1 |
Multiscale approach for modeling hot mix asphaltDessouky, Samer Hassan 29 August 2005 (has links)
Hot mix asphalt (HMA) is a granular composite material stabilized by the presence
of asphalt binder. The behavior of HMA is highly influenced by the microstructure
distribution in terms of the different particle sizes present in the mix, the directional
distribution of particles, the distribution of voids, and the nucleation and propagation of
cracks. Conventional continuum modeling of HMA lacks the ability to explicitly account
for the effect of microstructure distribution features. This study presents the development of
elastic and visco-plastic models that account for important aspects of the microstructure
distribution in modeling the macroscopic behavior of HMA.
In the first part of this study, an approach is developed to introduce a length scale to
the elasticity constitutive relationship in order to capture the influence of particle sizes on
HMA response. The model is implemented in finite element (FE) analysis and used to
analyze the microstructure response and predict the macroscopic properties of HMA. Each
point in the microstructure is assigned effective local properties which are calculated using
an analytical micromechanical model that captures the influence of percent of particles on
the microscopic response of HMA. The moving window technique and autocorrelation
function are used to determine the microstructure characteristic length scales that are usedin strain gradient elasticity. A number of asphalt mixes with different aggregate types and
size distributions are analyzed in this paper.
In the second part of this study, an elasto-visco-plastic continuum model is
developed to predict HMA response and performance. The model incorporates a Drucker-
Prager yield surface that is modified to capture the influence of stress path direction on the
material response. Parameters that reflect the directional distribution of aggregates and
damage density in the microstructure are included in the model. The elasto-visco-plastic
model is converted into a numerical formulation and is implemented in FE analysis using a
user-defined material subroutine (UMAT). A fully implicit algorithm in time-step control is
used to enhance the efficiency of the FE analysis. The FE model used in this study
simulates experimental data and pavement section.
|
2 |
Micropolar Continuum Modeling of Large Space Structures with Flexible Joints and Thermal Effects: Theory and ExperimentSalehian, Armaghan 26 February 2008 (has links)
The presented work is intended to develop a geometrically reduced order (homogenized) model for a large antenna space structure with flexible joints. An energy equivalence concept is employed to find the continuum model for the system. The kinetic and strain energy expressions of the fundamental elements are found based on the assumptions of the micropolar elasticity theory. Necessary assumptions are made to reduce the order of the strain variables while retaining the effects of the micro-rotations that are coupled to the primary strain terms. As a result, a micropolar-based continuum model is found for the structure with torsional joints. The vibrations equations of motion for various coordinates of the one dimensional equivalent model are presented. Subsequently, the relations between the physical parameters of the distributed parameter model and the radar structure are introduced. The effect of the asymmetric mass distribution as a result of the addition of the radar panel to the truss system is studied. For the purpose of the experimental validation of the suggested model a planar truss structure with Pratt Girder configuration was built and tested in the laboratory. The results for the experimental frequency response functions are shown to be in good agreement with the theory. Finally, the continuum model is used to quantify the effects of the thermally induced disturbances on the satellite system during the eclipse transition. / Ph. D.
|
3 |
Atomistic Characterization and Continuum Modeling of Novel Thermomechanical Behaviors of Zinc Oxide NanostructuresKulkarni, Ambarish J. 09 October 2007 (has links)
ZnO nanowires and nanorods are a new class of one-dimensional nanomaterials with a wide range of applications in NEMS. The motivation for this work stems from the lack of understanding and characterization of their thermomechanical behaviors essential for their incorporation in nanosystems. The overall goal of this work is to develop a fundamental understanding of the mechanisms controlling the responses of these nanostructures with focus on: (1) development of a molecular dynamics based framework for analyzing thermomechanical behaviors, (2) characterization of the thermal and mechanical behaviors in ZnO nanowires and (3) development of models for pseudoelasticity and thermal conductivity.
