• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 10
  • 8
  • 7
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 119
  • 119
  • 27
  • 26
  • 23
  • 23
  • 23
  • 18
  • 17
  • 16
  • 16
  • 16
  • 16
  • 15
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Biomécanique de la croissance de la plaque d'athérosclérose : contribution à l'étude des contraintes résiduelles / Biomechanics of atheroma plaque growth : contribution to the study of residual stresses

Mesnier, Nicolas 22 June 2011 (has links)
Ce travail de thèse a pour ambition d'apporter des éléments de compréhension du rôle des contraintes résiduelles au sein des plaques d'athérosclérose. Il s'inscrit dans un programme de recherche qui vise à développer de nouveaux outils favorisant l'aide au diagnostic de patients atteints de cette maladie cardiovasculaire. Suivant les évolutions majeures de ces dernières années, la première partie de ce travail présente une vision contemporaine de la maladie d'athérosclérose et des nombreux enjeux de modélisation mécanique auxquels la compréhension de la maladie et son diagnostic font appel. Nous faisons émerger un manque certain quant au rôle des contraintes résiduelles dans cette maladie. Les contraintes résiduelles sont un marqueur naturel du développement des tissus. La deuxième partie de ce travail aborde leur quantification expérimentale au sein des artères saines et pathologiques de souris. De façon intéressante nous montrons leur importance et la nécessité de les prendre en compte pour avoir une image raisonnable de l'état de contraintes des artères en conditions physiologiques. Ces résultats originaux n'ont toutefois pas permis d'établir de corrélation avec l'intensité du processus inflammatoire au sein des plaques. Enfin, la dernière partie de ce travail aborde la modélisation du développement des contraintes résiduelles. Un effort de description de la structure géométrique des corps avec des contraintes résiduelles a été fait afin de faire émerger de nouveaux outils de modélisation de leur développement. Une première application d'un modèle de croissance intrinsèque est présentée et illustrée. Cette approche semble prometteuse et apporte déjà quelques éléments de compréhension du développement des contraintes résiduelles. Toutefois, les travaux effectués ne constituent qu'une étape préliminaire et n'ont pas encore été exploités pleinement. Par contre ces travaux ouvrent assurément de nouvelles perspectives de recherche. / This graduate research has the ambition to bring some understandings of the role of residual stresses in atheroma plaques. It falls under a research program which aims at developing new tools in supporting the diagnosis of patients concerned with this cardiovascular disease. Considering the major changes in the past decade, the first part of this work presents a contemporary vision of the atherosclerosis disease and many mechanical modeling challenges brought by its understanding and diagnosis appeal. We emphasized a lack in the description of the role of residual stresses in this disease even if they are a natural marker of tissues development. The second part of this work approaches their experimental quantification within healthy and pathological mice arteries. Interestingly, we have shown their importance and the need to take them into account in order to have a reasonable image of the stresses state of arteries in physiological conditions. These original results however did not make it possible to establish correlation with the intensity of the inflammatory process within the plaques. Finally, the last part of this work approaches the modeling of the development of residual stresses. An effort in the description of the geometrical structure of material bodies with residual stresses allowed the emergence of new tools to model their development. A first application of an intrinsic growth model is presented and illustrated. This approach seems promising and already brings some key explaining elements in the development of residual stresses. However, carried out work constitutes only one preliminary stage and were not yet fully exploited. Hence, this work undoubtedly opens new prospects of research.
52

Structural integrity assessment of a low pressure turbine with transverse cracking

Nel, Willem Petrus 26 February 2009 (has links)
M.Ing. / This dissertation deals with the structural integrity analysis of a low pressure (LP) turbine with transverse cracking. Cracks are initiated in the centre ring keyway of the shaft by a fretting mechanism and propagate during barring operation. The cracks arrest during normal operation when they are still relatively shallow. The aim of the calculations is to predict the transition where cracks start propagating by high cycle fatigue during normal operation of the shaft. Most influencing factors, including continuum mechanics, mathematical modelling, material behaviour, service loads and industry experience, are studied in detail as a precursor to the case study. The calculated results show that the case study is an example where the application of fracture mechanics on the crack-free stress field leads to erroneous results. There is a significant redistribution of stress in the presence of the crack so that the actual stress ratio, as calculated from three dimensional cracked models, varies significantly compared to the crack-free model. Calculated results, together with carefully researched material properties, confirm the postulated crack growth during barring operation and predict limiting crack sizes where high cycle fatigue would ensue during normal operation. The case study concludes that the shaft has a significant remaining life and that it can be returned to service with periodic non-destructive examinations.
53

