• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 19
  • 19
  • 15
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Image-classification for Brain Tumor using Pre-trained Convolutional Neural Network : Bildklassificering för hjärntumör medhjälp av förtränat konvolutionell tneuralt nätverk

Osman, Ahmad, Alsabbagh, Bushra January 2023 (has links)
Brain tumor is a disease characterized by uncontrolled growth of abnormal cells inthe brain. The brain is responsible for regulating the functions of all other organs,hence, any atypical growth of cells in the brain can have severe implications for itsfunctions. The number of global mortality in 2020 led by cancerous brains was estimatedat 251,329. However, early detection of brain cancer is critical for prompttreatment and improving patient’s quality of life as well as survival rates. Manualmedical image classification in diagnosing diseases has been shown to be extremelytime-consuming and labor-intensive. Convolutional Neural Networks (CNNs) hasproven to be a leading algorithm in image classification outperforming humans. Thispaper compares five CNN architectures namely: VGG-16, VGG-19, AlexNet, EffecientNetB7,and ResNet-50 in terms of performance and accuracy using transferlearning. In addition, the authors discussed in this paper the economic impact ofCNN, as an AI approach, on the healthcare sector. The models’ performance isdemonstrated using functions for loss and accuracy rates as well as using the confusionmatrix. The conducted experiment resulted in VGG-19 achieving best performancewith 97% accuracy, while EffecientNetB7 achieved worst performance with93% accuracy. / Hjärntumör är en sjukdom som kännetecknas av okontrollerad tillväxt av onormalaceller i hjärnan. Hjärnan är ansvarig för att styra funktionerna hos alla andra organ,därför kan all onormala tillväxt av celler i hjärnan ha allvarliga konsekvenser för dessfunktioner. Antalet globala dödligheten ledda av hjärncancer har uppskattats till251329 under 2020. Tidig upptäckt av hjärncancer är dock avgörande för snabb behandlingoch för att förbättra patienternas livskvalitet och överlevnadssannolikhet.Manuell medicinsk bildklassificering vid diagnostisering av sjukdomar har visat sigvara extremt tidskrävande och arbetskrävande. Convolutional Neural Network(CNN) är en ledande algoritm för bildklassificering som har överträffat människor.Denna studie jämför fem CNN-arkitekturer, nämligen VGG-16, VGG-19, AlexNet,EffecientNetB7, och ResNet-50 i form av prestanda och noggrannhet. Dessutom diskuterarförfattarna i studien CNN:s ekonomiska inverkan på sjukvårdssektorn. Modellensprestanda demonstrerades med hjälp av funktioner om förlust och noggrannhetsvärden samt med hjälp av en Confusion matris. Resultatet av det utfördaexperimentet har visat att VGG-19 har uppnått bästa prestanda med 97% noggrannhet,medan EffecientNetB7 har uppnått värsta prestanda med 93% noggrannhet.
12

Is eXplainable AI suitable as a hypotheses generating tool for medical research? Comparing basic pathology annotation with heat maps to find out

Adlersson, Albert January 2023 (has links)
Hypothesis testing has long been a formal and standardized process. Hypothesis generation, on the other hand, remains largely informal. This thesis assess whether eXplainable AI (XAI) can aid in the standardization of hypothesis generation through its utilization as a hypothesis generating tool for medical research. We produce XAI heat maps for a Convolutional Neural Network (CNN) trained to classify Microsatellite Instability (MSI) in colon and gastric cancer with four different XAI methods: Guided Backpropagation, VarGrad, Grad-CAM and Sobol Attribution. We then compare these heat maps with pathology annotations in order to look for differences to turn into new hypotheses. Our CNN successfully generates non-random XAI heat maps whilst achieving a validation accuracy of 85% and a validation AUC of 93% – as compared to others who achieve a AUC of 87%. Our results conclude that Guided Backpropagation and VarGrad are better at explaining high-level image features whereas Grad-CAM and Sobol Attribution are better at explaining low-level ones. This makes the two groups of XAI methods good complements to each other. Images of Microsatellite Insta- bility (MSI) with high differentiation are more difficult to analyse regardless of which XAI is used, probably due to exhibiting less regularity. Regardless of this drawback, our assessment is that XAI can be used as a useful hypotheses generating tool for research in medicine. Our results indicate that our CNN utilizes the same features as our basic pathology annotations when classifying MSI – with some additional features of basic pathology missing – features which we successfully are able to generate new hypotheses with.
13

Image-classification for Brain Tumor using Pre-trained Convolutional Neural Network / Bildklassificering för hjärntumör med hjälp av förtränat konvolutionellt neuralt nätverk

