1 |
Quantum mechanical simulation of the mechanical behaviour and metallic bonding of defective aluminiumDeyirmenjian, Vatche Berj January 1994 (has links)
No description available.
|
2 |
Boundary effects in nematic liquid crystal layersMottram, N. J. January 1996 (has links)
No description available.
|
3 |
Direct compariosn of analytical and intuitive cognition in public decision-making, in the case of metropolitan wetland park.Chen, Po-chun 07 September 2004 (has links)
In modern democratic country, the complexity of public affairs is a difficult topic of public policy. Only admires the objective analysis technology is insufficient to in accordance to the complex public decision-making. Therefore, the public policy formulation needs the suitable political judgment. But populace's policy-making cognition mode then is the key to carry out the policy formulation. Today Taiwan society had the certain democratized degree and the economic basis, the populace had opportunity to participate in public affairs. As a result of is extremely insufficient in the participation public affairs training, the populace has not been able by rational when discuss the public subject that he faces.
Here cognition is uncoordinated and possible to initiate the policy-making conflict. If we want to reduce the policy-making conflict to achieve higher policy-making quality, it is the necessary thorough understanding common populace's policy-making cognition mode. This research is based on the Cognitive Continuum Theory, take sets up a wetland park as the example, designs a quasi-experiment to directly compares efficacies of analytical, intuitive and quasi-rational cognition mode of the populace in the public decision-making. The research target lies in to regards the analytical cognition and the intuitive cognition is dichotomous proposes the counter-evidence, proved they are the beginnings and ends of the cognitive continuum.
The findings showed that, (1) the characteristic policy-making judgment cognition mode of the populace to the wetland park judgment is a continuous distribution state. (2) The cognition identity of judgment method to be able to induce the cognition identity of the policy-making judgment. (3) The populace's policy-making judgment behavior has the analysis cognition identity that they can depend on analytical judgment method to carry on the policy-making judgment. (4) The policy-making cognition mode can come under cognition of identity influence the policy-making judgment method. The better correlation of judgment method and the goal cognition identity, the more consistent policy-making performance.
|
4 |
The internal structure of irreducible continuaHarper, David January 2017 (has links)
This thesis is an examination of the structure of irreducible continua, with a particular emphasis on local connectedness and monotone maps. A continuum is irreducible if there exist a pair of points such that no proper subcontinuum contains both, with the arc being the most basic example. Being irreducible has a number of interesting implications for a continuum, both locally and globally, and it is these consequences we shall focus on. As mentioned above, the arc is the most straightforward example of an irreducible continuum. Indeed, an intuitive understanding of an irreducible continuum would be that it is structured like an arc, with the points of irreducibility at either end joined by a subspace with no loops or offshoots. In Chapter 2 we will see that for a certain class of continua this intuition is well founded by constructing a monotone map from an irreducible continuum onto an arc. This monotone map will preserve much of the structure of our continuum and as such will provide an insight into that structure. We will next examine a generalisation of irreducibility which considers finite sets of points rather than just pairs. A number of classical results will be re-examined in this light in Chapter 3. While the majority of these theorems will be shown to have close parallels in higher finite and infinite irreducibility there will be several which do not hold without further conditions on the continuum. Such anomalies will be particularly prevalent in continua which have indecomposable subcontinua dominating their structure. In Chapter 4 monotone maps will be constructed for finitely irreducible continua similar to the map to an arc mentioned previously. Chapters 7 and 8 will generalise irreducibility further to the infinite case and we will again construct monotone maps preserving the structure of our continuum. Along with the arc, another highly significant irreducible continuum is the sin 1 x continuum. Chapter 5 will focus on this continuum, which will be the basis for a nested sequence of continua. A number of results concerning continuous images of these continua will be presented before using the sequence of continua to define an indecomposable continuum. This continuum will be investigated, and it will be shown that the union of our nested continua form a composant of the indecomposable continuum. In Chapter 6 we will turn to the question of compactifications. If a space X is connected then any metric compactification of X will be a continuum. This chapter will answer the question of when a compactification is an irreducible continuum, with the remainder of the compactification consisting of all of the irreducible points. A list of properties will given such that a continuum has such a compactification if and only if it has each property on the list. It will also be demonstrated that each of these properties is independent of the others. Finally, in Chapter 9 we will revisit the idea of structure-preserving monotone maps, but this time in continua which are not irreducible. Motivated by the fibres of the maps in previous chapters, we will introduce two categories of subcontinua of a continuum X. The first will be nowhere dense subcontinua which are maximal with this property and the second will be subcontinua about which X is locally connected and which are minimal with this property. Continua in which every point lies in a maximal nowhere dense subcontinuum will be examined, as well as spaces in which every point lies in a unique minimal subcontinuum about which X is locally connected. We will also look at the properties of monotone maps arising from partitions of X into such subcontinua, and will prove that if every point of X lies in a maximal nowhere dense subcontinuum then the resulting quotient space will be one dimensional.
|
5 |
A Study of Cognitive Characteristics of Voters through Analysis of Campaign Advertising - Example of Democratic Progressive Party's Campaign Literature in 2010 Kaohsiung Mayoral ElectionCheng, Po-Yu 07 August 2011 (has links)
Democratic politics is a process where political elites compete for votes (Schumpeter, 1950) and therefore campaign communication is an indispensable area in it. In the beginning, campaign communication focused more on public policy promotion (Peng, 2005) and now is campaign-communication oriented to define communication strategies adopted in election campaign.