Several applications of a model for dense granular flows

Cawthorn, Christopher John January 2011 (has links)
This dissertation describes efforts to evaluate a recently proposed continuum model for the dense flow of dry granular materials (Jop, Forterre & Pouliquen, 2006, Nature, 441, 167-192). The model, based upon a generalisation of Coulomb sliding friction, is known to perform well when modelling certain simple free surface flows. We extend the application of this model to a wide range of flow configurations, beginning with six simple flows studied in detailed experiments (GDR MiDi, 2004, Eur. Phys. J. E, 14, 341-366). Two-dimensional shearing flows and problems of linear stability are also addressed. These examples are used to underpin a thorough discussion of the strengths and weaknesses of the model. In order to calculate the behaviour of granular material in more complicated configurations, it is necessary to undertake a numerical solution. We discuss several computational techniques appropriate to the model, with careful attention paid to the evolution of any shear-free regions that may arise. In addition, we develop a numerical scheme, based upon a marker-and-cell method, that is capable of modelling two-dimensional granular flow with a moving free surface. A detailed discussion of our unsuccessful attempt to construct a scheme based upon Lagrangian finite elements is presented in an appendix. We apply the marker-and-cell code to the key problem of granular slumping (Balmforth & Kerswell, 2005, J. Fluid Mech., 538, 399-428), which has hitherto resisted explanation by modelling approaches based on various reduced (shallow water) models. With our numerical scheme, we are able to lift the assumptions required for other models, and make predictions in good qualitative agreement with the experimental data. An additional chapter describes the largely unrelated problem of contact between two objects separated by a viscous fluid. Although classical lubrication theory suggests that two locally smooth objects converging under gravity will make contact only after infinite time, we discuss several physical effects that may promote contact in finite time. Detailed calculations are presented to illustrate how the presence of a sharp asperity can modify the approach to contact.
54

Modeling the biomechanics of arterial walls under supra-physiological loading / Modellierung der Biomechanik von Arterienwänden unter supraphysiologischer Belastung

Schmidt, Thomas 07 July 2016 (has links) (PDF)
This doctoral thesis deals with the description of the mechanical behavior of arterial walls under supra-physiological loading conditions. After a brief description of the continuum mechanical basis, the focus is first set to continuum damage mechanics (CDM) formulations for soft biological tissues. Thereby, different phenomenological damage equations are introduced yielding smooth and non-smooth material tangent moduli at the induction of initial damage, respectively. The performance of the latter formulations is investigated in numerical calculations of inhomogeneous boundary value problems. Afterwards, a micromechanically motivated damage approach for arterial tissues is derived in the CDM framework, taking into account statistically distributed microscopical parameters. The model response is adjusted to experimental data of human arteries and used in a numerical simulation of a simplified atherosclerotic artery model showing the applicability of the proposed formulation in a finite element framework. Moreover, a relaxed incremental variational formulation from the literature, which in contrast to the CDM formulations avoids a potential loss of convexity, is extended in this work to account for arterial tissues by the inclusion of fiber dispersion and hysteresis behavior. A framework denoted as ’Optimal Uncertainty Quantification’ is utilized to compute bounds on the probability of failure in a simplified diseased artery model after several overexpansions. Therefore, a virtual experimental data set and two different rupture criteria are considered, which are based on fiber stretch and fiber damage, respectively. / Diese Dissertation behandelt die Beschreibung des mechanischen Verhaltens von Arterienwänden unter supraphysiologischen Belastungszuständen. Nach einer kurzen Beschreibung der kontinuumsmechanischen Grundlagen, wird der Schwerpunkt zunächst auf Formulierungen im Rahmen der Kontinuumsschädigungsmechanik (KSM) für biologische Weichgewebe gelegt. Dabei werden unterschiedliche phänomenologische Schädigungsfunktionen eingeführt, die zu stetigen bzw. unstetigen Tangentenmoduln bei Schädigungsiniziierung führen. Das Verhalten dieser Formulierungen wird in numerischen Berechnungen inhomogener Randwertprobleme untersucht. Danach wird ein mikromechanisch motivierter Schädigungsansatz im Rahmen der KSM unter Berücksichtigung statistisch verteilter mikroskopischer Parameter hergeleitet. Die Modellantwort wird an experimentelle Daten menschlicher Arterien angepasst und in einer numerischen Simulation eines vereinfachten atherosklerotischen Arterienmodells verwendet, wobei die Anwendbarkeit der vorgeschlagenen Formulierung im Rahmen der Finite-Elemente-Methode gezeigt wird. Zusätzlich wird eine inkrementelle Variationsformulierung für Schädigung aus der Literatur, die im Vergleich zu den KSM-Formulierungen einen möglichen Konvexitätsverlust vermeidet, durch Einbindung von Faserstreuung und Hystere-Verhalten für die Beschreibung arteriellen Gewebes erweitert. Im Rahmen einer Methode, die als ’Optimale Unsicherheitsquantifizierung’ bezeichnet wird, werden Grenzwerte für die Versagenswahrscheinlichkeit an einem vereinfachten Modell einer erkrankten Arterie nach mehreren Überdehnungen berechnet. Dafür werden ein virtueller experimenteller Datensatz und zwei unterschiedliche Versagenskriterien berücksichtigt, die auf der Faserdehnung bzw. auf der Faserschädigung basieren.
55