Alsabbagh, Bushra January 2023 (has links)
Brain tumor is a disease characterized by uncontrolled growth of abnormal cells in the brain. The brain is responsible for regulating the functions of all other organs, hence, any atypical growth of cells in the brain can have severe implications for its functions. The number of global mortality in 2020 led by cancerous brains was estimated at 251,329. However, early detection of brain cancer is critical for prompt treatment and improving patient’s quality of life as well as survival rates. Manual medical image classification in diagnosing diseases has been shown to be extremely time-consuming and labor-intensive. Convolutional Neural Networks (CNNs) has proven to be a leading algorithm in image classification outperforming humans. This paper compares five CNN architectures namely: VGG-16, VGG-19, AlexNet, EffecientNetB7, and ResNet-50 in terms of performance and accuracy using transfer learning. In addition, the authors discussed in this paper the economic impact of CNN, as an AI approach, on the healthcare sector. The models’ performance is demonstrated using functions for loss and accuracy rates as well as using the confusion matrix. The conducted experiment resulted in VGG-19 achieving best performance with 97% accuracy, while EffecientNetB7 achieved worst performance with 93% accuracy. / Hjärntumör är en sjukdom som kännetecknas av okontrollerad tillväxt av onormala celler i hjärnan. Hjärnan är ansvarig för att styra funktionerna hos alla andra organ, därför kan all onormala tillväxt av celler i hjärnan ha allvarliga konsekvenser för dess funktioner. Antalet globala dödligheten ledda av hjärncancer har uppskattats till 251329 under 2020. Tidig upptäckt av hjärncancer är dock avgörande för snabb behandling och för att förbättra patienternas livskvalitet och överlevnadssannolikhet. Manuell medicinsk bildklassificering vid diagnostisering av sjukdomar har visat sig vara extremt tidskrävande och arbetskrävande. Convolutional Neural Network (CNN) är en ledande algoritm för bildklassificering som har överträffat människor. Denna studie jämför fem CNN-arkitekturer, nämligen VGG-16, VGG-19, AlexNet, EffecientNetB7, och ResNet-50 i form av prestanda och noggrannhet. Dessutom diskuterar författarna i studien CNN:s ekonomiska inverkan på sjukvårdssektorn. Modellens prestanda demonstrerades med hjälp av funktioner om förlust och noggrannhets värden samt med hjälp av en Confusion matris. Resultatet av det utförda experimentet har visat att VGG-19 har uppnått bästa prestanda med 97% noggrannhet, medan EffecientNetB7 har uppnått värsta prestanda med 93% noggrannhet.
14

