1 |
Spectrum Sharing in Cognitive Radio Systems Under Outage Probablility ConstraintCai, Pei Li 2009 December 1900 (has links)
For traditional wireless communication systems, static spectrum allocation is
the major spectrum allocation methodology. However, according to the recent investigations
by the FCC, this has led to more than 70 percent of the allocated spectrum in the
United States being under-utilized. Cognitive radio (CR) technology, which supports
opportunistic spectrum sharing, is one idea that is proposed to improve the overall
utilization efficiency of the radio spectrum.
In this thesis we consider a CR communication system based on spectrum sharing
schemes, where we have a secondary user (SU) link with multiple transmitting antennas
and a single receiving antenna, coexisting with a primary user (PU) link with
a single receiving antenna. At the SU transmitter (SU-Tx), the channel state information
(CSI) of the SU link is assumed to be perfectly known; while the interference
channel from the SU-Tx to the PU receiver (PU-Rx) is not perfectly known due to
less cooperation between the SU and the PU. As such, the SU-Tx is only assumed to
know that the interference channel gain can take values from a finite set with certain
probabilities. Considering a SU transmit power constraint, our design objective is to
determine the transmit covariance matrix that maximizes the SU rate, while we protect
the PU by enforcing both a PU average interference constraint and a PU outage
probability constraint. This problem is first formulated as a non-convex optimization
problem with a non-explicit probabilistic constraint, which is then approximated as
a mixed binary integer programming (MBIP) problem and solved with the Branch and Bound (BB) algorithm. The complexity of the BB algorithm is analyzed and numerical
results are presented to validate the eff ectiveness of the proposed algorithm.
A key result proved in this thesis is that the rank of the optimal transmit covariance
matrix is one, i.e., CR beamforming is optimal under PU outage constraints.
Finally, a heuristic algorithm is proposed to provide a suboptimal solution to our
MBIP problem by efficiently (in polynomial time) solving a particularly-constructed
convex problem.
|
2 |
Decomposition in multistage stochastic programming and a constraint integer programming approach to mixed-integer nonlinear programmingVigerske, Stefan 27 March 2013 (has links)
Diese Arbeit leistet Beiträge zu zwei Gebieten der mathematischen Programmierung: stochastische Optimierung und gemischt-ganzzahlige nichtlineare Optimierung (MINLP). Im ersten Teil erweitern wir quantitative Stetigkeitsresultate für zweistufige stochastische gemischt-ganzzahlige lineare Programme auf Situationen in denen Unsicherheit gleichzeitig in den Kosten und der rechten Seite auftritt, geben eine ausführliche Übersicht zu Dekompositionsverfahren für zwei- und mehrstufige stochastische lineare und gemischt-ganzzahlig lineare Programme, und diskutieren Erweiterungen und Kombinationen des Nested Benders Dekompositionsverfahrens und des Nested Column Generationsverfahrens für mehrstufige stochastische lineare Programme die es erlauben die Vorteile sogenannter rekombinierender Szenariobäume auszunutzen. Als eine Anwendung dieses Verfahrens betrachten wir die optimale Zeit- und Investitionsplanung für ein regionales Energiesystem unter Einbeziehung von Windenergie und Energiespeichern. Im zweiten Teil geben wir eine ausführliche Übersicht zum Stand der Technik bzgl. Algorithmen und Lösern für MINLPs und zeigen dass einige dieser Algorithmen innerhalb des constraint integer programming Softwaresystems SCIP angewendet werden können. Letzteres erlaubt uns die Verwendung schon existierender Technologien für gemischt-ganzzahlige linear Programme und constraint Programme für den linearen und diskreten Teil des Problems. Folglich konzentrieren wir uns hauptsächlich auf die Behandlung der konvexen und nichtkonvexen nichtlinearen Nebenbedingungen mittels Variablenschrankenpropagierung, äußerer Approximation und Reformulierung. In einer ausführlichen numerischen Studie untersuchen wir die Leistung unseres Ansatzes anhand von Anwendungen aus der Tagebauplanung und des Aufbaus eines Wasserverteilungssystems und mittels verschiedener Vergleichstests. Die Ergebnisse zeigen, dass SCIP ein konkurrenzfähiger Löser für MINLPs geworden ist. / This thesis contributes to two topics in mathematical programming: stochastic optimization and mixed-integer nonlinear programming (MINLP). In the first part, we extend quantitative continuity results for two-stage stochastic mixed-integer linear programs to include situations with simultaneous uncertainty in costs and right-hand side, give an extended review on decomposition algorithm for two- and multistage stochastic linear and mixed-integer linear programs, and discuss extensions and combinations of the Nested Benders Decomposition and Nested Column Generation methods for multistage stochastic linear programs to exploit the advantages of so-called recombining scenario trees. As an application of the latter, we consider the optimal scheduling and investment planning for a regional energy system including wind power and energy storages. In the second part, we give a comprehensive overview about the state-of-the-art in algorithms and solver technology for MINLPs and show that some of these algorithm can be applied within the constraint integer programming framework SCIP. The availability of the latter allows us to utilize the power of already existing mixed integer linear and constraint programming technologies to handle the linear and discrete parts of the problem. Thus, we focus mainly on the domain propagation, outer-approximation, and reformulation techniques to handle convex and nonconvex nonlinear constraints. In an extensive computational study, we investigate the performance of our approach on applications from open pit mine production scheduling and water distribution network design and on various benchmarks sets. The results show that SCIP has become a competitive solver for MINLPs.
|
Page generated in 0.1173 seconds