• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 25
  • 9
  • 8
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 112
  • 112
  • 95
  • 36
  • 30
  • 27
  • 25
  • 21
  • 19
  • 18
  • 18
  • 17
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Estudo da fratura dúctil em chapas de aço médio carbono sob a ótica da teoria da mecânica do dano. / Ductile fracture study of medium carbon steel sheets under the continuum damage mechanics point of view.

Stergios Pericles Tsiloufas 18 September 2012 (has links)
Este trabalho busca avaliar a ductilidade de ligas metálicas utilizando como ferramenta a teoria da mecânica do dano proposta por Kachanov e desenvolvida por Lemaitre, a qual é apresentada desde as hipóteses básicas até as equações que modelam a deterioração de um material em regime de fratura dúctil. Como o enfoque do trabalho é a predição de trincas em processos de conformação mecânica, em especial estampagem de chapas, o mecanismo de formação destes defeitos é revisado, buscando na literatura o entendimento de como os parâmetros microestruturais influenciam na fratura dúctil. Ensaios de tração foram efetuados em corpos de prova retirados de chapas de aço SAE 1050 em duas condições microestruturais, cementita esferoidizada em matriz ferrítica e ferritaperlita, e em duas direções em relação à laminação da chapa original, paralelo e transversal. A evolução do dano foi medida de maneira indireta por meio da variação do módulo elástico e as propriedades mecânicas necessárias para utilização do modelo de Lemaitre foram calculadas. Por meio de difração de raios X, efetuamos o estudo da evolução da textura cristalográfica, apresentado na forma de figuras de distribuição de orientação e análise da intensidade das principais fibras encontradas em aços laminados a quente. Não foi observada influência significativa do tipo de microestrutura e da direção de deformação na evolução da textura. Por fim, o modelo de evolução de dano de Lemaitre foi transformado em um algoritmo numérico e implementado no código comercial Abaqus, em sua versão explícita, por meio do uso da subrotina VUMAT. Resultados foram obtidos e comparados com os experimentos, validando a aplicação do modelo. A evolução do dano para o aço SAE 1050 também foi comparada com resultados para outros aços ao manganês encontrados na literatura. Relações empíricas entre o teor de carbono e parâmetros como a deformação limite para início do dano, resistência à evolução do dano e dano máximo suportado foram desenvolvidas e apresentadas, com o intuito de funcionar como guias gerais para cálculo sem a necessidade de uma bateria de ensaios dedicados, facilitando a utilização da teoria da mecânica do dano em condições industriais. / The aim of the present work is to evaluate the ductility of metallic alloys employing the theory of damage mechanics as suggested by Kachanov and developed by Lemaitre, which is presented since its basic hypothesis until the equation that model the material deterioration under a regime of ductile fracture. As the focus of the work is the fracture prediction during mechanical working processes (mainly sheet metal stamping), the mechanism of formation of these defects is revised, based upon literature data, aiming at the understanding of how the material microstructural parameters influence ductile fracture. Tensile tests have been performed on samples obtained from SAE 1050 steel sheets for two microstructural conditions namely spheroidized cementite and regular ferrite-perlite for two rolling directions (rolling and transverse directions). In those tests, damage evolution has been measured indirectly through the materials variation in the Young modulus with strain, obtaining the mechanical properties, needed to be used in the calculation of Lemaitres model. Through X-ray diffraction measurements, the crystallographic texture evolution, presented in the form of orientation distribution functions and the associated fiber intensities observed for both microstructural conditions, has been evaluated. No major influence has been observed in this texture evolution, for the tested conditions. Finally, the Lemaitre damage evolution model has been transformed into a numerical algorithm and implemented in the Abaqus commercial code, in its explicit form, through the VUMAT sub-routine. Results have been obtained and compared with the experimental values, validating the suggested model. Damage evolution for the SAE 1050 steel has been also compared with results from literature for other C-Mn steels. Empirical relationships between C level and damage parameters such as limit strain for damage initiation, resistance to damage evolution and maximum allowable damage, have been developed and presented, envisaging their application as general guidelines, without requiring a sequence of dedicated tests, making easier the usage of damage mechanics under industrial conditions.
82