Natural Language Processing using Deep Learning in Social Media

Giménez Fayos, María Teresa 02 September 2021 (has links)
[ES] En los últimos años, los modelos de aprendizaje automático profundo (AP) han revolucionado los sistemas de procesamiento de lenguaje natural (PLN). Hemos sido testigos de un avance formidable en las capacidades de estos sistemas y actualmente podemos encontrar sistemas que integran modelos PLN de manera ubicua. Algunos ejemplos de estos modelos con los que interaccionamos a diario incluyen modelos que determinan la intención de la persona que escribió un texto, el sentimiento que pretende comunicar un tweet o nuestra ideología política a partir de lo que compartimos en redes sociales. En esta tesis se han propuestos distintos modelos de PNL que abordan tareas que estudian el texto que se comparte en redes sociales. En concreto, este trabajo se centra en dos tareas fundamentalmente: el análisis de sentimientos y el reconocimiento de la personalidad de la persona autora de un texto. La tarea de analizar el sentimiento expresado en un texto es uno de los problemas principales en el PNL y consiste en determinar la polaridad que un texto pretende comunicar. Se trata por lo tanto de una tarea estudiada en profundidad de la cual disponemos de una vasta cantidad de recursos y modelos. Por el contrario, el problema del reconocimiento de personalidad es una tarea revolucionaria que tiene como objetivo determinar la personalidad de los usuarios considerando su estilo de escritura. El estudio de esta tarea es más marginal por lo que disponemos de menos recursos para abordarla pero que no obstante presenta un gran potencial. A pesar de que el enfoque principal de este trabajo fue el desarrollo de modelos de aprendizaje profundo, también hemos propuesto modelos basados en recursos lingüísticos y modelos clásicos del aprendizaje automático. Estos últimos modelos nos han permitido explorar las sutilezas de distintos elementos lingüísticos como por ejemplo el impacto que tienen las emociones en la clasificación correcta del sentimiento expresado en un texto. Posteriormente, tras estos trabajos iniciales se desarrollaron modelos AP, en particular, Redes neuronales convolucionales (RNC) que fueron aplicadas a las tareas previamente citadas. En el caso del reconocimiento de la personalidad, se han comparado modelos clásicos del aprendizaje automático con modelos de aprendizaje profundo, pudiendo establecer una comparativa bajo las mismas premisas. Cabe destacar que el PNL ha evolucionado drásticamente en los últimos años gracias al desarrollo de campañas de evaluación pública, donde múltiples equipos de investigación comparan las capacidades de los modelos que proponen en las mismas condiciones. La mayoría de los modelos presentados en esta tesis fueron o bien evaluados mediante campañas de evaluación públicas, o bien emplearon la configuración de una campaña pública previamente celebrada. Siendo conscientes, por lo tanto, de la importancia de estas campañas para el avance del PNL, desarrollamos una campaña de evaluación pública cuyo objetivo era clasificar el tema tratado en un tweet, para lo cual recogimos y etiquetamos un nuevo conjunto de datos. A medida que avanzabamos en el desarrollo del trabajo de esta tesis, decidimos estudiar en profundidad como las RNC se aplicaban a las tareas de PNL. En este sentido, se exploraron dos líneas de trabajo. En primer lugar, propusimos un método de relleno semántico para RNC, que plantea una nueva manera de representar el texto para resolver tareas de PNL. Y en segundo lugar, se introdujo un marco teórico para abordar una de las críticas más frecuentes del aprendizaje profundo, el cual es la falta de interpretabilidad. Este marco busca visualizar qué patrones léxicos, si los hay, han sido aprendidos por la red para clasificar un texto. / [CA] En els últims anys, els models d'aprenentatge automàtic profund (AP) han revolucionat els sistemes de processament de llenguatge natural (PLN). Hem estat testimonis d'un avanç formidable en les capacitats d'aquests sistemes i actualment podem trobar sistemes que integren models PLN de manera ubiqua. Alguns exemples d'aquests models amb els quals interaccionem diàriament inclouen models que determinen la intenció de la persona que va escriure un text, el sentiment que pretén comunicar un tweet o la nostra ideologia política a partir del que compartim en xarxes socials. En aquesta tesi s'han proposats diferents models de PNL que aborden tasques que estudien el text que es comparteix en xarxes socials. En concret, aquest treball se centra en dues tasques fonamentalment: l'anàlisi de sentiments i el reconeixement de la personalitat de la persona autora d'un text. La tasca d'analitzar el sentiment expressat en un text és un dels problemes principals en el PNL i consisteix a determinar la polaritat que un text pretén comunicar. Es tracta per tant d'una tasca estudiada en profunditat de la qual disposem d'una vasta quantitat de recursos i models. Per contra, el problema del reconeixement de la personalitat és una tasca revolucionària que té com a objectiu determinar la personalitat dels usuaris considerant el seu estil d'escriptura. L'estudi d'aquesta tasca és més marginal i en conseqüència disposem de menys recursos per abordar-la però no obstant i això presenta un gran potencial. Tot i que el fouc principal d'aquest treball va ser el desenvolupament de models d'aprenentatge profund, també hem proposat models basats en recursos lingüístics i models clàssics de l'aprenentatge automàtic. Aquests últims models ens han permès explorar les subtileses de diferents elements lingüístics com ara l'impacte que tenen les emocions en la classificació correcta del sentiment expressat en un text. Posteriorment, després d'aquests treballs inicials es van desenvolupar models AP, en particular, Xarxes neuronals convolucionals (XNC) que van ser aplicades a les tasques prèviament esmentades. En el cas de el reconeixement de la personalitat, s'han comparat models clàssics de l'aprenentatge automàtic amb models d'aprenentatge profund la qual cosa a permet establir una comparativa de les dos aproximacions sota les mateixes premisses. Cal remarcar que el PNL ha evolucionat dràsticament en els últims anys gràcies a el desenvolupament de campanyes d'avaluació pública on múltiples equips d'investigació comparen les capacitats dels models que proposen sota les mateixes condicions. La majoria dels models presentats en aquesta tesi van ser o bé avaluats mitjançant campanyes d'avaluació públiques, o bé s'ha emprat la configuració d'una campanya pública prèviament celebrada. Sent conscients, per tant, de la importància d'aquestes campanyes per a l'avanç del PNL, vam desenvolupar una campanya d'avaluació pública on l'objectiu era classificar el tema tractat en un tweet, per a la qual cosa vam recollir i etiquetar un nou conjunt de dades. A mesura que avançàvem en el desenvolupament del treball d'aquesta tesi, vam decidir estudiar en profunditat com les XNC s'apliquen a les tasques de PNL. En aquest sentit, es van explorar dues línies de treball.En primer lloc, vam proposar un mètode d'emplenament semàntic per RNC, que planteja una nova manera de representar el text per resoldre tasques de PNL. I en segon lloc, es va introduir un marc teòric per abordar una de les crítiques més freqüents de l'aprenentatge profund, el qual és la falta de interpretabilitat. Aquest marc cerca visualitzar quins patrons lèxics, si n'hi han, han estat apresos per la xarxa per classificar un text. / [EN] In the last years, Deep Learning (DL) has revolutionised the potential of automatic systems that handle Natural Language Processing (NLP) tasks. We have witnessed a tremendous advance in the performance of these systems. Nowadays, we found embedded systems ubiquitously, determining the intent of the text we write, the sentiment of our tweets or our political views, for citing some examples. In this thesis, we proposed several NLP models for addressing tasks that deal with social media text. Concretely, this work is focused mainly on Sentiment Analysis and Personality Recognition tasks. Sentiment Analysis is one of the leading problems in NLP, consists of determining the polarity of a text, and it is a well-known task where the number of resources and models proposed is vast. In contrast, Personality Recognition is a breakthrough task that aims to determine the users' personality using their writing style, but it is more a niche task with fewer resources designed ad-hoc but with great potential. Despite the fact that the principal focus of this work was on the development of Deep Learning models, we have also proposed models based on linguistic resources and classical Machine Learning models. Moreover, in this more straightforward setup, we have explored the nuances of different language devices, such as the impact of emotions in the correct classification of the sentiment expressed in a text. Afterwards, DL models were developed, particularly Convolutional Neural Networks (CNNs), to address previously described tasks. In the case of Personality Recognition, we explored the two approaches, which allowed us to compare the models under the same circumstances. Noteworthy, NLP has evolved dramatically in the last years through the development of public evaluation campaigns, where multiple research teams compare the performance of their approaches under the same conditions. Most of the models here presented were either assessed in an evaluation task or either used their setup. Recognising the importance of this effort, we curated and developed an evaluation campaign for classifying political tweets. In addition, as we advanced in the development of this work, we decided to study in-depth CNNs applied to NLP tasks. Two lines of work were explored in this regard. Firstly, we proposed a semantic-based padding method for CNNs, which addresses how to represent text more appropriately for solving NLP tasks. Secondly, a theoretical framework was introduced for tackling one of the most frequent critics of Deep Learning: interpretability. This framework seeks to visualise what lexical patterns, if any, the CNN is learning in order to classify a sentence. In summary, the main achievements presented in this thesis are: - The organisation of an evaluation campaign for Topic Classification from texts gathered from social media. - The proposal of several Machine Learning models tackling the Sentiment Analysis task from social media. Besides, a study of the impact of linguistic devices such as figurative language in the task is presented. - The development of a model for inferring the personality of a developer provided the source code that they have written. - The study of Personality Recognition tasks from social media following two different approaches, models based on machine learning algorithms and handcrafted features, and models based on CNNs were proposed and compared both approaches. - The introduction of new semantic-based paddings for optimising how the text was represented in CNNs. - The definition of a theoretical framework to provide interpretable information to what CNNs were learning internally. / Giménez Fayos, MT. (2021). Natural Language Processing using Deep Learning in Social Media [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172164
15