Continuum mechanics of developing epithelia:

Popovic, Marko 31 July 2017 (has links) (PDF)
Developing tissues are out-of-equilibrium systems that grow and reshape to form organs in adult animals. They are typically composed of a large number of cells. The constitutive cells of a tissue perform different roles in tissue development and contribute to the overall tissue shape changes. In this thesis, we construct a hydrodynamic theory of developing epithelial tissues. We use it to investigate the developing wing of the fruit fly Drosophila melanogaster. This theory relates the coarse-grained cell scale properties to the large-scale tissue flows. We explicitly account for the active cellular processes in the tissue that drive tissue flows. In our description of the tissue, we also include the memory effects that are necessary to account for the experimental observations. These memory effects have a significant influence on the tissue rheology. Using this hydrodynamic theory we analyze shear flow in a developing fruit fly wing tissue. We find that the active cellular processes contribute to overall tissue flows and that memory effects are present in the wing tissue. We investigate consequences of these findings on the rheology of tissue shear flow. We find that the memory effects give rise to an inertial response that leads to oscillations in the tissue but it does not stem from the wing mass. Finally, we describe how the tissue rheology is affected by different boundary conditions. We then investigate the area changes during the pupal wing development and we construct a mechanosensitive model for the cell extrusion rate in the pupal wing. Analysis of cell extrusions in the context of this model also allows us to extract information about the cell division properties. Boundary connections between the wing tissue and surrounding cuticle are crucial for the proper development of the pupal wing. A dumpy mutant wing is strongly misshaped during the pupal wing morphogenesis. We use a simple model for the wing to show that the dumpy mutant wing can be described as a wild type wing with compromised boundary conditions. Finally, we analyze cell properties and tissue flows in a developing wing disc epithelium. Motivated by the observation of radially oriented active T1 transitions in the wing disc epithelium, we use the hydrodynamic theory to investigate the influence of such T1 transitions on stresses in the tissue. We show that sufficiently strong radially oriented active T1 transitions can contribute to the control of the tissue size. Results obtained in this thesis extend our understanding of the fly wing tissue rheology and the role of internal and external forces in the proper shaping of the wing epithelium. The hydrodynamic theory we use to describe the fly wing development provides a set of phenomenological parameters that characterize the tissue mechanics and can be experimentally measured. Therefore, we expect that future research will include and extend the hydrodynamic theory presented in this thesis.
56

Continuum mechanics of developing epithelia:: Shaping a fly wing

Popovic, Marko 24 May 2017 (has links)
Developing tissues are out-of-equilibrium systems that grow and reshape to form organs in adult animals. They are typically composed of a large number of cells. The constitutive cells of a tissue perform different roles in tissue development and contribute to the overall tissue shape changes. In this thesis, we construct a hydrodynamic theory of developing epithelial tissues. We use it to investigate the developing wing of the fruit fly Drosophila melanogaster. This theory relates the coarse-grained cell scale properties to the large-scale tissue flows. We explicitly account for the active cellular processes in the tissue that drive tissue flows. In our description of the tissue, we also include the memory effects that are necessary to account for the experimental observations. These memory effects have a significant influence on the tissue rheology. Using this hydrodynamic theory we analyze shear flow in a developing fruit fly wing tissue. We find that the active cellular processes contribute to overall tissue flows and that memory effects are present in the wing tissue. We investigate consequences of these findings on the rheology of tissue shear flow. We find that the memory effects give rise to an inertial response that leads to oscillations in the tissue but it does not stem from the wing mass. Finally, we describe how the tissue rheology is affected by different boundary conditions. We then investigate the area changes during the pupal wing development and we construct a mechanosensitive model for the cell extrusion rate in the pupal wing. Analysis of cell extrusions in the context of this model also allows us to extract information about the cell division properties. Boundary connections between the wing tissue and surrounding cuticle are crucial for the proper development of the pupal wing. A dumpy mutant wing is strongly misshaped during the pupal wing morphogenesis. We use a simple model for the wing to show that the dumpy mutant wing can be described as a wild type wing with compromised boundary conditions. Finally, we analyze cell properties and tissue flows in a developing wing disc epithelium. Motivated by the observation of radially oriented active T1 transitions in the wing disc epithelium, we use the hydrodynamic theory to investigate the influence of such T1 transitions on stresses in the tissue. We show that sufficiently strong radially oriented active T1 transitions can contribute to the control of the tissue size. Results obtained in this thesis extend our understanding of the fly wing tissue rheology and the role of internal and external forces in the proper shaping of the wing epithelium. The hydrodynamic theory we use to describe the fly wing development provides a set of phenomenological parameters that characterize the tissue mechanics and can be experimentally measured. Therefore, we expect that future research will include and extend the hydrodynamic theory presented in this thesis.
57

