPT mit gemischten Wirkungen. Den Abschluß bildet die Formulierung der chiralen Störungstheorie für schwere Vektormesonen mit Wilsonfermionen. / The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed.
|
2 |
The renormalised quark mass in the Schrödinger functional of lattice QCDKurth, Stefan 04 September 2002 (has links)
Diese Arbeit befasst sich mit störungstheoretischen Rechnungen zur renormierten Quarkmasse im Schrödinger-Funktional mit nicht verschwindendemHintergrundfeld. Als Grundlage der Rechnungen werden das Schroedinger-Funktional und seinegrundlegenden Eigenschaften erläutert. Auch die O(a)-Verbesserung, die zu einem schnelleren Erreichen des Kontinuumslimes fuehren soll, wird in diesem Zusammenhang dargestellt.Des weiteren wird erklärt, aufwelche Weise das Schrödinger-Funktional dazu dient, das Skalenverhaltenrenormierter Größen ueber einen grossen Energiebereich zuuntersuchen. Das Skalenverhalten sowohl der renormierten Kopplung als auchder renormierten Quarkmassen wird in diesem Schema durch Step-Scaling-Funktionenbeschrieben. Die Definition der renormierten Kopplung wird dargestellt,ebenso die Definition der renormierten Masse, die mit Hilfe derPCAC-Relation ueber den Axialvektorstrom und die Pseudoskalardichte erfolgt. Die Skalenabhängigkeit der renormierten Massewird auf die Skalenabhängigkeit der Renormierungskonstanten derPseudoskalardichte zurueckgefuehrt. Breiten Raum nimmt die Berechnung verschiedenerKorrelationsfunktionen bis zur Ein-Loop-Ordnung in Stoerungstheorie ein. Mit Hilfe der soermittelten Koeffizienten wird die kritische Quarkmasse, bei der die renormierte Masse verschwindet, in Ein-Loop-Naeherung berechnet,ebenso der Ein-Loop-Koeffizent der Renormierungskonstanten der Pseudoskalardichte. Mit Hilfe dieses Koeffizienten wird aus der bekanntenanomalen Dimension in Zwei-Loop-Ordnung im MS-bar-Schemadie anomale Dimension im Schrödinger-Funktional berechnet. Als weitere Anwendung der Störungstheorie werden verschiedene Diskretisierungsfehler bestimmt. Die kritische Quarkmasse in Ein-Loop-Ordnunggeht in den Zwei-Loop-Koeffizienten des Diskretisierungfehlers der Step-Scaling-Funktion der renormierten Kopplung ein, der durchdie Abweichung dieser Funktion von ihrem Kontinuumslimes definiert ist.Verschiedene Diskretisierungsfehler der Strommasse, die durch die PCAC-Relationmit unrenormiertem Axialvektorstrom und Pseudoskalardichte definiert ist, werdenin Ein-Loop-Ordnung berechnet. Ein wichtiger Diskretisierungsfehler derrenormierten Quarkmasse ist die Abweichung ihrer Step-Scaling-Funktion vomKontinuumslimes. Dieser Fehler ist in Ein-Loop-Ordnung bislang nur mitverschwindendem Hintergrundfeld bekannt und wird in dieser Arbeit mitnicht verschwindendem Hintergrundfeld berechnet. / The renormalised quark mass in the Schroedinger functional is studied perturbatively with a non-vanishing background field. The framework in which the calculations are done is the Schroedinger functional. Its definition and basic properties are reviewed and it is shown how to make the theory converge faster towards its continuum limit by O(a) improvement. It is explained how the Schroedinger functional scheme avoids the implications of treating a large energy range on a single lattice in order to determine the scale dependence of renormalised quantities. The description of the scale dependence by the step scaling function is introduced both for the renormalised coupling and the renormalised quark masses. The definition of the renormalised coupling in the Schroedinger functional is reviewed, and the concept of the renormalised mass being defined by the axial current and density via the PCAC-relation is explained. The running of the renormalised mass described by its step scaling function is presented as a consequence of the fact that the renormalisation constant of the axial density is scale dependent. The central part of the thesis is the expansion of several correlation functions up to 1-loop order. The expansion coefficients are used to compute the critical quark mass at which the renormalised mass vanishes, as well as the 1-loop coefficient of the renormalisation constant of the axial density. Using the result for this renormalisation constant, the 2-loop anomalous dimension is obtained by conversion from the MS-bar-scheme. Another important application of perturbation theory carried out in this thesis is the determination of discretisation errors. The critical quark mass at 1-loop order is used to compute the deviation of the coupling's step scaling function from its continuum limit at 2-loop order. Several lattice artefacts of the current quark mass, defined by the PCAC relation with the unrenormalised axial current and density, are computed at 1-loop order. An essential property of the renormalised quark mass being computed in this thesis at 1-loop order is the deviation of its step scaling function from the continuum limit, which was so far only known for the zero background field case.