Apprentissage profond pour la description sémantique des traits visuels humains / Deep learning for semantic description of visual human traits

Antipov, Grigory 15 December 2017 (has links)
Les progrès récents des réseaux de neurones artificiels (plus connus sous le nom d'apprentissage profond) ont permis d'améliorer l’état de l’art dans plusieurs domaines de la vision par ordinateur. Dans cette thèse, nous étudions des techniques d'apprentissage profond dans le cadre de l’analyse du genre et de l’âge à partir du visage humain. En particulier, deux problèmes complémentaires sont considérés : (1) la prédiction du genre et de l’âge, et (2) la synthèse et l’édition du genre et de l’âge.D’abord, nous effectuons une étude détaillée qui permet d’établir une liste de principes pour la conception et l’apprentissage des réseaux de neurones convolutifs (CNNs) pour la classification du genre et l’estimation de l’âge. Ainsi, nous obtenons les CNNs les plus performants de l’état de l’art. De plus, ces modèles nous ont permis de remporter une compétition internationale sur l’estimation de l’âge apparent. Nos meilleurs CNNs obtiennent une précision moyenne de 98.7% pour la classification du genre et une erreur moyenne de 4.26 ans pour l’estimation de l’âge sur un corpus interne particulièrement difficile.Ensuite, afin d’adresser le problème de la synthèse et de l’édition d’images de visages, nous concevons un modèle nommé GA-cGAN : le premier réseau de neurones génératif adversaire (GAN) qui produit des visages synthétiques réalistes avec le genre et l’âge souhaités. Enfin, nous proposons une nouvelle méthode permettant d’employer GA-cGAN pour le changement du genre et de l’âge tout en préservant l’identité dans les images synthétiques. Cette méthode permet d'améliorer la précision d’un logiciel sur étagère de vérification faciale en présence d’écarts d’âges importants. / The recent progress in artificial neural networks (rebranded as deep learning) has significantly boosted the state-of-the-art in numerous domains of computer vision. In this PhD study, we explore how deep learning techniques can help in the analysis of gender and age from a human face. In particular, two complementary problem settings are considered: (1) gender/age prediction from given face images, and (2) synthesis and editing of human faces with the required gender/age attributes.Firstly, we conduct a comprehensive study which results in an empirical formulation of a set of principles for optimal design and training of gender recognition and age estimation Convolutional Neural Networks (CNNs). As a result, we obtain the state-of-the-art CNNs for gender/age prediction according to the three most popular benchmarks, and win an international competition on apparent age estimation. On a very challenging internal dataset, our best models reach 98.7% of gender classification accuracy and an average age estimation error of 4.26 years.In order to address the problem of synthesis and editing of human faces, we design and train GA-cGAN, the first Generative Adversarial Network (GAN) which can generate synthetic faces of high visual fidelity within required gender and age categories. Moreover, we propose a novel method which allows employing GA-cGAN for gender swapping and aging/rejuvenation without losing the original identity in synthetic faces. Finally, in order to show the practical interest of the designed face editing method, we apply it to improve the accuracy of an off-the-shelf face verification software in a cross-age evaluation scenario.
16

PatchUp : a feature-space block-level regularization technique for convolutional neural networks