The thermal response analyses show that the values of thermal conductivity are one order of magnitude lower than that for bulk ZnO due to surface scattering of phonons. A modified equation for phonon radiative transport incorporating the effects of surface scattering is used to model the thermal conductivity as a function of wire size and temperature. Quasistatic tensile loading of wires show that the elastic moduli values are 68.2-27.8% higher than that for bulk ZnO. Previously unknown phase transformations from the initial wurtzite (WZ) structure to graphitic (HX) and body-centered-tetragonal (BCT-4) phases are discovered in nanowires which lead to a more complete understanding of the extent of polymorphism in ZnO and its dependence on load triaxiality. The reversibility of the WZ-to-HX transform gives rise to a novel pseudoelastic behavior with recoverable strains up to 16%. A micromechanical continuum model is developed to capture the major characteristics of the pseudoelastic behavior accounting for size and temperature effects. The effect of the phase transformations on the thermal properties is characterized. Results obtained show that the WZ→HX phase transformation causes a novel transition in thermal response with the conductivity of HX wires being 20.5-28.5% higher than that of the initial WZ-structured wires.
The results obtained here can provide guidance and criteria for the design and fabrication of a range of new building blocks for nanometer-scale devices that rely on thermomechanical responses.
|
4 |
Coherent gas flow patterns in heterogeneous permeability fieldsSamani, Shirin 16 February 2012 (has links) (PDF)
Gas injection into saturated porous media has a high practical relevance. It is applied in
groundwater remediation (air sparging), in CO2 sequestration into saline aquifers, and
in enhanced oil recovery of petroleum reservoirs. This wide range of application
necessitates a comprehensive understanding of gas flow patterns that may develop
within the porous media and required modeling of multi-phase flow. There is an
ongoing controversy in literature, if continuum models are able to describe the complex
flow pattern observed in heterogeneous porous media, especially the channelized
stochastic flow pattern. Based on Selker’s stochastic hypothesis, a gas channel is
caused by a Brownian-motion process during gas injection. Therefore, the pore-scale
heterogeneity will determine the shape of the single stochastic gas channels. On the
other hand there are many studies on air sparging, which are based on continuum
modeling. Up to date it is not clear under which conditions a continuum model can
describe the essential features of the complex gas flow pattern. The aim of this study is
to investigate the gas flow pattern on bench-scale and field scale using the continuum
model TOUGH2. Based on a comprehensive data set of bench-scale experiments and
field-scale experiments, we conduct for the first time a systematic study and evaluate
the prediction ability of the continuum model.
A second focus of this study is the development of a “real world”-continuum model,
since on all scales – pore-scale, bench scale, field scale – heterogeneity is a key driver
for the stochastic gas flow pattern. Therefore, we use different geostatistical programs
to include stochastic conditioned and unconditioned parameter fields.
Our main conclusion from bench-scale experiments is that a continuum model, which is
calibrated by different independent measurements, has excellent prediction ability for
the average flow behavior (e.g. the gas volume-injection rate relation). Moreover, we
investigate the impact of both weak and strong heterogeneous parameter fields
(permeability and capillary pressure) on gas flow pattern. The results show that a
continuum model with weak stochastic heterogeneity cannot represent the essential
features of the experimental gas flow pattern (e.g., the single stochastic gas channels).
Contrary, applying a strong heterogeneity the continuum model can represent the
channelized flow. This observation supports Stauffer’s statement that a so-called subscale
continuum model with strong heterogeneity is able to describe the channelized
flow behavior. On the other hand, we compare the theoretical integral gas volumes with
our experiments and found that strong heterogeneity always yields too large gas
volumes.