Modellierung des Ermüdungsverhaltens textilverstärkter Kunststoffe / Modelling of the fatigue behaviour of textile reinforced polymers

Koch, Ilja 11 April 2018 (has links) (PDF)
Textile Verstärkungsstrukturen werden aufgrund der hohen Variabilität der Fadenablage, dem erreichbaren hohen Automatisierungsgrad und der guten mechanischen Kennwerte in hochbeanspruchten Faser-Kunststoff-Verbundstrukturen eingesetzt. Eine besondere Rolle spielen hier 3D-Textilverstärkungen mit gestreckter Fadenanordnung etwa in Form von 3D-Geweben, Mehrlagengestricken und -gewirken. Sie bieten neben hervorragenden Steifigkeiten und Festigkeiten durch den in Dickenrichtung angeordneten und den Fadenverbund sichernden Maschenfaden einen hohen Widerstand gegen Delaminationen sowie eine gute Drapierbarkeit. In der Arbeit wird ein neuartiges Degradationsmodell für textilverstärkte Kunststoffe bei zyklischer Belastung auf Basis kontinuums-schädigungsmechanischer Ansätze entwickelt. Dazu wird zunächst die Schädigungsphänomenologie exemplarisch für Glasfaser-Mehrlagengestrickverstärktes Epoxidharz sowohl bei einachsiger als auch erstmals bei frequenz- und phasengleicher mehrachsiger zyklischer Belastung untersucht und klassifiziert. In umfangreichen Versuchsreihen sind belastungsspezifische Schäden - in den bereits für quasistatische Beanspruchung identifizierten Bruchmoden - zu beobachten, die sich in charakteristischer Weise über den Verlauf der zyklischen Belastung aufsummieren und eine deutliche Abhängigkeit von der Belastungsart und -richtung aufweisen. In den mehrachsigen Belastungsversuchen konnte die bislang unbekannte unterschiedliche Kopplung der Zug- und Schubsteifigkeitsverläufe bzw. Druck- und Schubsteifigkeitsverläufe quantifiziert und mit den auftretenden Schädigungsphänomenen korreliert werden. Die zur Kalibrierung des Materialmodells notwendigen Kennwerte und Modellparameter werden anhand von ein- und mehrachsigen Einstufenversuchen durch Auswertung der Spannungs-Dehnungs-Hysterese sowie der Schwingfestigkeitsschaubilder ermittelt. Das Potential der hier vorgenommenen schichtweisen Lebensdauermodellierung unter Berücksichtigung von Schädigungsinitiierung und Schädigungsevolution wird in ausgewählten Validierungsversuchen demonstriert. Neben der realistischen Abbildung des Degradationsverhaltens ist eine sehr gute Vorausberechnung der richtungsabhängigen Restfestigkeit nach zyklischer Belastung möglich. Das hier entwickelte Degradationsmodell liefert damit erstmals die wesentlichen schichtbezogenen Informationen zum Werkstoffzustand während zyklischer Belastung und ist ein essentieller Grundbaustein für die umfassende Lebensdaueranalyse von textilverstärkten Strukturbauteilen. / Due to the high variability of the thread placement, the achievable high degree of automation and the good mechanical properties textile reinforcements are used in highly loaded fiber reinforced polymer structures. A specific role is played here by 3D textile reinforcements with stretched thread arrangements, for example in the form of 3D fabrics and multi-layered weft knits. In addition to excellent stiffness and strength, they provide a high resistance to delamination as well as good drapability due to the mesh thread arranged in the thickness direction securing the thread system. In this work a novel degradation model for cyclically loaded textile-reinforced polymers on the basis of continuum damage mechanics approaches is developed. For this purpose, the damage phenomenology is investigated and classified for glass fiber multi-layer weft knit reinforced epoxy resin in uniaxial as well as in-phase multiaxial cyclic loading. In extensive tests load-specific damage can be observed - in the fracture modes already identified for quasistatic stress - which characteristically develop over the course of the cyclic load and show a clear dependence on the type and direction of loading. In the multi-axial load tests, the hitherto unknown coupling of the tensile and shear stiffness or compression and shear stiffness could be quantified and correlated with the occurring damage phenomena. The characteristic values and model parameters necessary for calibrating the material model are determined by means of single- and multi-axial constant amplitude tests by evaluating the stress-strain hysteresis and the S-N curves. The potential of the presented layer-wise fatigue damage model is demonstrated in selected validation experiments. In addition to the realistic modelling of the degradation behaviour, a very good prediction of the direction-dependent residual strength after cyclic loading is achieved. For the first time, the degradation model developed here provides the essential layer-related information on the state of the material during cyclic loading and is an essential building block for the comprehensive lifetime analysis of textile-reinforced composite structures.
83