Election campaign becomes fiercer after party politics takes root in Taiwan and that is where campaign advertising comes in. Purposes of campaign advertising by a candidate or party include image shaping, promotion of campaign issue and statement of political platform and achievements. We examined campaign literature of Democratic Progressive Party in 2010 Kaohsiung Mayoral Election and adopted Cognitive Continuum Theory (CCT) to analyze how appeal of campaign advertising influenced voter.
Quasi-experiment was adopted. 45 questionnaires were issued to 45 participants individually due to the nature of the questionnaire. Results indicate that voters in Kaohsiung are more intuitive and support a candidate more because of the candidate¡¦s image than his/her platform. Reflect Kaohsiung voters' cognitive characteristics to be more intuitive. These cognitive characteristics show not only economic but serious social issues in Kaohsiung.
|
6 |
Molecular dynamics studies on application of carbon nanotubes and graphene sheets as nano-resonator sensorsArash, Behrouz 26 November 2013 (has links)
The main objective of the research is to study the potential application of carbon nanotubes and graphene sheets as nano-resonator sensors in the detection of atoms/molecules with vibration and wave propagation analyses. It is also aimed to develop and examine new methods in the design of nano-resonator sensors for differentiating distinct gas atoms and different macromolecules, such as DNA molecules. The hypothesis in the detection techniques is that atoms or molecules attached on the surface of the nano-resonator sensors would induce a recognizable shift in the resonant frequency of or wave velocity in the sensors. With this regard, a sensitivity index based on the shift in resonant frequency of the sensors in the vibration analysis and/or a shift in wave velocity in the sensors in the wave propagation analysis is defined and examined.
In order to achieve the objective, the vibration characteristics of carbon nanotubes and graphenes are studied using molecular dynamics simulations to first propose nano-resonator sensors, which are able to differentiate distinct gas atoms with high enough resolutions even at low concentration. It is also indicated that the nano-resonator sensors are effective devices to identify different genes even with the same number of nucleobases in the structure of single-strand DNA macromolecules. The effect of various parameters such as size and restrained boundary conditions of the sensors, the position of attached atoms/molecules being detected, and environment temperature on the sensitivity of the sensors is investigated in detail.
Following the studies on vibration-based sensors, the wave propagation analysis in carbon nanotubes and graphene sheets is first investigated by using molecular dynamics simulations to design nano-resonator sensors. Moreover, a nonlocal finite element model is presented and calibrated for the first time to model propagation of mechanical waves in graphene sensors attached with atoms through a verification process with atomistic results. The simulation results reveal that the nano-resonator sensors are able to successfully detect distinct types of noble gases with the same mass density or at the same environmental condition of temperature and pressure.
|
7 |
[en] MODELLING OF FLOW IN POROUS MEDIA / [pt] MODELAGEM PARA ESCOAMENTOS EM MEIOS POROSOSROGERIO MARTINS SALDANHA DA GAMA 04 April 2018 (has links)
[pt] O presente trabalho tem como objetivo a modelagem de escoamentos através de meios porosos, sob o ponto de vista da Teoria Contínua de misturas. O fluido e o sólido, que compõe o meio poroso, são tratados como constituintes contínuos de uma mistura binária, onde não ocorrem reações químicas. Em todas as situações aqui tratadas o fluido é suposto Newtoniano e incompressível, enquanto o meio poroso é rígido, homogêneo e isotrópico. O trabalho pode ser dividido em duas partes principais. Na primeira são modelados escoamentos através de regiões contendo meios porosos saturados e regiões onde só existe o fluido. São discutidas condições de compatibilidade sobre as interfaces, que separam as regiões, e é estabelecido um modelo para escoamentos, nos quais não exista fluxo de massa através das interfaces. A segunda parte trata de escoamentos em meios porosos insaturados, onde é preciso se considerar o efeito de forças capilares. Nesta parte é estabelecido um modelo e são simuladas situações unidimensionais. São estudados vários casos entre eles o enchimento de uma placa porosa, com e sem efeitos de atrito e de forças gravitacionais. A obtenção de resultados, nestes casos, exige a solução numérica de um sistema hiperbólico não-linear de equações diferenciais. / [en] This work aims to a modelling of flow through a porous media based upon the Continuum Theory of Mixtures. The fluid and the solid, which composes the porous media, are assumed as continuous constituent of a binary mixture where chemical reactions do not occur. In all situations here considered, the fluid is assuned Newtonian and incompressíble, while the porous media is rigid, homogeneus and isotropic. This work can be divided in two main parts. In the first one, flows are modelled through regions containing saturated porous media and regions where there is nothing but the fluid. Conditions of compatibility in the interfaces that divide the regions are discussed and a flow modelling is stablished where there are no crosaflow through the interfaces. The second part is concerned with flows in unsaturated porous media, where the effect of capillery pressure is considered. In this Part a model is stablished and unidimensíonal situations are simulated. Several cases are studied and the filling-up of a porous plate is among them,
with and without frictíon effect and gravitational forces. The
obtainment of results, in such cases, requires the numeric
solution of a non-linear hyperbolíc system of differential
equations.