At field-scale the 3D continuum model is used to design and optimize the direct gas
injection technology. The field-scale study is based on the working hypotheses that the
key parameters are the same as at bench-scale. Therefore, we assume that grain size and
injection rate will determine whether coherent channelized flow or incoherent bubbly
flow will develop at field-scale. The results of four different injection regimes were
compared with the data of the corresponding field experiments. The main conclusion is
that because of the buoyancy driven gas flow the vertical permeability has a crucial
impact. Hence, the vertical and horizontal permeability should be implemented
independently in numerical modeling by conditioned parameter fields.
|
5 |
Caving mechanisms for a non-daylighting orebodyBanda, Sraj Umar January 2017 (has links)
The sublevel caving mining method is a mass production method with potentially very low operational costs. The success of this method is dependent on, among other factors, the cavability of the orebody and the overlying rock mass. However, caving of the surrounding rock mass also results in deformations in the cap rock as well as on the ground surface above the orebody being mined. From this follows that any existing infrastructure on the ground surface must be relocated as not to be affected by the mining-induced deformations.This thesis work was undertaken to bring about a better understanding of the rock mass behavior in the cap rock of non-daylighting orebodies, with particular application to the Printzsköld orebody as part of the LKAB Malmberget Mine. Rock testing, field observations and underground mapping was conducted to characterize the rock mass in the caving environment. A methodology for identifying the caving front based on seismic monitoring data was derived by studying the Fabian orebody (which has caved to surface), and using laser scanning data for validation. The methodology was then applied to the Printzsköld orebody to identify the caving front.Numerical modeling was performed for various scenarios of the rock mass as mining proceeded. Modeling included (i) stress analysis to understand stress changes and their effects on the rock mass behavior, (ii) discontinuum numerical modeling to quantify the influence of large-scale geological structures on the cave progression, and (iii) discontinuum cave modeling to simulate possible cave mechanisms in the cap rock more explicitly. Laser scanning together with seismic event data were used to calibrate the numerical models.The numerical simulation results showed that as mining progresses, the cap rock and hangingwall were exposed to stress changes that resulted in yielding. Two failure mechanisms were predominantly at play (i) shear failure (dominant in the cap rock) and (ii) tensile failure (dominant in the hangingwall). The presence of the large-scale structures affected thenearfield stresses through slip along the cave boundaries. The effect of the structures on the far field stresses were less significant.Discontinuum modeling to explicitly simulate failure and caving involved simulating the rock mass as a jointed medium using Voronoi tessellations in 2D, and bonded block modeling (BBM) in 3D. Both the 2D and the 3D modeling results showed fair agreement when comparing the inferred boundary of the seismogenic zone, with that identified from seismic monitoring data. Predictive numerical modeling was conducted for future planned mining to assess future cave development in the cap rock. The results from 3D modeling indicated that cave breakthrough for the Printzsköld orebody is expected when mining the 1023 m level, corresponding to approximately year 2022, as per current mining plans. The 2D model was non-conservative with cave breakthrough predicted to occur when mining the 1109 m level, corresponding to the year 2028.The estimated boundary between the seismogenic and yielded zones, as defined in the Duplancic and Brady conceptual model of caving, was coinciding with, or was close to, the cave boundary in the Printzsköld orebody. This may imply that in some areas the yielded zone was not present and that the Duplancic and Brady model may not be universally applicable. Additional work is required to verify this indication, as well as to fine-tune the modeling methodology.
|
6 |
Coherent gas flow patterns in heterogeneous permeability fields: Coherent gas flow patterns in heterogeneous permeability fields: from bench-scale to field-scaleSamani, Shirin 02 August 2012 (has links)
Gas injection into saturated porous media has a high practical relevance. It is applied in
groundwater remediation (air sparging), in CO2 sequestration into saline aquifers, and
in enhanced oil recovery of petroleum reservoirs. This wide range of application
necessitates a comprehensive understanding of gas flow patterns that may develop
within the porous media and required modeling of multi-phase flow. There is an
ongoing controversy in literature, if continuum models are able to describe the complex
flow pattern observed in heterogeneous porous media, especially the channelized
stochastic flow pattern. Based on Selker’s stochastic hypothesis, a gas channel is
caused by a Brownian-motion process during gas injection. Therefore, the pore-scale
heterogeneity will determine the shape of the single stochastic gas channels. On the
other hand there are many studies on air sparging, which are based on continuum
modeling. Up to date it is not clear under which conditions a continuum model can
describe the essential features of the complex gas flow pattern. The aim of this study is
to investigate the gas flow pattern on bench-scale and field scale using the continuum
model TOUGH2. Based on a comprehensive data set of bench-scale experiments and
field-scale experiments, we conduct for the first time a systematic study and evaluate
the prediction ability of the continuum model.