Faramarzi, Mojtaba 07 1900 (has links)
Les modèles d’apprentissage profond à large capacité ont souvent tendance à présenter de hauts écarts de généralisation lorsqu’ils sont entrainés avec une quantité limitée de données étiquetées. Dans ce cas, des réseaux de neurones très profonds et larges auront tendance à mémoriser les échantillons de données et donc ils risquent d’être vulnérables lors d’un léger décalage dans la distribution des données au moment de tester. Ce problème produit une généralisation pauvre lors de changements dans la répartition des données au moment du test. Pour surmonter ce problème, certaines méthodes basées sur la dépendance et l’indépendance de données ont été proposées. Une récente classe de méthodes efficaces pour aborder ce problème utilise plusieurs manières de contruire un nouvel échantillon d’entrainement, en mixant une paire (ou plusieurs) échantillons d’entrainement. Dans cette thèse, nous introduisons PatchUp, une régularisation de l’espace des caractéristiques au niveau des blocs dépendant des données qui opère dans l’espace caché en masquant des blocs contigus parmi les caractéristiques mappées, sélectionnés parmi une paire aléatoire d’échantillons, puis en mixant (Soft PatchUp) ou en échangeant (Hard PatchUp) les blocs contigus sélectionnés. Notre méthode de régularisation n’ajoute pas de surcharge de calcul significative au CNN pendant l’entrainement du modèle. Notre approche améliore la robustesse des modèles CNN face au problème d’intrusion du collecteur qui pourrait apparaitre dans d’autres approches de mixage telles que Mixup et CutMix. De plus, vu que nous mixons des blocs contigus de caractéristiques dans l’espace caché, qui a plus de dimensions que l’espace d’entrée, nous obtenons des échantillons plus diversifiés pour entrainer vers différentes dimensions. Nos expériences sur les ensembles de données CIFAR-10, CIFAR-100, SVHN et Tiny-ImageNet avec des architectures ResNet telles que PreActResnet18, PreActResnet34, WideResnet-28-10, ResNet101 et ResNet152 montrent que PatchUp dépasse ou égalise les performances de méthodes de régularisation pour CNN considérée comme état de l’art actuel. Nous montrons aussi que PatchUp peut fournir une meilleure généralisation pour des transformations affines d’échantillons et est plus robuste face à des attaques d’exemples contradictoires. PatchUp aide aussi les modèles CNN à produire une plus grande variété de caractéristiques dans les blocs résiduels en comparaison avec les méthodes de pointe de régularisation pour CNN telles que Mixup, Cutout, CutMix, ManifoldMixup et Puzzle Mix. Mots clés: Apprentissage en profondeur, Réseau Neuronal Convolutif, Généralisation,Régularisation, Techniques de régularisation dépendantes et indépendantes des données, Robustesse aux attaques adverses. / Large capacity deep learning models are often prone to a high generalization gap when trained with a limited amount of labeled training data. And, in this case, very deep and wide networks have a tendency to memorize the samples, and therefore they might be vulnerable under a slight distribution shift at testing time. This problem yields poor generalization for data outside of the training data distribution. To overcome this issue some data-dependent and data-independent methods have been proposed. A recent class of successful methods to address this problem uses various ways to construct a new training sample by mixing a pair (or more) of training samples. In this thesis, we introduce PatchUp, a feature-space block-level data-dependent regularization that operates in the hidden space by masking out contiguous blocks of the feature map of a random pair of samples, and then either mixes (Soft PatchUp) or swaps (Hard PatchUp) these selected contiguous blocks. Our regularization method does not incur significant computational overhead for CNNs during training. Our approach improves the robustness of CNN models against the manifold intrusion problem that may occur in other state-of-the-art mixing approaches like Mixup and CutMix. Moreover, since we are mixing the contiguous block of features in the hidden space, which has more dimensions than the input space, we obtain more diverse samples for training towards different dimensions. Our experiments on CIFAR-10, CIFAR-100, SVHN, and Tiny-ImageNet datasets using ResNet architectures including PreActResnet18, PreActResnet34, WideResnet-28-10, ResNet101, and ResNet152 models show that PatchUp improves upon, or equals, the performance of current state-of-the-art regularizers for CNNs. We also show that PatchUp can provide a better generalization to affine transformations of samples and is more robust against adversarial attacks. PatchUp also helps a CNN model to produce a wider variety of features in the residual blocks compared to other state-of-the-art regularization methods for CNNs such as Mixup, Cutout, CutMix, ManifoldMixup, and Puzzle Mix. Key words: Deep Learning, Convolutional Neural Network, Generalization, Regular-ization, Data-dependent and Data-independent Regularization Techniques, Robustness to Adversarial Attacks.
17