Modélisation et expérimentation de l'endommagement des roches sous charge explosive: application aux mines de bauxite de Guinée

Keita, Oumar 11 July 2014 (has links)
Dans cette thèse, une nouvelle loi d'endommagement en traction des roches sous chargement exploisif est établie. Basée sur l'approche micro-mécanique et énergétique, la loi d'évolution d'endommagement dynamique est conçue à l'aide de la méthode mathématique d'homogénéisation basée sur le développement asymptotique, et en tenant compte de l'effet inertiel lors de la propagation de fissure. Les simulations numériques sont présentées en vue d'illustrer la capacité du modèle à décrire les comportements connus comme les effets de taille pour la réponse structurelle, la sensibilité au taux de déformation, la transition fragile-ductile et la dispersion de l'onde.<p><p>La loi est implémentée dans le code aux éléments finis LAGAMINE pour étudier la réponse macroscopique du modèle. Plusieurs cas d'applications en dynamique ont été examinés.\\<p><p>- En 1D, les problèmes de localisation ont été étudiés dans une barre sollicitée en traction dynamique par une rampe de chargement. Selon l'amplitude de chargement, trois réponses ont été identifiées: a) comportement purement élastique pour des faibles charges, b) localisation à l'extrémité encastrée de la barre pour des chargements modérés et c) localisation à la tête de la barre pour des chargements élevés. L'influence de la taille microstrurelle sur la localisation a été examinée. Des simulations numériques de l'essai de traction dynamique par écaillage ont été éffectuées. Des essais expérimentaux de traction dynamique par écaillage ont été réalisés sur la bauxite et ont permis de valider le modèle en comparant l'analyse post mortem de l'éprouvette aux résultats des simulations numériques d'écaillage. Ces essais ont aussi permis de déterminer les caractéristiques mécaniques du matériau, la résistance mécanique en traction dynamique, l'instant de rupture et la vitesse de déformation à rupture.\\<p><p>- En 2D, des simulations numériques sont efféctuées pour reproduire le comportement d'une mine sous charge explosive. Le modèle a été capable de reproduire l'endommagement en traction sous charge explosive. L'influence des paramètres du modèle tels que: l'orientation de fissures, la taille de microstructure et la valeur initial d'endommagement sur la distribution de l'endommagement autour du trou de charge a été étudiée. Enfin, un cas d'application sur les mines de bauxite de Guinée a été étudié, incluant un calcul de l'extension de la zone endommagée ainsi qu'une prédiction numérique du niveau de vibration engendrée suite aux tirs à l'explosif. La prédiction du modèle est globalement en accord avec les résultats de la littérature. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
84

A Numerical Study Of Localized Necking During Forming Of Aluminium Alloy Tubes Using A Continuum Damage Model

Varma, N Siva Prasad 12 1900 (has links) (PDF)
No description available.
85

Ductile damage prediction in sheet metal forming processes / Prédiction de l'endommagement ductile en formage de tôles minces