A second focus of this study is the development of a “real world”-continuum model,
since on all scales – pore-scale, bench scale, field scale – heterogeneity is a key driver
for the stochastic gas flow pattern. Therefore, we use different geostatistical programs
to include stochastic conditioned and unconditioned parameter fields.
Our main conclusion from bench-scale experiments is that a continuum model, which is
calibrated by different independent measurements, has excellent prediction ability for
the average flow behavior (e.g. the gas volume-injection rate relation). Moreover, we
investigate the impact of both weak and strong heterogeneous parameter fields
(permeability and capillary pressure) on gas flow pattern. The results show that a
continuum model with weak stochastic heterogeneity cannot represent the essential
features of the experimental gas flow pattern (e.g., the single stochastic gas channels).
Contrary, applying a strong heterogeneity the continuum model can represent the
channelized flow. This observation supports Stauffer’s statement that a so-called subscale
continuum model with strong heterogeneity is able to describe the channelized
flow behavior. On the other hand, we compare the theoretical integral gas volumes with
our experiments and found that strong heterogeneity always yields too large gas
volumes.
At field-scale the 3D continuum model is used to design and optimize the direct gas
injection technology. The field-scale study is based on the working hypotheses that the
key parameters are the same as at bench-scale. Therefore, we assume that grain size and
injection rate will determine whether coherent channelized flow or incoherent bubbly
flow will develop at field-scale. The results of four different injection regimes were
compared with the data of the corresponding field experiments. The main conclusion is
that because of the buoyancy driven gas flow the vertical permeability has a crucial
impact. Hence, the vertical and horizontal permeability should be implemented
independently in numerical modeling by conditioned parameter fields.
|
7 |
Flow and transport in saturated and unsaturated fractured porous media: Development of particle-based modeling approachesKordilla, Jannes 23 June 2014 (has links)
Das Ziel der vorliegenden Arbeit ist die Entwicklung von partikelbasierenden Strömungs- und Transportmodellen zur Charakterisierung von kleinskaligen Strömungsprozessen in gesättigten und ungesättigten Poren- und Kluftsystemen. Aufgrund der unzureichenden Prozessbeschreibung von ungesättigter Strömung in Doppelkontinuummodellen mittels der Richardsgleichung und van Genuchten Parametern werden innovative Methoden präsentiert um die zugrunde liegenden hochdynamischen Strömungs- und Transportprozesse zu erfassen.
Die Simulation von Strömung und Transport in ungesättigten geklüfteten Aquiferen bildet immer noch ein höchst anspruchsvolles Aufgabenfeld aufgrund von skalenübergreifenden Diskontinuitäten, welche oftmals die Definition eines globalen repräsentativen Einheitsvolumens nicht zulassen. Des Weiteren können die hydraulischen Eigenschaften und potentiellen Parameterräume von geklüfteten Aquiferen oftmals nur durch integrale Ansätze, wie z.B. Pump- und Slugtests, Zeitreihenanalysen von Quellschüttungen und Tracertests ermittelt werden. Doppelkontinuummodelle bieten hierfür einen ausgewogenen Ansatz hinsichtlich der erforderlichen Felddaten und der resultierenden prädiktiven Modellqualität. Der erste Teil dieser Arbeit evaluiert den Doppelkontinuumansatz, welcher die Simulation von Strömung mittels der Richardsgleichung und van Genuchten Parametern in zwei, durch einen linearen Austauschterm gekoppelten, Kontinua ermöglicht. Ganglinien von Karstquellen weisen eine charakteristischen steilen Abfall nach Niederschlagsereignissen auf, der durch das Modell erfolgreich reproduziert werden kann. Das Röhrensystem bildet die hydraulische Brücke zur Karstquelle und nimmt potentialabhängige Wassermengen des geklüfteten Matrixsystems auf. Um die Simulation von schneller Grundwasserinfiltration durch das Röhrenkontinuum innerhalb der ungesättigten Zone zu vermeiden wurde die entsprechende Randbedingung an die untere Grenze des Kontinuums gesetzt. Ein genereller Nachteil des Doppelkontinuumsansatz ist die potentielle Mehrdeutigkeit von Modellergebnissen. Der duale Parameterraum in Kombination mit schwierig zu ermittelnden Parametern, führt zur Existenz von mehr als einem kalibrierten Modell, wie durch mehrdimensionale Sensitivitätsanalysen aufgezeigt wird.