|
8 |
Some remarks to large deformation elasto-plasticity (continuum formulation)Michael, Detlef, Meisel, Mathias 14 September 2005 (has links) (PDF)
The continuum theory of large deformation elasto-plasticity is summarized as far as it is necessary for the numerical treatment with the Finite-Element-Method. Using the calculus of modern differential geometry and functional analysis, the fundamental equations are derived and the proof of most of them is shortly outlined. It was not our aim to give a contribution to the development of the theory, rather to show the theoretical background and the assumptions to be made in state of the art elasto-plasticity.
|
9 |
A study of grain rotations and void nucleation in aluminum triple junctions using molecular dynamics and crystal plasticityPriddy, Matthew William 07 August 2010 (has links)
This study focuses on molecular dynamics (MD) simulations, coupled with a discrete mathematical framework, and crystal plasticity (CP) simulations to investigate micro void nucleation and the plastic spin. The origin and historical use of the plastic spin are discussed with particular attention to quantifying the plastic spin at the atomistic scale. Two types of MD simulations are employed: (a) aluminum single crystals undergoing simple shear and (b) aluminum triple junctions (TJ) with varying grain orientations and textures undergoing uniaxial tension. The high-angle grain boundary simulations nucleate micro voids at or around the TJ and the determinant of the deformation gradient shows the ability to predict such events. Crystal plasticity simulations are used to explore the stress-state of the aluminum TJ from uniaxial tension at a higher length scale with results indicating a direct correlation between CP stress-states and the location of micro void nucleation in the MD simulations.
|
10 |
MECHANICS IN ORGANIC MIXED IONIC-ELECTRONIC CONDUCTORSXiaokang Wang (15181663) 05 April 2023 (has links)
<p>This Dissertation aims at establishing an integrated framework of multimodal experiments and multiphysics theory to extend the understanding of the mechanics in electrochemically active materials using organic mixed ionic-electronic conductors (OMIECs) as a model system. </p>
<p>OMIECs allow the transport of both ions and electrons, which is accompanied by the (electronic, micro-) structural reorganization. The electronic structural change in OMIECs induces transforms in the electrical conductivity and optical absorbance. The change in molecular packing invites the size change and evolution of mechanical properties. The multiphysics processes render OMIECs a fascinating platform for understanding the multi-physics coupling and advancing organic electrochemical devices. </p>
<p>Despite significant progress, there are urgent needs in the experimental techniques and the subsequent mechanical characterization, theoretical understanding of the multiphysics processes, and mechanics-informed design principles for high-performance devices. Specifically, (i) an accurate and straightforward experimental method is in need to better understand the mechanical behaviors and kinetics such as swelling and softening of OMIECs upon electrochemical redox reactions; (ii) a theoretical framework is missing that describes the rich coupled multiphysics processes such as large deformation, charge and mass transport, electrostatics, and phase evolution in OMIECs; (iii) the rational design of the materials and structures based on mechanics principles are required for mechanically reliable, high-performance organic electrochemical devices.</p>
<p>In this Dissertation, the mechanics of OMIECs are studied systematically. The basics of OMIECs, knowledge gaps, and the outline are introduced in Chapter 1. The in-situ environmental nanoindentation apparatus and the associating characterization techniques are presented in Chapter 2. In Chapter 3, a theoretical mechanics model is presented that elucidates the interfacial mechanical degradation of thin-film electrodes and outlines the design principles for mechanically reliable electrodes. In Chapter 4, the electrochemical doping kinetics and its stress dependency on conductive polymers are studied via a designed moving front device. Chapter 5 presents a thermodynamically consistent continuum theory of two-phase OMIECs undergoing large deformation, charge and mass transport, electrostatics, and phase separation, which forms the theoretical foundation for such conductive polymer systems. The conclusion and perspectives on future work are presented in Chapter 6. </p>
|
Page generated in 0.0466 seconds