Yue, Zhenming 08 September 2014 (has links)
L'objectif de ce travail est de proposer un modèle de comportement avec endommagement ductile pour la simulation des procédés de mise en forme de tôles minces qui peut bien représenter le comportement des matériaux sous des trajets de chargement complexes en grandes déformations plastiques. Basé sur la thermodynamique des processus irréversibles, les équations de comportement couplé à l’endommagement tiennent compte des anisotropies initiales et induites, de l’écrouissage isotrope et cinématique et de l’endommagement isotrope ductile. Les effets de fermeture des microfissures, de triaxialité des contraintes et de l’angle de Lode sont introduits pour influencer l’évolution de l’endommagement sous une large gamme de triaxialité des contraintes. La distorsion de la surface de charge est introduite via un tenseur déviateur qui gouverne la distorsion de la surface de charge. A des fins de comparaison, les courbes limites de formage sont tracées basées sur l’approche M-K.Des essais sont conduits sur trois matériaux pour les besoins d’identification et de validation des modèles proposés. L’identification utilise un couplage entre le code ABAQUS et un programme MATLAB via un script en langage Python. Après l’implémentation numérique du modèle dans ABAQUS/Explicite et une étude paramétrique systématique, plusieurs procédés de mise en forme de structures minces sont simulés. Des comparaisons expériences-calculs montrent les performances prédictives de la modélisation proposée / The objective of this work is to propose a “highly” predictive material model for sheet metal forming simulation which can well represent the sheet material behavior under complex loading paths and large plastic strains. Based on the thermodynamics of irreversible processes framework, the advanced fully coupled constitutive equations are proposed taking into account the initial and induced anisotropies, isotropic and kinematic hardening as well as the isotropic ductile damage. The microcracks closure, the stress triaxiality and the Lode angle effects are introduced to influence the damage rate under a wide range of triaxiality ratios. The distortion of the yield surface is described by replacing the usual stress deviator tensor by a ‘distorted stress’ deviator tensor, which governs the distortion of the yield surfaces. For comparisons, the FLD and FLSD models based on M-K approach are developed.A series of experiments for three materials are conducted for the identification and validation of the proposed models. For the parameters identification of the fully coupled CDM model, an inverse methodology combining MATLAB-based minimization software with ABAQUS FE code through the Python script is used. After the implementation of the model in ABAQUS/Explicit and a systematic parametric study, various sheet metal forming processes have been numerically simulated. At last, through the comparisons between experimental and numerical results including the ductile damage initiation and propagation, the high capability of the fully coupled CDM model is proved
86

Anisotropie induite par l'endommagement ductile : mécanismes physiques, modélisation et simulation numérique / Ductile damage induced anisotropy : physical mechanisms, modeling and numerial simulation

Rajhi, Wajdi 19 September 2014 (has links)
L’objectif de ce travail est de développer une modélisation prédictive du comportement et de la rupture ductile des matériaux métalliques à anisotropies initiales et induites par l’endommagement. La thermodynamique des processus irréversibles est utilisée comme cadre pour la formulation proposée. Le modèle de comportement est élastoplastique anisotrope avec écrouissage non linéaire isotrope et cinématique en grandes déformations plastiques, avec une théorie non associée à normalité associée, basée sur des normes de contraintes quadratiques. L’endommagement ductile anisotrope est décrit par un tenseur du second ordre symétrique dont l’évolution est décrites par des relations de type Lemaitre-Desmorat. Le couplage fort comportement-endommagement est réalisé dans le cadre de l’hypothèse de l’équivalence en énergie totale où l’effet de l’endommagement sur le comportement est introduit par un tenseur « effet d’endommagement » d’ordre quatre symétrique de type Murakami. Après une caractérisation expérimentale des mécanismes physiques de l’endommagement dans l’acier AISI 316L, le modèle de comportement avec endommagement a été identifié. Une fois discrétisé et implémenté dans le code de calcul de structures ABAQUS/Explicit®, une étude paramétrique et de nombreuses simulations numériques de l’endommagement anisotrope en mise en forme de quelques structures ont été réalisées et discutées en détail / The objective of this work is to develop a predictive modeling of behavior and ductile fracture of metallic materials with initial anisotropy and induced by the ductile anisotropic damage. Thermodynamics of irreversible processes is used as a framework for the proposed formulation. The model is anisotropic elastoplastic with non-linear isotropic and kinematic hardening under large plastic strains. It is formulated in the framework of the non-associative plasticity theory with associative normality rule and based on quadratic equivalent stress. The anisotropic ductile damage is described by a symmetric second-rank tensor whose evolution is described by Lemaitre /Desmorat type relationships. The strong damage-behavior coupling is done under the assumption of total energy equivalence where the effect of the anisotropic damage is introduced by a fourth-rank symmetric damage-effect tensor of Murakami kind.After an experimental characterization of the main physical mechanisms of anisotropic damage in stainless steel AISI 316L, the behavior model with damage has been identified. Once discretized and implemented in the computer code ABAQUS / Explicit ®, a parametric study and many numerical simulations of anisotropic damage in some metal forming processes have been carried out and discussed in detail
87