Dynamic Network Modeling from Temporal Motifs and Attributed Node Activity

Giselle Zeno (16675878) 26 July 2023 (has links)
<p>The most important networks from different domains—such as Computing, Organization, Economic, Social, Academic, and Biology—are networks that change over time. For example, in an organization there are email and collaboration networks (e.g., different people or teams working on a document). Apart from the connectivity of the networks changing over time, they can contain attributes such as the topic of an email or message, contents of a document, or the interests of a person in an academic citation or a social network. Analyzing these dynamic networks can be critical in decision-making processes. For instance, in an organization, getting insight into how people from different teams collaborate, provides important information that can be used to optimize workflows.</p> <p><br></p> <p>Network generative models provide a way to study and analyze networks. For example, benchmarking model performance and generalization in tasks like node classification, can be done by evaluating models on synthetic networks generated with varying structure and attribute correlation. In this work, we begin by presenting our systemic study of the impact that graph structure and attribute auto-correlation on the task of node classification using collective inference. This is the first time such an extensive study has been done. We take advantage of a recently developed method that samples attributed networks—although static—with varying network structure jointly with correlated attributes. We find that the graph connectivity that contributes to the network auto-correlation (i.e., the local relationships of nodes) and density have the highest impact on the performance of collective inference methods.</p> <p><br></p> <p>Most of the literature to date has focused on static representations of networks, partially due to the difficulty of finding readily-available datasets of dynamic networks. Dynamic network generative models can bridge this gap by generating synthetic graphs similar to observed real-world networks. Given that motifs have been established as building blocks for the structure of real-world networks, modeling them can help to generate the graph structure seen and capture correlations in node connections and activity. Therefore, we continue with a study of motif evolution in <em>dynamic</em> temporal graphs. Our key insight is that motifs rarely change configurations in fast-changing dynamic networks (e.g. wedges intotriangles, and vice-versa), but rather keep reappearing at different times while keeping the same configuration. This finding motivates the generative process of our proposed models, using temporal motifs as building blocks, that generates dynamic graphs with links that appear and disappear over time.</p> <p><br></p> <p>Our first proposed model generates dynamic networks based on motif-activity and the roles that nodes play in a motif. For example, a wedge is sampled based on the likelihood of one node having the role of hub with the two other nodes being the spokes. Our model learns all parameters from observed data, with the goal of producing synthetic graphs with similar graph structure and node behavior. We find that using motifs and node roles helps our model generate the more complex structures and the temporal node behavior seen in real-world dynamic networks.</p> <p><br></p> <p>After observing that using motif node-roles helps to capture the changing local structure and behavior of nodes, we extend our work to also consider the attributes generated by nodes’ activities. We propose a second generative model for attributed dynamic networks that (i) captures network structure dynamics through temporal motifs, and (ii) extends the structural roles of nodes in motifs to roles that generate content embeddings. Our new proposed model is the first to generate synthetic dynamic networks and sample content embeddings based on motif node roles. To the best of our knowledge, it is the only attributed dynamic network model that can generate <em>new</em> content embeddings—not observed in the input graph, but still similar to that of the input graph. Our results show that modeling the network attributes with higher-order structures (e.g., motifs) improves the quality of the networks generated.</p> <p><br></p> <p>The generative models proposed address the difficulty of finding readily-available datasets of dynamic networks—attributed or not. This work will also allow others to: (i) generate networks that they can share without divulging individual’s private data, (ii) benchmark model performance, and (iii) explore model generalization on a broader range of conditions, among other uses. Finally, the evaluation measures proposed will elucidate models, allowing fellow researchers to push forward in these domains.</p>
18

Introducing Machine Learning in a Vectorized Digital Signal Processor / Introduktion av Maskininlärning på en Vektoriserad Digital Signalprocessor

Ridderström, Linnéa January 2023 (has links)
Machine learning is rapidly being integrated into all areas of society, however, that puts a lot of pressure on resource costraint hardware such as embedded systems. The company Ericsson is gradually integrating machine learning based on neural networks, so-called deep learning, into their radio products. One promising product is their vectorized Digital Signal Processor (DSP) that are based upon the machine learning suitable Single Instruction, Multiple Data (SIMD) paradigm and Very Long Instruction Word (VLIW) architecture. However, despite the suitability of the SIMD paradigm, the embedded system needs to efficiently execute a computation-intensive deep learning algorithm with proper use of its limited resources. Therefore commonly used methods of implementing each layer of the computation-intensive Convolutional Neural Network (CNN), a type of Deep Neural Network (DNN), have been used and evaluated its implementation on the hardware and to assess the vectorized DSP’s deep learning suitability and capabilities. Despite the suitability of the hardware, the implementation utilized less than half of the available resources at all times during the execution. The main limitations were identified to be the limited 16-bit element instructions. To enhance the performance and improve the utilization of the available resources, easy-to-implement hardware instructions have been suggested. This work has made the first steps of implementing an efficiently performing CNN implementation on the examined vectorized DSP. / Integreringen av maskininlärning in i alla samhällsområden sker idag i rusande fart, men det sätter stor press på begränsad hårdvara som inbyggda system. Företaget Ericsson integrerar successivt maskininlärning baserad på neurala nätverk, så kallad djupinlärning, i sina radioprodukter. En lovande produkt är deras vektoriserade DSP som är baserade på maskininlärningspasset SIMD-paradigm och VLIW-arkitektur. Men trots lämpligheten av SIMD-paradigmet, är den största utmaningen att utnyttja de begränsade resurserna i inbyggda systemet för att effektivt exekvera en beräkningsintensiv djupinlärningsalgoritm. Därför har vanligt använda metoder för att implementera varje lager av den beräkningsintensiva CNN, en typ av DNN, använts och utvärderats på hårdvaran för att bedöma den vektoriserade DSP:s djupinlärningslämplighet samt förmågor. Trots hårdvarans lämplighet använde alla implementeringar mindre än hälften av de tillgängliga resurserna vid alla tidpunkter under exekveringen. De huvudsakliga begränsningarna identifierades vara den begränsade tillgången på 16-bitars element instruktioner. För att förbättra prestandan för ett närmare fullt utnyttjande av tillgängliga resurser har hårdvaruinstruktioner som är enkla att implementera föreslagits. Detta arbete har tagit de första stegen för att implementera ett effektivt förformande CNN på den undersökta vekotriserade DSP.
19

Investigación y desarrollo de metodología avanzada de segmentación de la médula espinal cervical a partir de imágenes RM para la ayuda al diagnóstico y seguimiento de pacientes de esclerosis múltiple