Coarse-Graining Fields in Particle-Based Soil Models / Medelfält från partikelbaserade markmodeller

Ahlman, Björn January 2020 (has links)
In soil, where trees and crops grow, heavy vehicles shear and compact the soil, leading to reduced plant growth and diminished nutrient recycling. Computer simulations offer the possibility to improve the understanding of these undesired phenomena. In this thesis, soils were modelled as large collections of contacting spherical particles using the Discrete Element Method (DEM) and the physics engine AGX Dynamics, and these entities were analyzed. In the first part of the thesis, soils, which were considered to be continua, were subjected to various controlled deformations and fields for quantities such as stress and strain were visualized using coarse graining (CG). These fields were then compared against analytical solutions. The main goal of the thesis was to evaluate the usefulness, accuracy, and precision of this plotting technique when applied to DEM-soils. The general behaviour of most fields agreed well with analytical or expected behaviour. Moreover, the fields presented valuable information about phenomena in the soils. Relative errors varied from 1.2 to 27 %. The errors were believed to arise chiefly from non-uniform displacement (due to the inherent granularity in the technique), and unintended uneven particle distribution. The most prominent drawback with the technique was found to be the unreliability of the plots near the boundaries. This is significant, since the behaviour of a soil at the surface where it is in contact with e.g. a vehicle tyre is of interest. In the second part of the thesis, a vehicle traversed a soil and fields were visualized using the same technique. Following a limited analysis, it was found that the stress in the soil can be crudely approximated as the stress in a linear elastic solid.
58

An Elastica Model that Describes the Buckling of Cross-sections of Nanotubes

Leta, James V. 16 August 2011 (has links)
No description available.
59

A New Eulerian-Based Double Continuity Model for Predicting the Evolution of Pair Correlation Statistics under Large Plastic Deformations

Ahmadi, Sadegh 08 July 2010 (has links) (PDF)
A new model using a double-continuity relation for predicting the evolution of pair-correlation functions (PCFs) is presented. The proposed model was developed using statistical continuum theory and is employed to predict the viscoplastic behavior of polycrystalline materials. This model was built based upon the continuity relations and a double divergence law that guarantees the conservation of both orientation and mass; and also satisfies the field equations (equilibrium, constitutive, and compatibility) at every point of the polycrystalline material throughout the deformation process. In the presented model, motion of particles in the real space and rotation of crystallographic orientations in the Euler angle space is monitored using an iterative process assuming that all the amount of deformation is applied uniformly without taking into account the localization effects. To study the accuracy of the proposed model, a commercially pure nickel material was rolled to different amounts of cold work. Texture and statistical analyses of the experimental and simulated microstructures were carried out. For the texture analysis, pole figures, ODF sections, and volume fractions of some ideal orientations of cold-rolling were studied. For the statistical analysis, pair correlation functions (PCFs) were employed and the correlations (auto- and anti-correlations) between ideal orientations and also the coherence length were studied. Simulated results captured from the implementation of the new model are in good agreement with the experimental ones at low and medium rolling deformations (0 to 50% rolling reductions); however, at large levels of deformations (above 70% reductions), because of the formation of cell blocks and relevant inhomogeneity, the occurrence of ideal orientations and their correlation properties in the experimental microstructure is affected by grain subdivision phenomena. This causes distortions in the shape of crystallographic grains at large rolling reductions, and accordingly we observe larger errors in comparison of simulated and experimental microstructures.
60

A CONSTITUTIVE MODEL FOR NANOSTRUCTURES BASED ON SPATIAL SECANT

GONDHALEKAR, ROHIT H. 27 September 2005 (has links)
No description available.

Page generated in 0.0834 seconds