UNIFIED SECONDARY AND TERTIARY CREEP MODELING OF ADDITIVELY MANUFACTURED NICKEL-BASED SUPERALLOYS

Harshal Ghanshy Dhamade (11002041) 05 August 2021 (has links)
<div>Additively manufactured (AM) metals have been increasingly fabricated for structural applications. However, a major hurdle preventing their extensive application is lack of understanding of their mechanical properties. To address this issue, the objective of this research is to develop a computational model to simulate the creep behavior of nickel alloy 718 manufactured using the laser powder bed fusion (L-PBF) additive manufacturing process. A finite element (FE) model with a subroutine is created for simulating the creep mechanism for 3D printed nickel alloy 718 components.</div><div><br></div><div>A continuum damage mechanics (CDM) approach is employed by implementing a user defined subroutine formulated to accurately capture the creep mechanisms. Using a calibration code, the material constants are determined. The secondary creep and damage constants are derived using the parameter fitting on the experimental data found in literature. The developed FE model is capable to predict the creep deformation, damage evolution, and creep-rupture life. Creep damage and rupture is simulated as defined by the CDM theory.</div><div>The predicted results from the CDM model compare well with experimental data, which are collected from literature for L-PBF manufactured nickel alloy 718 of creep deformation and creep rupture, at different levels of temperature and stress. </div><div><br></div><div>Using the multi-regime Liu-Murakami (L-M) and Kachanov-Rabotnov (K-R) isotropic creep damage formulation, creep deformation and rupture tests of both the secondary and tertiary creep behaviors are modeled.</div><div>A single element FE model is used to validate the model constants. The model shows good agreement with the traditionally wrought manufactured 316 stainless steel and nickel alloy 718 experimental data collected from the literature. Moreover, a full-scale axisymmetric FE model is used to simulate the creep test and the capacity of the model to predict necking, creep damage, and creep-rupture life for L-PBF manufactured nickel alloy 718. The model predictions are then compared to the experimental creep data, with satisfactory agreement.</div><div><br></div><div>In summary, the model developed in this work can reliably predict the creep behavior for 3D printed metals under uniaxial tensile and high temperature conditions.</div>
88

Advanced modelling for sheet metal forming under high temperature / Modélisation avancée pour la mise en forme des tôles à haute température

Liu, Weijie 14 September 2017 (has links)
L’objectif de cette thèse est de proposer deux approches complémentaires de modélisation et de simulation numériques des procédés de mise en forme de structures minces. La première est une approche inverse multi-pas, délibérément simplifiée, pour simuler et "optimiser" rapidement et à moindre coût des procédés d’emboutissage de tôles minces, tout en maintenant une bonne précision dans le calcul des contraintes. Un solveur statique implicite est développé en introduisant plusieurs configurations intermédiaires construites efficacement en utilisant une technique de programmation quadratique avec projection. La deuxième approche, de nature incrémentale, repose sur (i) une formulation d’équations de bilan et d’équations de comportement multi-physiques fortement couplés formulées dans le cadre des milieux micromorphes ; (ii) une discrétisation spatiale par EF et temporelle par DF avec un solveur global dynamique explicite et une intégration locale itérative implicite. Une attention particulière est accordée aux aspects thermiques avec l’introduction d’une microtempérature et ses premiers gradients conduisant à l’obtention de deux équations thermiques fortement couplées généralisant de nombreux modèles non locaux proposés dans la littérature. L'approche inverse multi-pas a été implémentée dans le code maison KMAS et l’approche incrémentale non locale a été implémentée dans ABAQUS/Explicit. Des études paramétriques sont menées et des validations sur des exemples simples et sur des procédés d’emboutissage sont réalisées / The aim of this thesis is to propose two complementary approaches for modeling and numerical simulations of thin sheet metal forming processes. The first one is a deliberately simplified multi-step inverse approach to simulate and "optimize" rapidly and inexpensively thin-sheet stamping processes while maintaining good accuracy in the stress calculation. An implicit static solver is developed by introducing several efficiently constructed intermediate configurations using a quadratic programming technique with projection. The second approach, which is of an incremental nature, is based on (i) a formulation of equilibrium equations and strongly coupled multiphysical behavior equations formulated in the context of micromorphic continua; (ii) spatial discretization by FEM and time discretization by FD with an explicit dynamic global solver and implicit iterative local integration scheme. Particular attention is paid to the nonlocal thermal aspects with the introduction of a micro-temperature and its first gradients leading to two strongly coupled thermal equations generalizing several thermal nonlocal models proposed in the literature. The multi-step inverse approach was implemented in the KMAS in house code while the nonlocal incremental approach was implemented in ABAQUS/Explicit. Parametric studies are performed and validations are carried out on simple examples and on deep drawing processes
89