Bueno Gómez, América 01 July 2024 (has links)
[ES] La Esclerosis Múltiple (EM) es una enfermedad inflamatoria y autoinmune del sistema nervioso central (SNC) con rasgos de desmielinización y degeneración axonal en el tiempo, y caracterizada por ser muy heterogénea en los síntomas y en el curso de la enfermedad. La Imagen de Resonancia Magnética (RM) es una de las herramientas clínicas más sensibles para la evaluación de los procesos inflamatorios y neurodegenerativos. En los últimos años, la evaluación de la médula espinal ha tenido un creciente interés clínico para mejorar el diagnóstico y el fenotipado de la enfermedad, aunque, a diferencia del cerebro, en médula espinal cervical no existen algoritmos de inteligencia artificial (IA) desarrollados y certificados para práctica clínica. Es por ello, que nuestro objetivo se centra en investigar y desarrollar un método automático de segmentación de médula cervical en RM, facilitando así una evaluación automática y mejorada de la atrofia de la médula espinal, pues esta puede proporcionar información valiosa sobre la progresión de la enfermedad y sus consecuencias clínicas. El algoritmo se desarrolló mediante datos del mundo real (real-world data) recogidos de manera retrospectiva en 121 pacientes de EM. Se utilizaron 96 de ellos para el entrenamiento del modelo, 25 para test y 13 para la validación del modelo. Durante la tesis se trabajaron secuencias de RM adquiridas en un equipo de 3T (SignaHD, GEHC), de tipo 3D axiales potenciadas en T1, dada su mejor resolución y contraste para identificar pequeñas estructuras anatómicas como la médula espinal. El etiquetado manual de los datos fue realizado bajo el consejo y supervisión de dos radiólogos experimentados, obteniendo finalmente el ground-truth. Varias fueron las arquitecturas, hiperparámetros y formas de preprocesado aplicados al dataset en busca de la solución óptima. Dada su conocida importancia en la segmentación de imagen médica, la arquitectura U-Net fue el punto de partida. Tras la ausencia de buenos resultados y una mayor investigación en el campo, se dio con la problemática del desbalanceo de datos. Finalmente, para obtener la segmentación deseada, se implementó y entrenó una red neuronal convolucional 2D compuesta por un mecanismo de atención residual y conexiones basadas en la arquitectura U-Net. El mecanismo de atención permitió que el modelo se centrara en aquellas localizaciones de la imagen que son importantes para la tarea de clasificación de los vóxeles correspondientes a la médula cervical, a la vez que retenía la información del resto de estructuras anatómicas, mientras que los bloques residuales nos permitieron solventar problemas de desvanecimiento de gradiente comunes en redes neuronales profundas. El entrenamiento se diseñó con una función de pérdidas local, basada en el índice de Tversky con el fin de controlar el problema de desbalanceo de datos de imagen médica, y un buscador automático de tasa de aprendizaje óptima que nos permitió mejorar la convergencia y rendimiento del modelo. Finalmente, nuestro método proporcionó una segmentación con una elevada tasa de acierto, obteniendo un valor de 0.95 como MCC en la métrica de entrenamiento y consiguiendo en validación un coeficiente DICE de 0.904±0.101 tomando como referencia la segmentación manual. Además de obtener una herramienta para la segmentación automática de la médula, también creamos un módulo para el cálculo de sus dimensiones, actuando como biomarcador de imagen, lo que será útil y eficaz para la valoración de la atrofia. De esta forma, los clínicos pueden evaluar el grado de daño neurológico y seguir su evolución a lo largo del tiempo. Como biomarcadores de imagen, calculamos las dimensiones de las médulas de nuestros pacientes en forma de volumen (mm3) y sección media (mm2) y estudiamos la relación entre sección media de la médula espinal cervical con la distribución de las distintas formas clínicas y los niveles en Escala de Discapacidad Extendida de Kurtzke (EDSS) de los pacientes. / [CA] L'Esclerosi Múltiple (EM), és una malaltia inflamatòria i autoimmune del sistema nerviós central (SNC) amb trets de desmielinització i degeneració axonal en el el temps. Es caracteritza per ser molt heterogènia amb els símptomes i curs de la malaltia. La Imatge de Ressonància Magnètica (RM) és una de les eines més sensibles per a l'avaluació dels processos inflamatoris i neurodegeneratius. Als darrers anys, l'evolució de la medul·la espinal ha tingut un creixent interés clínic per tal de millorar el diagnòstic i el fenotipatge de la malaltia, encara que, a diferència del cervell, en medul·la espinal cervical no existeixen algoritmes d'intel·ligència artificial (IA) desenvolupats i certificats. Aquest fet motiva el present estudi, que se centra en la recerca i desenvolupament d'un mètode automàtic de segmentació de medul·la cervical en RM. L'automatització i millora del procés d'avaluació de l'atròfia de la medul·la espinal podrà proporcionar valuosa informació sobre la progressió de la malaltia i les seves conseqüències clíniques. L'algoritme proposat al present treball va ser desenvolupat mitjançant dades del món real (real-world data) recollides de manera retrospectiva en 121 pacients d'EM. D'aquestes mostres, 96 foren utilitzades per a l'entrenament del model d'IA, 13 per a la validació durant l'entrenament i les 25 restants com a conjunt d'avaluació. Les seqüències d'imatges de RM fetes servir foren adquirides amb un equip 3T de tipus 3D axials potenciats en T1, donada la seua millor resolució i contrast alhora identificar petites estructures anatòmiques com la medul·la espinal. L'etiquetatge de les dades fou realitzat sota la supervisió i consell de dos experimentats radiòlegs. El resultat final fou un conjunt d'imatges RM de referència (ground truth dataset) amb les corresponents màscares de segmentació de la medul·la espinal cervical definides pels radiòlegs. Diverses van ser les arquitectures, hiperparàmetres i tècniques de preprocessat aplicades al conjunt de dades en cerca de la solució òptima. Donada la seua coneguda importància en la segmentació