|
3 |
On the chirally rotated Schrödinger functional with Wilson fermionsLópez, Jénifer González 13 July 2011 (has links)
Viele Phaenomene in der Natur sind eng verknuepft mit dem Niederenergieverhalten der QCD und damit von nicht-perturbative Natur. Viele Groeßen benoetigen auch eine nicht-perturbative Renormierung. Als nicht-perturbative Renormierungsschema schlagen wir das chiral gedrehte Schroedingerfunktional, χSF, in einer Gitterregularisierung vor. Auf dem Baumgraphenniveau wird eine analytische Rechnung im Kontinuum und auf dem Gitter durchgefuehrt. Weitere Untersuchungen werden dann in der Valenzquark-Approximation der Gitter QCD durchgefuehrt. Eines der Hauptziele ist es dabei, die im χSF benoetigten Koeffizienten nicht-perturbativ so einzustellen, dass ein wohl-definierter Kontinuumlimes durchgefuehrt werden kann. Es wird gezeigt, dass solch eine Feineinstellung der Parameter des χSF durchfuehrbar ist und dass physikalische Groeßen nicht sensitiv auf die spezielle Wahl der Bedingung zur Einstellung der Parameter sind. Es wird gezeigt, dass das Skalierungsverhalten physikalischer Groeßen konsistent mit fuehrenden O(a2) Diskretisierungseffekten ist. Das Hauptergebnis dieser Arbeit ist der Nachweis, dass das χSF mit den hier berechneten Verbesserungskoeffizienten, zu einem korrekten Kontinuumlimes fuehrt. Dazu wurden drei unterschiedliche Werte der Renormierungsskala verwendet und mehrere uns interessierende physikalische Groeßen berechnet. Wir koennen deshalb den Schluss ziehen, dass das χSF ein viel versprechendes Renormierungsschema darstellt, um eine nicht-perturbative Renormierung vorzunehmen und dabei gleichzeitig die automatische O(a)-Verbesserung aufrecht erhalten. Dies eroeffnet den sehr wichtigen Ausblick, dass das χSF in zukuenftigen nicht-perturbativen Berechnungen von Renormierungskonstanten auch ueber die Valenzquark-Approximation hinaus eingesetzt werden kann. / There are many phenomena in nature which are closely linked to the low energy regime of QCD. Theoretically, these can be dealt with only by means of non-perturbative methods. Often, a non-perturbative renormalization of QCD is required. We employ a 4-dimensional lattice as a regulator of QCD. As a non-perturbative renormalization scheme, we propose the chirally rotated Schrödinger functional, χSF. We perform analytical studies at tree-level of perturbation theory, in the continuum and on the lattice. Beyond tree-level, all studies are performed in the quenched approximation of QCD. One of the main targets has been to perform the non-perturbative tuning of the two required coefficients of the χSF scheme, such that a well defined continuum limit can be reached. We demonstrate that the tuning is feasible and physical quantities are insensitive to the tuning condition. There are also a couple of improvement counterterms at the boundaries. However, besides these boundary O(a) effects, the χSF is expected to be compatible with bulk automatic O(a)-improvement. We show that the scaling behavior of physical quantities is consistent with automatic O(a)-improvement. The other most important achievement has been to demonstrate that the χSF, with the here computed tuning coefficients, leads to the correct continuum limit. For this, we have performed universality tests of the continuum limit, at three different values of the renormalization scale and through the computation of several physical quantities of interest. The conclusion of these results is that the χSF is a promising scheme to perform non-perturbative renormalizations while maintaining bulk automatic O(a)-improvement. This opens the most relevant prospect that the χSF can be safely used in future non-perturbative computations of renormalization factors also beyond the quenched approximation.