Modellierung des Ermüdungsverhaltens textilverstärkter Kunststoffe

Koch, Ilja 21 December 2010 (has links)
Textile Verstärkungsstrukturen werden aufgrund der hohen Variabilität der Fadenablage, dem erreichbaren hohen Automatisierungsgrad und der guten mechanischen Kennwerte in hochbeanspruchten Faser-Kunststoff-Verbundstrukturen eingesetzt. Eine besondere Rolle spielen hier 3D-Textilverstärkungen mit gestreckter Fadenanordnung etwa in Form von 3D-Geweben, Mehrlagengestricken und -gewirken. Sie bieten neben hervorragenden Steifigkeiten und Festigkeiten durch den in Dickenrichtung angeordneten und den Fadenverbund sichernden Maschenfaden einen hohen Widerstand gegen Delaminationen sowie eine gute Drapierbarkeit. In der Arbeit wird ein neuartiges Degradationsmodell für textilverstärkte Kunststoffe bei zyklischer Belastung auf Basis kontinuums-schädigungsmechanischer Ansätze entwickelt. Dazu wird zunächst die Schädigungsphänomenologie exemplarisch für Glasfaser-Mehrlagengestrickverstärktes Epoxidharz sowohl bei einachsiger als auch erstmals bei frequenz- und phasengleicher mehrachsiger zyklischer Belastung untersucht und klassifiziert. In umfangreichen Versuchsreihen sind belastungsspezifische Schäden - in den bereits für quasistatische Beanspruchung identifizierten Bruchmoden - zu beobachten, die sich in charakteristischer Weise über den Verlauf der zyklischen Belastung aufsummieren und eine deutliche Abhängigkeit von der Belastungsart und -richtung aufweisen. In den mehrachsigen Belastungsversuchen konnte die bislang unbekannte unterschiedliche Kopplung der Zug- und Schubsteifigkeitsverläufe bzw. Druck- und Schubsteifigkeitsverläufe quantifiziert und mit den auftretenden Schädigungsphänomenen korreliert werden. Die zur Kalibrierung des Materialmodells notwendigen Kennwerte und Modellparameter werden anhand von ein- und mehrachsigen Einstufenversuchen durch Auswertung der Spannungs-Dehnungs-Hysterese sowie der Schwingfestigkeitsschaubilder ermittelt. Das Potential der hier vorgenommenen schichtweisen Lebensdauermodellierung unter Berücksichtigung von Schädigungsinitiierung und Schädigungsevolution wird in ausgewählten Validierungsversuchen demonstriert. Neben der realistischen Abbildung des Degradationsverhaltens ist eine sehr gute Vorausberechnung der richtungsabhängigen Restfestigkeit nach zyklischer Belastung möglich. Das hier entwickelte Degradationsmodell liefert damit erstmals die wesentlichen schichtbezogenen Informationen zum Werkstoffzustand während zyklischer Belastung und ist ein essentieller Grundbaustein für die umfassende Lebensdaueranalyse von textilverstärkten Strukturbauteilen. / Due to the high variability of the thread placement, the achievable high degree of automation and the good mechanical properties textile reinforcements are used in highly loaded fiber reinforced polymer structures. A specific role is played here by 3D textile reinforcements with stretched thread arrangements, for example in the form of 3D fabrics and multi-layered weft knits. In addition to excellent stiffness and strength, they provide a high resistance to delamination as well as good drapability due to the mesh thread arranged in the thickness direction securing the thread system. In this work a novel degradation model for cyclically loaded textile-reinforced polymers on the basis of continuum damage mechanics approaches is developed. For this purpose, the damage phenomenology is investigated and classified for glass fiber multi-layer weft knit reinforced epoxy resin in uniaxial as well as in-phase multiaxial cyclic loading. In extensive tests load-specific damage can be observed - in the fracture modes already identified for quasistatic stress - which characteristically develop over the course of the cyclic load and show a clear dependence on the type and direction of loading. In the multi-axial load tests, the hitherto unknown coupling of the tensile and shear stiffness or compression and shear stiffness could be quantified and correlated with the occurring damage phenomena. The characteristic values and model parameters necessary for calibrating the material model are determined by means of single- and multi-axial constant amplitude tests by evaluating the stress-strain hysteresis and the S-N curves. The potential of the presented layer-wise fatigue damage model is demonstrated in selected validation experiments. In addition to the realistic modelling of the degradation behaviour, a very good prediction of the direction-dependent residual strength after cyclic loading is achieved. For the first time, the degradation model developed here provides the essential layer-related information on the state of the material during cyclic loading and is an essential building block for the comprehensive lifetime analysis of textile-reinforced composite structures.
90