d'imatge mèdica, l'arquitectura U-Net fou el punt de partida. Un altre punt d'inflexió fou resoldre la problemàtica de la desproporció de representativitat al conjunt de dades utilitzat (dataset imbalancement). Finalment, per obtindre la segmentació desitjada, es va implementar i entrenar una xarxa neuronal convolucional 2D composta per un mecanisme d'atenció residual i connexions basades en l'arquitectura U-Net. El mecanisme d'atenció va permetre que el model se centrara en aquelles localitzacions de la imatge més importants per a la tasca de classificació dels corresponents vòxels a la medul·la cervical, a la volta que retenia la informació de la resta d'estructures anatòmiques. Alhora, els blocs residuals, van permetre resoldre els problemes d'esvaïment de gradient, comuns a l'entrenament de xarxes neuronals profundes. L'entrenament es va dissenyar amb una funció de cost local, basada en l'índex Tversky, amb el fi de controlar la problemàtica del dataset imbalancement i, un buscador automàtic de la taxa d'aprenentatge òptima que permetia una millor convergència i rendiment del model. Els resultats proporcionats pel nostre mètode de segmentació automàtica, presentaren una elevada taxa d'encert, obtinguen un valor de 0.95 com coeficient de correlació de Matthew en la mètrica d'entrenament i aconseguint en validació un coeficient DICE de 0.904±0.101 prenent com a referència la segmentació manual. A més de l'eina de segmentació automàtica, també hem desenvolupat un mòdul per al càlcul de les seues dimensions, el que serà útil per a una eficaç valoració de l'atròfia. Com biomarcadors d'imatge, calcularem les dimensions de les medul·les dels nostres pacients en forma de volum (mm³) i secció mitjana (mm²) i estudiarem la relació entre secció mitjana de la medul·la espinal cervical amb la distribució de les distintes formes clíniques i l'escala de discapacitat estesa de Kurtzke / [EN] Multiple Sclerosis (MS) is an inflammatory and autoimmune disease of the central nervous system (CNS) with features of demyelination and axonal degeneration over time, and characterised by being very heterogeneous in symptoms, disease course and outcome. Magnetic Resonance Imaging (MRI) is one of the most sensitive clinical tools for the evaluation of inflammatory and neurodegenerative processes. In recent years, the evaluation of the spinal cord has been of increasing clinical interest to improve the diagnosis and phenotyping of the disease, although, unlike the brain, in the cervical spinal cord there are no artificial intelligence (AI) algorithms developed and certified for clinical practice. Therefore, our aim is to investigate and develop an automatic method of cervical cord segmentation in MRI, thus facilitating an automatic and improved assessment of spinal cord atrophy, which can provide valuable information on the progression of the disease and its clinical consequences. The algorithm was developed using real-world data collected retrospectively from 121 MS patients. Of these, 96 were used for model training, 25 for testing and 13 for validation of the proposed model. During the thesis, 3D axial T1-weighted MRI sequences acquired in 3T equipment (SignaHD, GEHC) were used, given their better resolution and contrast to identify small anatomical structures such as the spinal cord. Manual labelling of the data was performed under the advice and supervision of two experienced radiologists, between whom possible discrepancies were resolved with a third radiologist, resulting in a set of cervical spinal cord masks as ground-truth. Several architectures, hyperparameters and forms of pre-processing were applied to the dataset in search of the optimal solution. Given its known importance in medical image segmentation, the U-Net architecture was the starting point. After the absence of good results and further research in the field, the problem of data imbalance was identified. Finally, to obtain the desired segmentation, a 2D convolutional neural network (CNN) composed of a residual attention mechanism and connections based on the U-Net architecture was implemented and trained. The attention mechanism allowed the model to focus on those image locations that are important for the classification task of the voxels corresponding to the cervical cord, while retaining the information of the rest of the anatomical structures. Residual blocks allowed us to solve common gradient fading problems in deep neural networks. Training was designed with a local loss function, based on the Tversky index in order to control the medical image data imbalance problem, and an automatic optimal learning rate finder that allowed us to improve the convergence and performance of the model. Finally, our method provided a segmentation with a high success rate, obtaining a value of 0.95 as MCC in the training metric and obtaining in validation a DICE coefficient of 0.904±0.101 taking manual segmentation as a reference. In addition to obtaining a tool for the automatic segmentation of the spinal cord, we also created a module for the calculation of its dimensions, which will be useful and effective for the assessment of atrophy. Atrophy is a direct indicator of neuronal damage and tissue loss in both the brain and spinal cord, and is a key risk factor for disability in MS. By accurately calculating atrophy, clinicians can assess the degree of neurological damage and follow its evolution over time. In our study, we calculated the dimensions of our patients' cords, as possible imaging biomarkers, in terms of volume (mm3) and mean section (mm2), and studied the relationship between the mean section of the cervical spinal cord with the distribution of the different clinical forms and the Kurtzke Expanded Disability Status Scale (EDSS) levels in our study group. / Bueno Gómez, A. (2024). Investigación y desarrollo de metodología avanzada de segmentación de la médula espinal cervical a partir de imágenes RM para la ayuda al diagnóstico y seguimiento de pacientes de esclerosis múltiple [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/205742

Page generated in 0.1092 seconds