|
4 |
Critical slowing down and error analysis of lattice QCD simulationsVirotta, Francesco 07 May 2012 (has links)
In dieser Arbeit untersuchen wir das Critical Slowing down der Gitter-QCD Simulationen. Wir führen eine Vorstudie in der quenched Approximation durch, in der wir feststellen, dass unsere Schätzung der exponentiellen Autokorrelation wie $\tauexp(a) \sim a^{-5} $ skaliert, wobei $a$ der Gitterabstand ist. In unquenched Simulationen mit O(a)-verbesserten Wilson-Fermionen finden wir ein ähnliches Skalierungsgesetz. Die Diskussion wird von einem gro\ss{}en Satz an Ensembles sowohl in reiner Eichtheorie als auch in der Theorie mit zwei entarteten Seequarks unterstützt. Wir haben darüber hinaus die Wirkung von langsamen algorithmischen Modi in der Fehleranalyse des Erwartungswertes von typischen Gitter-QCD-Observablen (hadronische Matrixelemente und Massen) untersucht. Im Kontext der Simulationen, die durch langsame Modi betroffen sind, schlagen wir vor und testen eine Methode, um zuverlässige Schätzungen der statistischen Fehler zu bekommen. Diese Methode soll in dem typischen Simulationsbereich der Gitter-QCD helfen, nämlich dann, wenn die gesamte erfasste Statistik O(10)\tauexp ist. Dies ist der typische Fall bei Simulationen in der Nähe des Kontinuumslimes, wo der Rechenaufwand für die Erzeugung von zwei unabhängigen Datenpunkten sehr gro\ss{} sein kann. Schlie\ss{}lich diskutieren wir die Skalenbestimmung in N_f=2-Simulationen mit der Kaon Zerfallskonstante f_K als experimentellem Input. Die Methode wird zusammen mit einer gründlichen Diskussion der angewandten Fehleranalyse erklärt. Eine Beschreibung der öffentlich zugänglichen Software, die für die Fehleranalyse genutzt wurde, ist eingeschlossen. / In this work we investigate the critical slowing down of lattice QCD simulations. We perform a preliminary study in the quenched approximation where we find that our estimate of the exponential auto-correlation time scales as $\tauexp(a)\sim a^{-5}$, where $a$ is the lattice spacing. In unquenched simulations with O(a) improved Wilson fermions we do not obtain a scaling law but find results compatible with the behavior that we find in the pure gauge theory. The discussion is supported by a large set of ensembles both in pure gauge and in the theory with two degenerate sea quarks. We have moreover investigated the effect of slow algorithmic modes in the error analysis of the expectation value of typical lattice QCD observables (hadronic matrix elements and masses). In the context of simulations affected by slow modes we propose and test a method to obtain reliable estimates of statistical errors. The method is supposed to help in the typical algorithmic setup of lattice QCD, namely when the total statistics collected is of O(10)\tauexp. This is the typical case when simulating close to the continuum limit where the computational costs for producing two independent data points can be extremely large. We finally discuss the scale setting in Nf=2 simulations using the Kaon decay constant f_K as physical input. The method is explained together with a thorough discussion of the error analysis employed. A description of the publicly available code used for the error analysis is included.