Insbesondere in Karstaquiferen bilden Diskontinuitäten, wie z.B. Lösungsdolinen, Klüfte und Störungssysteme, bevorzugte hydraulische Elemente für schnelle vertikale Grundwasserneubildungsprozesse, die oftmals nicht durch volumeneffektive Modellansätze erfasst werden können. Der Hauptteil dieser Arbeit befasst sich daher mit der Entwicklung von zwei Smoothed Particle Hydrodynamics (SPH) Modellen um ein adäquates numerisches Werkzeug zur partikelbasierenden Simulation von kleinskaligen Strömungen mit freien Oberflächen und Transportprozessen bereitzustellen. SPH Modelle ermöglichen eine Eulersche Beschreibung eines Strömungsfelds auf Basis der Navier-Stokes Gleichung und Partikelbewegung mittels klassischer Newtonscher Mechanik. Der gitterlose Modellansatz ermöglicht flexible Simulationen von hochdynamischen Phasengrenzen in ungesättigten Klüften und Porenräumen. Das erste SPH Modell wird eingesetzt um durch Oberflächenspannung dominierte Tropfen- und Filmströmungen auf glatten und rauhen Kluftoberflächen zu simulieren. Charakteristische dimensionslose Kennzahlen werden über einen weiten Bereich von Benetzungswinkeln und Reynoldszahlen bestimmt. Modellergebnisse weisen einen hervorragende Übereinstimmung mit dimensionslosen Skalierungsfunktionen auf und kritische Kontaktwinkel
folgen der zu erwartenden Entnetzungsdynamik. Die Entstehung von adsorbierten Filmen auf trockenen Oberflächen wird für einen breiten Parameterraum bestimmt. Des Weiteren wird der Einfluss von befeuchteten Oberflächen auf die Geschwindigkeitszunahme von Tropfenströmung aufgezeigt und so die Bedeutung der Koexistenz verschiedener Strömungsmodi gezeigt. Der Effekt von Oberflächenrauhigkeit auf Tropfenströmung wird für verschiedene Rauhigkeiten ermittelt und eine deutliche Geschwindigkeitsabnahme demonstriert.
Um die makroskopische Kontinuumsbeschreibung der Navier-Stokes Gleichung und atomistische Effekte eines klassischen Partikelsystems der statistischen Mechanik zu kombinieren wurde ein zweites mesoskopisches SPH Modell entwickelt. Diese neue Diskretisation der vollständig gekoppelten Landau-Lifshitz-Navier-Stokes und Advektions- Diffusionsgleichung ermöglicht die Simulation von Strömung und Transport bei gleichzeitiger Berücksichtigung von Fluktuationsdynamiken, welche sich korrekt der Systemskala anpassen. Die Verbindung von klassischer Fickscher Diffusion und thermodynamischen Fluktuationen wird hierbei durch einen effektiven Diffusionskoeffizienten beschrieben. Numerische Experimente zeigen die Präzision des Modells. Grenzflächen zwischen zwei Fluiden unterschiedlicher Konzentration weisen eine korrekte Wellenzahldivergenz entsprechend aktuellen Laborergebnissen auf.
|
8 |
Topographie, Struktur und Dynamik thermisch aufgedampfter Polymerfilme / Topography, structure and dynamics of thermally evaporated polymer filmsVree, Christian 06 July 2009 (has links)
No description available.
|
Page generated in 0.0811 seconds