A Hybrid Constitutive Model For Creep, Fatigue, And Creep-fatigue Damage

Stewart, Calvin 01 January 2013 (has links)
In the combustion zone of industrial- and aero- gas turbines, thermomechanical fatigue (TMF) is the dominant damage mechanism. Thermomechanical fatigue is a coupling of independent creep, fatigue, and oxidation damage mechanisms that interact and accelerate microstructural degradation. A mixture of intergranular cracking due to creep, transgranular cracking due to fatigue, and surface embrittlement due to oxidation is often observed in gas turbine components removed from service. The current maintenance scheme for gas turbines is to remove components from service when any criteria (elongation, stress-rupture, crack length, etc.) exceed the designed maximum allowable. Experimental, theoretical, and numerical analyses are performed to determine the state of the component as it relates to each criterion (a time consuming process). While calculating these metrics individually has been successful in the past, a better approach would be to develop a unified mechanical modeling that incorporates the constitutive response, microstructural degradation, and rupture of the subject material via a damage variable used to predict the cumulative “damage state” within a component. This would allow for a priori predictions of microstructural degradation, crack propagation/arrest, and component-level lifing. In this study, a unified mechanical model for creep-fatigue (deformation, cracking, and rupture) is proposed. It is hypothesized that damage quantification techniques can be used to develop accurate creep, fatigue, and plastic/ductile cumulative- nonlinear- damage laws within the continuum damage mechanics principle. These damage laws when coupled with appropriate constitutive equations and a degrading stiffness tensor can be used to predict the mechanical state of a component. A series of monotonic, creep, fatigue, and tensile-hold creepfatigue tests are obtained from literature for 304 stainless steel at 600°C (1112°F) in an air. iv Cumulative- nonlinear- creep, fatigue, and a coupled creep-fatigue damage laws are developed. The individual damage variables are incorporated as an internal state variable within a novel unified viscoplasticity constitutive model (zero yield surface) and degrading stiffness tensor. These equations are implemented as a custom material model within a custom FORTRAN onedimensional finite element code. The radial return mapping technique is used with the updated stress vector solved by Newton-Raphson iteration. A consistent tangent stiffness matrix is derived based on the inelastic strain increment. All available experimental data is compared to finite element results to determine the ability of the unified mechanical model to predict deformation, damage evolution, crack growth, and rupture under a creep-fatigue environment.

Page generated in 0.1134 seconds