|
5 |
Scattering amplitudes in four- and six-dimensional gauge theoriesSchuster, Theodor 06 October 2014 (has links)
Streuamplituden der Quantenchromodynamik (QCD), N = 4 Super-Yang-Mills-Theorie (SYM-Theorie) und der sechsdimensionalen N = (1, 1) SYM-Theorie werden untersucht, mit einem Fokus auf die Symmetrien und Relationen zwischen den Streuamplituden dieser Eichtheorien auf dem Baum-Niveau. Die Baum-Niveau- und Ein-Schleifen-Farbzerlegung beliebiger QCD-Amplituden in primitive Amplituden wird bestimmt und Identitäten hergeleitet, welche den Nullraum unter den primitiven Amplituden aufspannen. Anschließend wird bewiesen, dass alle farbgeordneten Baum-Niveau-Amplituden der masselosen QCD aus der N = 4 SYM-Theorie erhalten werden können. Analytische Formeln für alle für die QCD relevanten N = 4 SYM-Amplituden werden bestimmt und die Effizienz und Genauigkeit der numerischen Auswertung der analytischen Formeln für farbgeordnete QCD-Baum-Niveau-Amplituden mit einer effizienten numerischen Implementierung der Berends-Giele-Rekursion verglichen. Die Symmetrien der massive Amplituden auf dem Coulomb-Zweig der N = 4 SYM-Theorie werden hergeleitet. Diese können durch eine dimensionale Reduktion der masselosen Baum-Niveau-Amplituden der sechsdimensionalen N = (1, 1) SYM-Theory erhalten werden. Darüber hinaus wird bezeigt, wie es mit Hilfe einer numerischen Implementierung der BCFW-Rekursion möglich ist analytische Formeln für die Baum-Niveau-Superamplituden der N = (1, 1) SYM-Theory zu erhalten und die Möglichkeit eines Uplifts der masselose Baum-Niveau-Amplituden der N = 4 SYM-Theory untersucht. Schließlich wird eine Alternative zur dimensionalen Regularisierung der N = 4 SYM-Theorie untersucht. Die Infrarotdivergenzen werden hierbei durch Massen regularisiert, die durch einen Higgs-Mechanismus erhalten wurden. Die korrespondierende Stringtheorie-Beschreibung deutet auf eine exakte duale konforme Symmetrie der Streuamplituden hin. Durch explizite Rechnungen wird dies bestätigt und Vorteile des Regulators werden demonstriert. / We study scattering amplitudes in quantum chromodynamics (QCD), N = 4 super Yang-Mills (SYM) theory and the six-dimensional N = (1, 1) SYM theory, focusing on the symmetries of and relations between the tree-level scattering amplitudes in these three gauge theories. We derive the tree level and one-loop color decomposition of an arbitrary QCD amplitude into primitive amplitudes. Furthermore, we derive identities spanning the null space among the primitive amplitudes. We prove that every color ordered tree amplitude of massless QCD can be obtained from gluon-gluino amplitudes of N = 4 SYM theory. Furthermore, we derive analytical formulae for all gluon-gluino amplitudes relevant for QCD. We compare the numerical efficiency and accuracy of evaluating these closed analytic formulae for color ordered QCD tree amplitudes to a numerically efficient implementation of the Berends-Giele recursion. We derive the symmetries of massive tree amplitudes on the coulomb branch of N = 4 SYM theory, which in turn can be obtained from N = (1, 1) SYM theory by dimensional reduction. Furthermore, we investigate the tree amplitudes of N = (1, 1) SYM theory and explain how analytical formulae can be obtained from a numerical implementation of the supersymmetric BCFW recursion relation and investigate a potential uplift of the massless tree amplitudes of N = 4 SYM theory. Finally we study an alternative to dimensional regularization of N = 4 SYM theory. The infrared divergences are regulated by masses obtained from a Higgs mechanism. The corresponding string theory set-up suggests that the amplitudes have an exact dual conformal symmetry. We confirm this expectation and illustrate the calculational advantages of the massive regulator by explicit calculations.
|
Page generated in 0.0146 seconds